Electronic Preprint for Journal of Information Processing Vol.30

Regular Paper

A Campus Equipment Controller Using an IoT System
that Can Configure and Control its Edge Devices
Behind a NAT Using Wiki Pages on the Internet

TakAsHI YAMANOUE!®

Received: May 30, 2021, Accepted: December 3, 2021

Abstract: This paper describes the development of an electric appliance controller using an IoT system. The IoT
system can configure and control its edge devices which are placed behind a Network Address Translator (NAT) using
Wiki pages. These operations were realized by Bot Computing, a framework for Internet of Things (IoT). Any electric
appliance can be controlled using the combination of Bot Computing and edge devices with an Infra-Red (IR) trans-
mitter, if the appliance has the IR remote controlled function. We can program the power on/oft time of any electric
appliances, by writing a script on a Wiki page on the Internet, using Bot Computing. We can change the program
anytime, anywhere. We also can control turning on or off the appliance anytime, anywhere.

Keywords: remote control, network management, Wiki, Bot, [oT

1. Introduction

Campus technical managers have to manage a lot of equip-
ment, such as air conditioners, lights in classrooms, video pro-
jectors and so on, on our campuses. And usually, the number
of them is increasing. Their number and kind are much larger
than such equipment at home. However, managers should ensure
their campuses are green in order to keep the earth green and in
order to maintain the sound finance of our campuses. In order
to operate such equipment effectively while keeping the campus
green, frequent and flexible power on and power off operations
are required. Managers are not in a position to do such operation
themselves because they are too busy. So, managers use appli-
ance timers [1] or sensors for the automatic operation of campus
equipment. However, it is hard to change the settings of a lot of
campus equipment manually. It is almost impossible to do irregu-
lar operation of a piece of equipment in a locked building at night
manually.

There has been an attempt to carry out an automatic and flex-
ible operation of such equipment using Bot Computing [2], [3],
[4]. Bot computing enables the remote control of edge devices
which are protected by NAT routers, from the Internet. Any elec-
tric appliances can be controlled using the combination of Bot
Computing and edge devices with an Infra-Red (IR) transmitter,
if the appliance has the IR remote controlled function.

We can program the power on time and the power off time of
any electric appliances, by writing a script on a Wiki page on the
Internet using Bot Computing. We can change the program any-
time, anywhere. We can also command the turning on or off the

' Fukuyama University, Fukuyama, Hiroshima 729-0292, Japan

¥ yamanoue @fukuyama-u.ac.jp

© 2022 Information Processing Society of Japan

appliances anytime, anywhere. We have used this method to real-
ize a big digital signage system of our university using windows
of a building in our university. The signage system displays uni-
versity information at night. We could have scheduled operation
of video projectors in a building. We also could have commanded
the turning on of video projectors and have changed the schedule
of operation from the outside of the building at night, when it is
is locked.

2. Bot Computing and Wiki IoT System

A remote-controlled computer or program is a bot in this paper.
Bots are often malicious programs that form a botnet [5], but they
can also be used for beneficial tasks [2], [3], [4], [6]. We define
Bot computing as computing by bots. Bot computing is paral-
lel computing. The bot, called Wiki Bot, is Raspberry Pi [7] that
runs the bot software which is written in a Wiki page. Some of
them are equipped with actuators and sensors. Some are equipped
with a wireless sensor network (WSN) transmitter. Wiki Bots are
controlled by commands and programs on Wiki pages on web
servers. Wiki Bots which are equipped with a WSN transmit-
ter, are gateways to the WSN. The IoT system in this paper
consists of IoT devices (bots) that communicate with each other
and Wiki software on the Internet. We call this [oT system the
Wiki IoT system (Fig. 1). Administrators can control bots in a lo-
cal area network (LAN) protected by network address translation
(NAT) routers from outside the LAN by writing commands and
programs on Wiki pages hosted on web servers located outside
the LAN or that can be accessed from outside the LAN. A WSN
is not considered in this paper. A Wiki [oT system with a WSN
is described in other papers [8], [9], [10]. We adopt PukiWiki
software [11] for the Wiki IoT because PukiWiki is simpler to de-

Electronic Preprint for Journal of Information Processing Vol.30

-

Q"}, Progra‘r{"l/b

Program/ Data

Data

“Wireless Sensor
Network

Wiki Bot

Wiki Pages
On the Interne

Program/
Data

Administrators

Sensors

Fig. 1 Outline of a Wiki IoT system.

