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Abstract: Collaborative learning practices foster the ability to solve creative problems in collaboration with other
learners. The collaboration enables learners to learn new ideas from other learners and enhances the social ability of
the learners through interaction with other learners. Although the learning science field now uses qualitative analysis to
analyze the effects of the collaborative discourse, qualitative analysis requires much human and time costs to analyze
the collaborative discourse with dozens of students. This study proposes Sensor-based Regulation Profiler to reduce
the analysis costs. The proposed scheme consists of the business card-type sensors that acquire sensor data from each
learner with a precise time synchronization as well as learning analysis methods that analyze the collaborative dis-
course from the acquired sensor data. Experimental evaluations using the proposed scheme showed that the proposed
business card-type sensors realized a time synchronization error of 7.7 μs on average across the sensors. In addition,
the proposed learning analysis could extract and visualize the collaborative activity of each learner in the collaborative
discourse through the social graph extraction, learning phase extraction, speaker identification, and activity estimation
by using the sensor data from the proposed business card-type sensors.
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1. Introduction

Collaborative learning fosters the ability to solve challenging
problems in collaboration with other learners. Each learner can
learn new skills and improve social skills through collaboration
with other learners. The existing studies on collaborative learn-
ing find that distinctive interaction patterns increase the effective-
ness of collaborative learning [17], [18], [19], [20], [21], [25].
However, the existing studies require much time to find the pat-
terns during the collaborative learning activity. The existing stud-
ies manually analyze the collaborative learning activity from the
recorded video and transcribed voice information. Such quali-
tative analysis is difficult to be carried out for the collaborative
learning activity with a large number of the learners due to the
amount of data and manual analysis, and thus the results of the
qualitative analysis are difficult to be immediately fed back to the
learners.

Our study proposes Sensor-based Regulation Profiler to quan-
titatively analyze the activity of learners in collaborative learn-
ing and automatically extract and visualize the key points of the
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activity to support the qualitative analysis by the researchers in
learning science. The proposed Sensor-based Regulation Pro-
filer consists of business card-type sensors, namely, Sensor-based
Regulation Profiler Badges and sensor-based learning analysis.
The Sensor-based Regulation Profiler Badges acquire sensor data
from the learners in collaborative learning. In addition, each
Sensor-based Regulation Profiler Badge has an RF-based time
synchronization module to achieve high-precision synchroniza-
tion of the sensor data between all the sensors. The proposed
sensor-based learning analysis automatically analyzes and visual-
izes the key points of the collaborative learning activity from the
acquired and synchronized sensor data. The proposed Sensor-
based Regulation Profiler allows researchers in learning sci-
ence to analyze the collaborative learning activity in more detail
through the automatic extraction and visualization of the activity
from the acquired sensor data. We envisage the use of automatic
extraction results to find groups whose collaborative learning ac-
tivity is not working well and to help the researchers who navigate
the learning activity of those groups in real-time.

From experimental evaluations using the proposed Sensor-
based Regulation Profiler, we found 1) the average time synchro-
nization error in the proposed Sensor-based Regulation Profiler
Badges is approximately 7.7 µs, 2) the proposed scheme automat-
ically extracts social graphs that represent face to face interactions
between learners, and 3) the proposed method also extracts learn-
ing phases, speakers, and learner’s activity during collaborative
learning. For example, the proposed scheme accurately identifies
speakers under different numbers of users, environmental noises,
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and reverberation conditions as well as short utterances.
The remainder of this paper is as follows: Section 2 describes

the requirements for introducing quantitative analysis to collab-
orative learning environments. In Section 3, we present the
overview of our proposed scheme, namely, Sensor-based Regula-
tion Profiler. Sections 4 and 5 also present the details of the pro-
posed Sensor-based Regulation Profiler Badge and sensor-based
learning analysis. Experimental evaluations are carried out in
Sections 6 and 7 to demonstrate the performance of the proposed
Sensor-based Regulation Profiler Badge and sensor-based learn-
ing analysis. Section 8 discusses the related studies and Section 9
finally concludes our paper.