Wiki Pages/
Web Pages (\
g Main Wiki User/Users
Page m
oo
Commands, Command/Program =] it

Program Commands,

/m\ N Program to
A B Q the Wiki Page
(tweet Execute
' (TTTE bag|| Commands,
\ Program

A &7 Read

S
e Results

4
ST | | resutsto

o Write
Results to [T

the Wik I

Page

T Read Results

Fig. 2 Outline of behavior of a bot.

ploy than many other wikis. PukiWiki has minimal requirements,
not even needing data base engines such as MySQL. By ex-
tracting PukiWiki tar-ball to a web server root directory, it works
well [12]. When an appliance is placed in a campus building that
cannot be accessed from the outside directly, it is impossible to
directly control the appliance from outside of the building. How-
ever, such controlling would be convenient when administrators
are not in the building. A Wiki Bot[3], [4] can help administra-
tors control the appliance in such cases. Buildings are usually
physically isolated from the outside at night. There are no people
in the building at night.

2.1 Behavior of a Wiki Bot
Figure 2 shows the behavior of a Wiki Bot. A Wiki Bot repeats
the following steps:

(1) Wait for a specified time.

(2) Read commands from the specific Wiki page assigned to the
bot. The source code of a program and the command for
running the program can be used as commands.

(3) Execute these commands.

(4) Data in the send buffer are written back to the Wiki page that
contains the commands, after the line “result:”.

© 2022 Information Processing Society of Japan

If the source code of a program is embedded in the series of
commands, then the program is transferred to the language pro-
cessor of the bot. The program is translated into an internal repre-
sentation and run by the interpreter when the run command is ex-
ecuted. The program can read other Wiki pages and Web pages.
It can read and send tweets on Twitter. Bots with sensors, can
also read sensor data. Bots with actuators can send data to the
actuators. A bot can write data to the send buffer. If the data are
spilt from the send buffer, old data are deleted. These functions
are realized using the embedded functions of the programming
language. We call the specific Wiki page that contains the com-
mands, the program, and data which are written back from the
Wiki Bot, the main Wiki page. Sensors are not considered in this
paper. Wiki IoT systems with sensors are described in other pa-
pers [4].

2.2 Commands and the Program of a Wiki Bot

Figure 3 shows an example of a program with a series of com-
mands. In this example, lines that start with “command:” are the
commands. The first line,

command: set readlnterval=60000
tells the Wiki Bot to read the page at the given URL every minute.
The time interval is given in milliseconds.

]

The lines that start with “program:” are the program. A pro-
gram is enclosed by commands “command: program <name>"
and “command: end <name>", where <name> is the name of the
program. In this example, the program is named “ex”. The last
command line, “command: run ex” translates the program into its
internal representation and executes it.

A Wiki page for a Wiki Bot can also contain the “set page-
Name” command and the “include” command.

When the “set pageName” command is interpreted in the bot,
the Wiki Bot will use the Wiki page designated by this command

Electronic Preprint for Journal of Information Processing Vol.30

objectPage http:// NN /i ndex . php?Basic
device yamaRasPiDp9_1 or yamaRasPiDp9_2 start after no wr
command: set readInterval=60000

command: set execInterval=0

command: program exl

program: ex(“service","clear sendBuffer")

program: s=0

program: for i=0 to 10

program: Ss=s+i

program: ex("service","putSendBuffer "+s)

program: next i

program: ex("service","sendResults.™)

command: end exl

command: run exl

result:

0

1

3

6

10

({15!

21

28

36

45

55

currentDevice="yamaRasPiDp9_1",Date=2018/8/13/ 0:56:3

Fig. 3 An example of the program of a Wiki Bot and its output after the
execution of the program.

as the main Wiki page. The name of the designated Wiki page can
include the current time or date. For example, when the follow-
ing command is interpreted at eight o’clock, the Wiki Bot uses
the page “pir-1-8”, on the same server used for the current Wiki
page, as the main Wiki page.

set pageName= “pir-1-<hour>"

When the “include” command is interpreted in a Wiki Bot, the
bot inserts the Wiki page designated by the include command into
the place of the include command of the original Wiki page. This
command is useful when there are identical commands or pro-
grams on many Wiki pages. It can also be used for object-oriented
programming.

The commands and the program on the main Wiki page can be
modified to change the behavior of the bot without stopping the
bot.

A Wiki Bot can be connected to a LAN protected by a NAT or
network address port translation router. The bot can be controlled
from outside the LAN.

2.3 Embedded Functions of a Program

The program of a Wiki Bot can use the following embedded
functions.

e ex(<object>, <command>)

This function sends the <command> in a string to <object>.
Currently, objects are a “service” for interacting with the bot’s
functions, a “connector” for interacting with a web page and
a “pi4j” for interacting with sensors and actuators connected
to the Wiki Bot. This function can have a return value. The
following is an example of the statement that reads the page
http.//www.page.ex/ and assigns the page to the variable page as a
string value.

» o«

page=ex(“connector”, “getpage http:lwww.page.ex/”)

© 2022 Information Processing Society of Japan

Class-A:
Commands
Program

Class-B: Class-C:
Include Include
Commands Commands
Program Program

Object-1: Object-2:
Include Include
Commands Commands
Data Data

Object-3:
Include
Commands
Data

Object-4:
Include
Commands
Data

Object 1 Object 2 Object 3 Object 4

Fig.4 An example of the program of a Wiki Bot and its output after the
execution of the program.