2. Requirements

There are two requirements to deploy a quantitative analysis
tool into collaborative learning activity.
( 1 ) Precise time synchronization across each learner’s sensor

data
( 2 ) Automatic extraction of the key points during collaborative

learning
The first issue is required for the extraction of interpersonal

collaboration. A main objective of this study is to analyze col-
laborative learning activity from the business card-type sensors
deployed on various targets such as learners and learning en-
vironments. There are several business card-type sensors such
as Hitachi’s business microscope [29], [30] and Massachusetts
Institute of Technology (MIT)’s Sociometric Badge [31], Open
Badges [11], and Rhythm [12]. For example, the business mi-
croscope enabled the quantitative analysis of the communication
in the organization to solve communication issues by analyzing
the social networks between the members of the organization.
However, the studies have a drawback in precise analysis of hu-
man collaboration in terms of synchronization across sensor data.
The studies attempt to synchronize sensor data by means of soft-
ware correction. For example, the study [30] finds similar pat-
terns in each sound pressure and synchronizes sound pressure
data sampled at 8 kHz within 100 ms. Pattern recognition fur-
ther decreases the synchronization accuracy across the sensors
at lower sampling rate for low power consumption. Such er-
ror causes inaccurate and meaningless analysis of collaborative
learning activity. To prevent the meaningless analysis owing to
the synchronization error, the synchronization accuracy should
be less than one-tenth of the sensor’s maximum sampling rate.
For example, if the maximum sampling rate of the sensor data is
100 Hz, the sensors should be synchronized within 1 ms or less
each other.

The second issue is required to connect qualitative and quan-
titative analysis in collaborative learning. Ideally, quantitative
analysis should automatically extract all of the same results as
those obtained in qualitative analysis by the researchers in learn-
ing science. However, it is difficult to replace all of the qualitative
analysis with the quantitative analysis at present because there is
a significant gap between the information that can be acquired by
machines and humans. To fill the gap between the qualitative and
quantitative analysis, our study focuses on automatic extraction
of learning phases, social graph, speakers, and learner’s activity.

Fig. 1 Overview of collaborative learning analysis using the proposed
Sensor-based Regulation Profiler.

The extracted results can be used to detect speech segmentation
during collaborative learning activity. The detected speech sec-
tions can help the part of the conversation analysis, i.e., the part
of the qualitative analysis, by the researchers in learning science.

3. Proposed Scheme: Sensor-based Regulation
Profiler

In order to reduce the cost of qualitative analysis in collab-
orative learning, we propose Sensor-based Regulation Profiler.
The proposed scheme consists of Sensor-based Regulation Pro-
filer Badge that acquires sensor data from learners and sensor-
based learning analysis that extracts collaborative learning activ-
ity from the acquired sensor data. Figure 1 shows the overview
of the collaborative learning analysis using the proposed Sensor-
based Regulation Profiler. The Sensor-based Regulation Profiler
supports qualitative analysis of collaborative learning by the re-
searchers in learning science as the following steps:
( 1 ) Distribute the proposed Sensor-based Regulation Profiler

Badges to learners
( 2 ) Conduct collaborative learning activity between the learners
( 3 ) Collect the distributed Sensor-based Regulation Profiler

Badges from the learners
( 4 ) Extract sensor data from the collected Sensor-based Regula-

tion Profiler Badges
( 5 ) Automatically extract and visualize the social graph, learn-

ing phases, and each learner’s speech and activity from the
sensor data

( 6 ) Carry out qualitative analysis by learning science researchers
using the visualized results of social graph extraction, learn-
ing phase extraction, speech detection, and activity estima-
tion

The proposed Sensor-based Regulation Profiler Badge is de-
scribed in Section 4 and the proposed learning analysis methods
are described in Section 5, respectively.

4. Sensor-based Regulation Profiler Badge

Figures 2 (a) and (b) show the proposed Sensor-based Regula-
tion Profiler Badge (Sensor node) and the block diagram of the
Sensor-based Regulation Profiler Badge. Figure 3 shows Sensor-
based Regulation Profiler Badge Synchronizer (Sync node). The
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Fig. 2 Sensor-based Regulation Profiler Badge.

Fig. 3 Sync node.

Sensor-based Regulation Profiler Badge is a business card-type
sensor designed to be worn on the chest of each learner. The sen-
sor node consists of a power control unit, a CPU sensor unit, and
a wireless unit.

The power control unit has a lithium-ion battery to drive the
sensor node. The lithium-ion battery supplies power to the power
switch and the Micro Controller Unit (MCU). The sensor node
can continuously run for 24 hours.

The CPU sensor unit is equipped with STM32L476RGT6
from STMicroelectronics as the MCU, ADXL362 accelerom-
eter from ANALOG DEVICES, OSI5LAS1C1A infrared light
emitting diode (LED) from OptoSupply, PIC79603 infrared re-
ceiver from KODENSHI CORP., and INMP510 analog micro-
phone from TDK. The 3-axis accelerometer samples 12 bits at
100 Hz and the sound pressure sensor samples 12 bits at 100 Hz.
The microSD card connector of DM3AT-SF-PEJM5 from Hirose
Electric is used to record the sensor data. The acceleration data,
infrared data, and sound pressure data can be recorded on a mi-
croSD card.