2.4 Class Pages and Object Pages

Wiki IoT is an object-oriented computing system [3], [13]. In
our Wiki IoT system, an object is the combination of a Wiki page
and a Wiki bot.

Some bots in a Wiki IoT system may use the same commands.
To reduce duplication on Wiki pages, the Wiki IoT system might
have a class page for sharing common commands among the Wiki
pages of such objects. We call a main Wiki page of objects an ob-
ject page. An object page uses the “include” command for a class
page when sharing a common class among object pages.

If class pages have common commands, they can share another
page of the same class page using the “include” command, simi-
lar to inheritance in object-oriented programming.

The override function in object-oriented programming is also
realized by the “include” command. If Wiki page B includes Wiki
page A, then the program on Wiki page A becomes the super-
class of the program on Wiki page B, which is the sub-class. The
programming language for our Wiki [oT system is similar to BA-
SIC. A program is translated into an S-expression, which is eval-
uated by a LISP interpreter. If functions with the same name exist
in the super-class program and the sub-class program, the func-
tion of the super-class program is overwritten by the function of
the sub-class program.

Figure 4 shows an example of the class hierarchy of Wiki IoT.
Class Page A, Class Page B, Class Page C, Object Page-1, Object
Page-2, Object Page-3, and Object Page-4 are Wiki pages. The
program in Class Page A is the super-class of sub-class programs
in Class Page B and Class Page C. Object Page-1 and Object
Page-2 use the commands and program in Class Page B. Object-
3 and Object-4 use the commands and program in Class Page C.

3. Arduino IR Remote Control Transceiver

Many modern appliances are equipped with IR remote con-
trol function. We have designed and implemented the Wiki Bot
with the Arduino IR remote control transceiver (IR transceiver),
in order to control appliances with the remote-control function
(Fig. 5). Arduino is a popular micro controller for hobbyists [14].

The hardware of a Wiki Bot with the IR transceiver consists
of a Raspberry Pi and an IR transceiver. They are connected by
a USB cable. The IR transceiver consists of an Arduino Nano
micro controller, an IR remote control signal receiver, and an IR

Electronic Preprint for Journal of Information Processing

LED. They are connected by a bread board and some jumper ca-
bles. Figure 6 shows the circuit of the IR transceiver. In this Fig-
ure, two buttons and two 470 k ohm registers are also used in the
circuit. These buttons and registers are used to test the function
of the transceiver. The sketch (program), which is written based
on the program by Mr. Shirriff[15], is written in the Arduino of
the IR transceiver. The sketch has the following functions.

a. Receives a command from the USB serial interface, inter-

prets the command, transforms the command into the code
for the IR signal, and sending the IR signal, which is corre-
sponding to the command, to an appliance using the IR LED.
When the signal is transmitted from the IR LED, when the
appliance receives the signal, and when the received signal
was appropriate for the appliance, the appliance plays the
corresponding action to the command. The format of a com-
mand is “irCmd <maker><code><code-length>,”. In this
format, <maker> shows the format of the <code>. <code>
shows the IR code in hexadecimal value. <code-length> is
the length of the IR code.
Receives the signal of IR remote controller of an appliance
using the IR remote control signal receiver, analyzing the
signal and displaying the code of the signal to the serial mon-
itor of the Arduino IDE.

Bot |

YT
~ - >\\
Wiki Page)

Control Signal
(on/off/--)

Read
Commands

Execute
Commands
(
\ | I
= .

Fig. 5 Wiki Bot with the Arduino IR remote controller.

Commands
“ IRLED

\ =S - [

_ Automatic Operation Program

N P [oEen) Arduino
N N

~—A__/

Vol.30

Figure 7 shows a part of the sketch.

In the figure, the

line, No.310, “String str = Serial.readStringUntil(’;’);” shows
that the program receives the command line which is ended

arduino—irTxRx—ex4 | Arduino 1.