The wireless unit uses CC2650 from Texas Instruments which
contains a wireless synchronization module. The wireless syn-
chronization module transfers a synchronization signal transmit-
ted every 10 ms from the sync node to other sensor nodes to real-
ize time synchronization between the sensor nodes. The CC2650
uses UNISONet, which is also known as Choco [7], [28], to real-
ize precise time synchronization between the sensor nodes. In
Choco, an arbitrary sensor node forwards a time-synchronous
packet to the neighboring sensor nodes and then propagates the
received time-synchronous packet to the destination node. When
a sensor node receives a new time-synchronous packet from the
neighboring sensor node, it immediately forwards the packet to
the neighboring sensor nodes. Each sensor node repeatedly re-
ceives and forwards time-synchronous packets by flooding, re-
sulting in fast propagation of time-synchronous packets through-
out the sensor nodes.

Table 1 Notation.

Variable / Function Description
U Set of all the sensor IDs

L
Set of the infrared data

obtained from all the sensors
ld Infrared data of sensor d
t0 Target time for social graph extraction
G Social graph matrix with the size of |U | × |U |
W Window size (s)

Algorithm 1 Social graph extraction
Require: L, U, t0
Ensure: G

1: Insert zeros into all elements of G

2: for all d ∈ U do

3: S ← all received IDs in ld ∈ L between t0 to t0 +W

4: for all s ∈ S do

5: Increment G[s][d]

6: end for

7: end for

8: return G

5. Sensor-based Learning Analysis

We also propose sensor-based learning analysis methods to
automatically and precisely extract information of collaborative
learning using sensor data obtained from Sensor-based Regula-
tion Profiler Badges. The proposed learning analysis supposes
to support researchers in learning science to post analysis of col-
laborative learning. The proposed method realizes social graph
and learning phase extractions from the infrared LED sensors,
speaker identification from the sound pressure sensors, and activ-
ity estimation from the three-axis accelerometers.

5.1 Social Graph Extraction
The social graph extraction visualizes social graphs that rep-

resent the network of the learners in collaborative learning from
the face to face relationship between the Sensor-based Regula-
tion Profiler Badges. The face to face relationship can be mea-
sured from the infrared data of each Sensor-based Regulation Pro-
filer Badge. We note that the social graph extraction detects not
proximity but face to face across users. The infrared data con-
tain the IDs of the other Sensor-based Regulation Profiler Badges
detected every second. Algorithm 1 shows the procedure of our
social graph extraction and Table 1 shows the notation of the al-
gorithm. Algorithm 1 outputs the matrix G which represents the
social graph at t0 for L from the set of all sensor IDs U, the set
of infrared data from all the sensors L = {l1, l2, . . . , l|U |}, and time
instant t0. The matrix G counts the number of infrared data across
all the sensor nodes between t0 and t0 +W, where the row is the
source sensor ID and the column is the destination sensor ID.

For example, we consider that the infrared data of learner 1’s
Sensor-based Regulation Profiler Badge are as follows.� �

900000000, 1, 2
900000001, 2, 3, 2
900000002, 1, 2

� �
Here, the infrared data consist of the time stamp, the number
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Fig. 4 Example of social graph corresponding to the matrix G.

of other sensors detected by the infrared Light Emitting Diode
(LED) sensor since the last time stamp, and ID of each detected
sensor. We also consider that the infrared data of learner 2’s
Sensor-based Regulation Profiler Badge are as follows.� �

900000000, 1,1
900000001, 1,1
900000002, 1,1

� �
In addition, the infrared data of learner 3’s Sensor-based Regula-
tion Profiler Badge are as follows.� �

900000001, 1,1
� �
In this case, the matrix G is given as follows:

G =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 3 1
3 0 0
1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The resultant matrix represents the directed graph shown in
Fig. 4. Here, a larger value of the matrix indicates a higher fre-
quency of face to face interaction between the learners and we
use darker arrows in Fig. 4.

5.2 Learning Phase Extraction
The learning phase extraction automatically divides a collab-

orative learning period into learning phases based on the time
variation of the learners’ network during collaborative learning.
The appropriate number of learning phases depends on each case
of collaborative learning [2], [4], [9], [13], [22], [24], [26], [27],
[38], [39]. For example, the study [13] classifies learning ac-
tivity into two phases: introduction and discourse and analyzes
each phase. Our learning phase extraction supposes collabo-
rative learning activities composed of three phases named as
video viewing, discussion, and conclusion based on the study [2]
which uses the same educational material called the Adventures
of Jasper Woodbury [5]. The video viewing phase obtains in-
formation from the video to solve the problem. The discussion
phase is that the learners discuss the problem and bring their ideas
to solve the problem. The conclusion phase decides one answer
from the ideas brought in the discussion phase.