TP ffe AuF Y- AIVT

arduing-iTeRx-erd

6.5

103

while (Serial.available() > 0) |
String str = Serial.readStringlnt
tring rest[1];
long ril1]:
String rs[11;
Serial.printin(str);
straskipSpace(str);
if(str.index0f (“on-projector”)==0){

irsend. sendNE .

elay(1000);

NEC(0xC728D, 32);

alse
if(rKeyword(str,” irCmnd” rest)){
str=skipSpace(rest[0]);
String mkr="RAW";
it (rKeyword(str,"NEC™, rest)) [
mkr="NEC™;
1
else
i (rKeyword(str,"SONY” rest))[
nere” N
1
alse
if(rKeyword(str,"RC rest))[

r="RC5
]
if (rKeyword(str,"RC
mkr="RC6
1
straskipSpace(rest(01);
if(!rHex(str,ri,rest)){ Serial.
ng emd=ri[0];
str=skipSpace(rest[0]):
if(Lrint(str,ri,rest)){Serial .p
long Ix=ri[0];
if (mkr . inde
irsend.
Serial.pr
Serial .
Serial.pr
Serial .pr

]

rest))[

;. //Power On the Projector...Beng WWE12

of f-projector”)==0){
/fPower OFF the Projector .. .Bsnq MHBI2

print("error

nt(Ter

is expected...”+str); return;]

+str); return;]

Fig.7 A part of the sketch of the Arduino IR remote control transceiver (IR

transceiver).

<«—— |R remote control signal

receiver

e .
v .
e .
e .o
e ..

Arduino Nano

Fig. 6 Circuit of the Arduino IR remote control transceiver (IR transceiver).

© 2022 Information Processing Society of Japan

Projector Projector IR LED
Off Button On Button

Electronic Preprint for Journal of Information Processing Vol.30

Fig.8 Receiving the IR command using the IR transceiver.

with the letter “;” from the USB serial interface and assigns
the command line into the variable “st#”. The line, No.326,
“iftrKeyword(str,”irCmd”,rest)){”’ shows that if the command line
was started by the keyword “irCmd”, the program deletes the key-
word from the command line, passes the rest of the command line
to the variable “rest”, and performs the statements within the cor-
responding braces “{}”. The line, No.344, “if{!rHex(strri,rest)){”
shows that if there was a hexadecimal value at the head of the
command line in the variable “str”, the program reads the hex-
adecimal value, deletes the hexadecimal value from the command
line, assigns the value into the array “ri”, passes the rest of the
command line into the variable “rest”, and executes the following
statements. The value in the element “ri/0]” shows the code in
the command line. The line, No.350, “irsend.sendNEC(cmd,[x)”
shows that the NEC format code in the variable “cmd” is sent to
the IR LED. The variable “Ix” shows the bit length of the code.
The IR remote control signal receiver is used for getting the IR
command. When the IR remote controller of an appliance was
pointed toward the IR remote control signal receiver of the IR
transceiver, and a button of the IR remote controller was pressed,
the corresponding code to the button is acquired by the Arduino
Nano and the code is shown in the serial port monitor of the Ar-
duino IDE. The code, which corresponds to a function of an ap-

© 2022 Information Processing Society of Japan

/dev/ttyUSBO

Encoding : NEC
lcode : CF20D (32 bits)
[Timing[67]:
+9000, -4400 +550, - 550 + 6
+600, - 500 +650, - 500 +65 27T BRE ATVF Y-
+650, - 450 +650, - 500 +60
+650, - 500 + 650, -1550 + 6€
! +600, - 500 +650, -1600 + 66 e
+650, -1550 + 650, - 500 -+ 66 arduino_irTxRx-ex3
+600, - 500 +600, - 500 +65| //- <o oo _______
+650, - 500 +650, -1550 + 6% // Include the IRremote librar
+600, -1600 + 600 /7
unsigned int rawData[67] = {9000, #include <IRremote.h>
unsigned int data = ©xCF20D;

arduino_irTxRx-¢]
b A

4 // Tell IRremote which Arduino
v Emzs0-0 916287

int recvPin=11;

Fig.9 Received IR command by the IR transceiver.

pliance, can be acquired by this procedure. Figure 8 shows the
IR transceiver which is receiving the IR command from the pro-
jector controller. Figure 9 shows the received IR command in the
serial port monitor, which is received by the IR transceiver when
the power on button of the controller was pushed. The format of
the code, NEC, was also shown in the serial port monitor.

4. Automatic and Flexible Operation of Cam-
pus Equipment

Fukuyama university has a building at Fukuyama city down-
town. We have made a big digital signage system using windows
of the building and projectors. We were showing university infor-
mation on the signage system at night. Figure 10 shows a scene
where the information of our university is displayed by the big
digital signage.

Figure 11 shows the outline of the inside of the big digital
signage system. This system uses multiple projectors in order to
display a large size image without decreasing its brightness. Each
projector displays the image on the display of the laptop PC for
screen receiving (receiver PC). The original image is sent from
the laptop PC for screen transmission (transmitter PC). Each re-
ceiver PC receives the original image and displays a part of the
image. Distributed web screen share (DWSS) function of the
portable cloud computing system [16] is used for this broadcast.

Projectors of the signage system should be turned off at day-
time in order to save power and life of projectors’ lights. In order
to turn off the projector at daytime and to turn on at night, we
were using hardware timers and timers in projectors.

When we wanted to change the time of turning on/off the sig-
nage system, we had to enter the building and change the settings
of hardware timers and timers in the projectors.

It is not easy to change the time of turning on/off the signage
system because it takes about 30 minutes by car from the main
campus of our university to the building. And it was impossible
to change the time of turning on/off at night, because we can’t
enter the building at night. In order to improve this situation, we
made the automatic and flexible operation system (“our system”
in the following) using bot computing. Our system was used for
one month, for displaying the public relations video of the 400-th
anniversary of the Fukuyama castle completion during September

Electronic Preprint for Journal of Information Processing Vol.30

2019[17].
Our system archieves the scheduled operation and the ordered
turning on/off of equipment using the script on a Wiki page.
Figure 12 shows an outline of the power control part of the
big digital signage system. An “Arduino IR remote control
transceiver (IR transceiver)” is placed near each projector. The an
IR transceiver sends IR signal, which turns each projector on/off,
to the projector. An IR LED is connected to the IR receiver win-
dow of the projector. Each IR transceiver is connected to a Rasp-
berry Pi using a USB cable. This Raspberry Pi is the Wiki bot of
s the Wiki IoT.
— e aet o : A Wiki Bot reads the Object page on a Wiki server periodically.

There is an include command, which includes the Class page, in
the object page. The script which turns all projectors on/off si-

Fig. 10 Display of the Big digital signage.

multaneously is written in the Class page. So, this script is read

BRI DVCSRE RSt

A AkE Large Digital

Target Contents Signage System

Web Server

ll Windows with translucent Paper
| Flip horizontal,
Projection from inside of the room.

Automatic Automatic
operation operation
system system

Target page

Receives the Laptop:PC for Receives the
Full Screen, SO i R Full Screen,
Shows a part Shows a part
Of the screen. Of the screen.

Raspberry Ras;%erry
Pi Pi

Transmit

The Internet Raspberry the Full Screen
Pi

Laptop PC for

Portable Cloud S?reen Transmission Y

Fig. 11 Outline of the Inside of the Big digital signage system.

IR signal

Command
Arduino

include IR Transceiver

Command

Arduino
IR Transceiver

\\ The Internet /

Fig. 12 Outline of the power control part of the big digital signage system.

© 2022 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.30

command: set readlInterval=120000

command: set execlInterval=500

command: set sendInterval=600000

command: program ex1

program: def abs(x)= if x>0 then x else —x

program: def onPrj()=

program: {

program: ex(“pi4j”, “serial send ¥"irCmd NEC 0xCF20D 32;¥".”)
program: delay (1000)

program: ex(“pi4j”, “serial send ¥”irCmd NEC OxCF20D 32;¥".")
program: delay (1000)

program: ex("pi4j”, “serial send ¥"irCmd NEC OxCF20D 32;¥".")
program: }

program: def offPrj()=

program: {

program: ex(“pi4j”, “serial send ¥“irCmd NEC 0xC728D 32;¥".")
program: delay (2000)

program: ex(“pi4j”, “serial send ¥”irCmd NEC 0xC728D 32;¥".")
program: delay (2000)

program: ex("pi4j”, “serial send ¥”irCmd NEC 0xC728D 32;¥".")
program: delay (2000)

program: ex("pi4j”, “serial send ¥”“irCmd NEC 0xC728D 32;¥".”)
program: }

program: dim comTab

program: ex(“service”, “clear sendBuffer”)

program: output=""

program: dx="2019/10/"

program: comTab (0, 0)=dx+"1/ 18:30:00":comTab (0, 1)="onPr j”
program: comTab (1, 0)=dx+"1/ 22:15:00":comTab (1, 1)="of fPr j”

command: set readInterval=120000

command: set execlnterval=500

command: set sendInterval=600000

command: program ex1

program: def abs(x)= if x>0 then x else —x

program: def onPrj()=

program: {

program: ex(“pi4j”, “serial send ¥”irCmd NEC OxCF20D 32;¥".")
program: delay (1000)

program: ex(“pi4j”, “serial send ¥”irCmd NEC OxCF20D 32;¥".")
program: delay (1000)

program: ex(“pi4j”, “serial send ¥“irCmd NEC OxCF20D 32;¥".")
program: }

program: def offPrj()=

program: {

program: ex(“pi4j”, “serial send ¥”irCmd NEC 0xC728D 32;¥".")
program: delay (2000)

program: ex("pi4j”, “serial send ¥"irCmd NEC 0xC728D 32;¥".”)
program: delay (2000)

program: ex(“pi4j”, “serial send ¥”irCmd NEC 0xC728D 32;¥".")
program: delay (2000)

program: ex(“pi4j”, “serial send ¥”irCmd NEC 0xC728D 32;¥".")
program: }

program: dim comTab

program: ex (“service”, “clear sendBuffer”)

program: output=""

program: dx="2019/10/"

program: comTab (0, 0)=dx+"1/ 18:30:00":comTab (0, 1)="onPr j”
program: comTab (1,0)=dx+"1/ 22:15:00”:comTab (1, 1) ="offPrj”

Fig. 13 A part of the class page which turns all projectors on/off simultane-
ously.

and executed by all wiki bots.

Figure 13 shows a part of the class page which turns all pro-
jectors on/off simultaneously. def onPrj()=. . . shows the function
which sends the command, which transmits the signal of turn on
code from the IR LED, from a Raspberry Pi to an IR transceiver.
ex(“pidj”, “serial send ¥*“irCmd NEC OxCF20D 32;¥”.”) in this
function shows the command. “pi4;”” shows the object which per-
forms input and output of the Raspberry Pi. “serial send <com-
mand>" shows that the command “irCmd NEC OxCF20D 32;”
is sent to the IR transceiver using the USB serial interface of
the Raspberry Pi. The IR transceiver receives the command and
recognizes that this code is the command for the IR transceiver
by looking at the head part of this command, irCmd. Then the
transceiver transforms the command “NEC OxCF20D 32” into the
signal and the signal is sent to the projector. NEC shows that the

© 2022 Information Processing Society of Japan

format of this code is the format of NEC IR remote controller.
OxCF20D is the code that turn on the projector and 32 shows that
the length of this code is 32 bits. The code NEC 0xCF20D was ac-
quired by the IR transceiver, by receiving the turn on signal from
the original remote controller of the projector. def offPrj()=. . .
shows the function which sends the command, which transmits
the signal of turn off code from the IR LED, from a Raspberry
Pi to a IR transceiver. ex(“pi4j”, “serial send ¥*“irCmd NEC
0xC728D 32;¥”.”) in this function shows the command. “irCmd
NEC 0xC728D 32;” is sent to the IR transceiver using the USB
serial interface of the Raspberry Pi, and the turn off signal is trans-
mitted to the projector.

5. Related Work

5.1 Virtual Private Network

For accessing edge devices behind a NAT router from outside
the LAN (i.e., tunneling the NAT router), a virtual private net-
work (VPN), such as SoftEther VPN [18], is commonly used. A
VPN may be deployed by the end-user without changing the set-
tings of the infrastructural switching network. However, the de-
ployment of a VPN that is suitable for accessing sensor devices
requires changing the settings of the remote access VPN. A VPN
can be a security hole if used incorrectly or used by a malicious
third party. If the remote access VPN is taken over by a malicious
third party, the whole computer hosting the VPN client software
may be accessed by the malicious third party.

Wiki IoT does not need settings of network devices to be
changed. Wiki IoT is safer than the VPN because it does not
have the ability to access the whole computer hosting the Wiki
Bot.

5.2 Monitoring of Servers using Bot Computing

Papers of Refs. [2] and [4] show the way using bot computing
for doing beneficial things such as monitoring a server instead
of doing malicious things. In these papers, information at local
places is collected to servers on the Internet.

On the other hand, bot computing in this paper is used to con-
trol things at local places from the server on the Internet.

5.3 Hardware Timer

Many hardware timers [1] are commonly used for automating
power on/oft control of an appliance. Hardware timers can con-
trol power on/oft of any kind of appliance, even if it does not have
the IR remote control function. However, there is some equip-
ment which is not recommended to have the power turned off by
unplugging the power cord from power supply such as some pro-
jectors.

We had combined the timer in the projector and the hardware
timer to enable the scheduled turning on/off of a projector before.
It is not flexible as we wrote in section one.

As shown in section four, when we wanted to change the time
of turning on/off the signage system, we could turn on the pro-
jectors and correct the turn on/off schedule immediately after we
noticed the mistake, using the Wiki IoT. It took less than five
minutes to open the web page and re-write the script, using a mo-
bile phone. It would have been more than 14 hours to correct

Electronic Preprint for Journal of Information Processing Vol.30

the time if we were using the hardware timer, because we could
not enter the building at night, 17:30 to 9:00, and it was 19:00
when we noticed the projectors did not light. Even if we could
enter the building, we would have to borrow the key to open the
room, go to the room, open the door of the room, enter the room,
change both of the turn on/off :time of the hardware timer and
the turn off time of the projector, confirm the settings of all, leave
the room, close the door of the room, and return the key. It would
take about 30 minutes to accomplish all of these steps. If we were
far from the building, time for going to the building woud have to
be added.

5.4 Smart Speaker

The automatic turning on/off of appliances can also be real-
ized using the combination of Google Calendar, IFTTT [19] and
a Smart Speaker [20] such as Google Echo. The user of these
does not need to write the program. Our system needs to write
the program. However, the program realizes more flexible con-
trol of appliances.

5.5 Obniz

The platform device obniz [21] can connect to electrical com-
ponents such as motors and sensors. A device can connect to the
obniz Cloud via a network (the obniz board uses Wi-Fi to con-
nect).

After connection, the user can control the connected motors
and sensors by calling APIs remotely. Obniz receives and con-
trols remote devices behind a NAT router using WebSocket. It
uses the obniz cloud for communication. In contrast, Wiki IoT
uses common Wiki servers for communication.

5.6 Smart Campus Using IoT

Jain and others have shown automation techniques and a mod-
ule that works for a room automation and ease of access to ap-
pliances with digital control [22]. Their techniques did not show
the scheduled operation of appliances and they did not implement
their module’s cooperation with cloud services at the time this pa-
per was published.

5.7 Campus Automation System Using BOLT-IOT

Bindupriya and others showed the development of an eco-
nomical and efficient campus-automation system through Internet
of Things (IOT)[23]. The proposed campus-automation system
uses Bolt-IOT as cloud and Bolt ESP8266 based IoT platform as
the Microcontroller and Android mobile application. Their sys-
tem is similar to the way Smart Speakers are used. Their paper
did not show the way of scheduled controlling of appliances.

6. Concluding Remarks

We can control the turning on/off of projectors, on the schedule
written in the program of the class page. We can also turn projec-
tors on/off any time we like. There was an instance when there
was a mistake in the schedule. Projectors did not turn on at the
time we expected. At that time, we could turn on the projectors
from outside the building and correct the schedule immediately.
We could use IR control signals for many kinds of appliances us-

© 2022 Information Processing Society of Japan

ing the receiver function of our IR transceiver. So, we can control
any appliances if they have IR remote control functions.

Unfortunately, there are no other cases of the use of the Wiki
Bot, which controls appliances other than projectors, by the IR
transceivers, until now. However, we have been using Wiki Bot
for the wearable signage system, Teleport Dresser, for more than
one year [24], [25]. The Teleport Dresser shows a picture or an
animation on the wearable LED matrix display. Super imposing
letters on the picture or the animation is also possible. The pic-
ture, the animation, or the letters can be changed by the script
on the web page of the Wiki Bot. There was very little prob-
lem other than a few hard-wear troubles such as bad connections.
There is a serious problem on Wiki IoT systems. A Wiki Bot
freezes from time to time. During one month’s display of the
PR video of 400-th anniversary of the Fukuyama castle comple-
tion [17], there were a few freezes on our system. This might
cause a fire in the building by heating up the lights of projectors
when the system trouble has occurred while the projectors were
on. We are dealing with this problem by a fail safe setting of pro-
jectors. The projectors are configured to turn off automatically
when they were turning on over a specific time. In addition to
this setting, we cope with this problem by setting that the pro-
gram of the Wiki Bot starts automatically when the Raspberry Pi
boots using systemd and reboots the Raspberry Pi at an interval
shorter than the freeze interval using crontab. This setting made
the Wiki Bot much more reliable. Our Wiki Bot with this setting
could run more than one month after that.

In order to cope with troubles immediately after the troubles
we experienced on our system, we would wish to know whether
the projectors turned on or turned off after they received the com-
mand. This is possible by recording illuminance or temperature
of the projector using Wiki Bot with illuminance sensors or tem-
perature sensors [4].

In order to avoid the malicious operation of equipment by a
third party, such as an unauthorized change of the main pages
and class pages by others, we are using basic authentication of
web pages [3], [4]. We know this is not enough and we should
use https. We are changing the protocol of web servers of object
pages and class pages from http to https. We also should adopt
other security measures such as terminal authentication.

Acknowledgments A part of this research was supported
by JSPS KAKENHI Grant Number JP16K00197, JP15H03055,
JP21K11858. We also thank Professor Tanaka and students of
Fukuyama university who helped us to develop the system.

References

[1] Timer, available from (https://en.wikipedia.org/wiki/Timer) (accessed
2021-05-29).

[2] Yamanoue, T.: Monitoring Servers, With a Little Help from my Bots,
Proc. 2017 ACM SIGUCCS Annual Conference On User Services
(Seattle, Washington), pp.173—180, Association for Computing Ma-
chinery, DOI: 10.1145/3123458.3123461 (2018).

[3] Yamanoue, T.: Bot Computing using the Power of Wiki Collabora-
tion, Proc. 2019 8th International Congress on Advanced Applied In-
Sformatics (IIAI-AAI), pp.17-24, DOI: 10.1109/IIAI-AAI.2019.00015
(2019).

[4] Yamanoue, T.: Monitoring of Servers and Server Rooms by IoT Sys-
tem that Can Configure and Control its Terminal Sensors Behind a
NAT Using a Wiki Page on the Internet, Journal of Information Pro-
cessing, Vol.28, pp.204-213, DOI: 10.2197/ipsjjip.28.204 (2020).

Electronic Preprint for Journal of Information Processing Vol.30

(3]

[7]
[8]

[10]

[11]

[12]

[13]

[14]
[15]

[16]

[17]
[18]

[19]
[20]

[21]
[22]

[23]

[24]

[25]

Puri, R.: Bots & Botnet: An Overview, SANS InfoSec Reading Room
(2003), available from (http://www.sans.org/rr/whitepapers/
malicious/).

Yamanoue, T., Oda, K. and Shimozono, K.: An Inter-Wiki Page
Data Processor for a M2M System, Proc. 4th International Confer-
ence on E-Service and Knowledge Management (ESKM 2013), Ad-
vanced Applied Informatics (IIAIAAI), pp.45-50, DOI: 10.1109/ITAI-
AAIL2013.48 (2013).

Gay, W.: Raspberry Pi Hardware Reference (1st ed.), Apress (2014).
Yamanoue, T. and Muye, L.: Experimental implementation of an IoT
system which controls sensor terminals of a sensor network by a Wiki
page on the Internet, /PSJ SIG Technical Reports, Vol.2017-10T-36,
No.12, pp.1-8 (2017).

Yamanoue, T., Yokoyama, D., Umeda, R., Morita, S., Ozeki, T., and
Nakamichi, N.: An IoT System with Remote Re-configurable Wire-
less Sensor Network Nodes and Its Application to Measure Activity
of a Class, 7th International Conference on E-Service and Knowledge
Management (ESKM 2018) (2018).

Yamanoue, T., Yokoyama, D., Umeda, R., Morita, S., Ozeki, T. and
Nakamichi, N.: A Remotely Reconfigurable IoT System using Wiki
Software, Information Engineering Express, Vol.5, No.2, pp.18-35
(2019).

PukiWiki, available from (https://en.wikipedia.org/wiki/PukiWiki)
(accessed 2021-05-29).

Yamanoue, T., Oda, K. and Shimozono, K.: A Simple Application
Program Interface for Saving Java Program Data on a Wiki, Advances
in Software Engineering, Vol.2012, Article ID 981783, Hindawi Pub-
lishing Corporation, DOI: 10.1155/2012/981783 (2012).

Bruegge, B. and Dutoit, A.A.: Object-Oriented Software Engineer-
ing; Conquering Complex and Changing Systems, Prentice Hall PTR
(1999).

Banzi, M.: Getting Started with Arduino, Make Community, LLC
(2008).

Ken Shirriff: Arduino-IRremote (2016), available from (https://github.
com/z3t0/Arduino-IRremote).

Yamanoue, T., Tetaka, S., Oda, K. and Shimozono, K.: Portable Cloud
Computing System: A System which Makes Everywhere an ICT En-
hanced Classroom, Proc. 42nd Annual ACM SIGUCCS Conference on
User Service, pp.85-88 (2014).

Turning windows into media (in Japanese), available from (https://
www.fukuyama-u.ac.jp/blog/17522/) (accessed 2021-09-12).
SoftEther VPN (in Japanese), available from (https://ja.softether.org)
(accessed 2021-05-29).

IFTTT, available from (https://ifttt.com) (accessed 2021-05-29).
Smart Speaker, available from (https://en.wikipedia.org/wiki/Smart_
speaker) (accessed 2021-05-29).

obniz, available from (https://obniz.com) (accessed 2021-05-29).
Jain, M., Kaushik, N. and Jayavel, K.: Building automation and en-
ergy control using IoT — Smart campus, 2017 2nd International Con-
ference on Computing and Communications Technologies (ICCCT),
pp-353-359 (2017).

Kumar, V., Vishnuvardhan, Subash, Bindupriya, Theerthagiri, P.: A
Cost Effective Campus Automation System Using BOLT-IOT, Inter-
national Journal of Control and Automation, Vol.13, No.4, pp.935—
941 (2020), available from ¢http://sersc.org/journals/index.php/IJICA/
article/view/18893).

Teleport Dresser, available from (https://protopedia.net/prototype/
1812) (accessed 2021-09-05).

Yamanoue, T.: Yet Another Wearable LED Matrix Sign System for
Campus Guiding, Proc. 2022 ACM SIGUCCS Annual Conference On
User Serviices (2022).

© 2022 Information Processing Society of Japan

Takashi Yamanoue received his B.S.
M.S. and Ph.D. in computer science
from Kyushu Institute of Technology,
Kitakyushu, Japan, in 1982, 1984 and
1993, respectively. He was a Ph.D. can-
didate of the Interdisciplinary Graduate
School of Engineering Sciences, Kyushu
University. He is the chair of the graduate
school and a professor at the school of engineering, Fukuyama
University. His research interests include 10T, distributed com-
puting, compiler-compilers, web mining and computer assisted
teaching systems. He is a member of IEEE, ACM, IPSJ, The
Institute of Electronics, IEICE, JRSJ. He is also a member of the
ACM SIGUCCS Hall of Fame.