To divide the collaborative learning period into the learning
phases, we regard the time variation of the learners’ network as
the transition of the learning phase. At the transition of the learn-
ing phase, distinctive points appear in the face to face relationship
between the learners. For example, some learners may increase
their attention to the different learners/objects or concentrate on a
large number of the learners rather than the ones they were facing

before. We capture the distinctive points from the time varia-
tion of the learners’ network by using the infrared data of each
learner’s Sensor-based Regulation Profiler Badge.

The time variation of the learners’ network is quantified from
the time variation of the matrix G. The matrix G of each time t0 is
extracted according to Algorithm 1. We consider that the matri-
ces are extracted every 3 seconds and the window size W of each
matrix is set to 60 seconds. After creating the matrix G for each
window, it regards the residual sum of squares between the ma-
trices of one window and the next window as the time variation
of the network.

We use AutoPlait [14] to quickly and automatically extract
each learning phase from the network time variation. AutoPlait
detects the features from large time series data containing vari-
ous patterns and regards the features as the groups of time series
data. The proposed method discovers each learning phase as each
group extracted by AutoPlait.

5.3 Speaker Identification
Figure 5 shows an overview of the proposed speaker identifi-

cation algorithm. There are three steps for speaker identification:
1) pre-processing of sound pressure data, 2) speech section esti-
mation, and 3) speaker identification.

1) Pre-Processing: The first step extracts the sound pressure
detection for each user. The algorithm calculates the minimum
sound pressure value for each user and subtracts the minimum
value from all the sound pressure data to make a zero-point cor-
rection. The algorithm labels whether each user speaks with
sliding windows for the sound pressure data of each user ob-
tained by zero-point correction for each window. Algorithm 2
exhibits the labeling procedure in Fig. 5, and Table 2 lists the
algorithm notation. Algorithm 2 outputs the array A, which rep-
resents “the 1–0 data for each user” from the set of all sensor
IDs U and the set of the sound pressure data from all the sensors
S = {S 1, S 2, . . . , S |U |}. We find the maximum of the sound pres-
sure m for each user in each window W in line 6. If the maximum
m in window W does not exceed the speech threshold ηs across all
users, it is assumed that the speech of the user is not detected in
window W, and the window slides in line 16. If the maximum m

in window W exceeds the speech threshold ηs, the algorithm up-
dates a threshold ηm as m ∗ 0.1 in line 8. The algorithm compares
the sound pressure of a user with the threshold ηm and assigns 1 if
the sound pressure is higher than the threshold and 0 if the sound
pressure is lower than the threshold in lines 9–13. The labels w
in window W overwrite the corresponding elements of array Ad

in line 14. We call the data obtained through pre-processing “the
1–0 data for each user.”

2) Speech Section Estimation: The second step extracts the
presence or absence of a user’s speech from the 1–0 data for each
user. The algorithm fills the data using the 1–0 data for each
user. The algorithm complements labels 1 in a section with con-
secutive labels 0 within 90 ms between labels 1 considered in the
middle of speech in the 1–0 data for each user. The algorithm
removes pulse noise using 1–0 data for each user with comple-
ments. The algorithm replaces a short interval with continuous
labels 1 within 150 ms by labels 0, assuming that the section is
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Fig. 5 Overview of the speaker identification algorithm.

Algorithm 2 Labeling in pre-processing
Require: U,S

Ensure: A

1: for all d ∈ U do

2: Insert zeros into all elements of Ad

3: ξ ⇐ 0

4: while ξ < length of Ad do

5: W ⇐ S d ∈ S between ξ to ξ + D

6: m⇐ max(W)

7: if m > ηs then

8: ηm ⇐ m ∗ 0.1

9: if w ∈ W > ηm then

10: w⇐ 1

11: else

12: w⇐ 0

13: end if

14: Insert w ∈ W into elements of Ad with OR

15: end if

16: ξ ⇐ ξ + slide width

17: end while

18: Insert Ad into A

19: end for

20: return A

Table 2 Notation.

Variable / Function Description
U Set of all sensor IDs
d Sensor ID

S
Set of the sound pressure data
obtained from all the sensors

S d Sound pressure data for sensor d
A Set of 1 bit arrays with speech labels
Ad 1 bit arrays with speech labels of sensor d
ξ Top index of window
D Window size
ηs Speech threshold for all users

ηm
Speech threshold based on maximum

sound pressure in the window
max(X) Calculate the maximum of all the elements of X

where speech is falsely detected by ambient noise. The algorithm
takes the logical summation of the 1–0 data for each user with
pulse noise removal. We call the binary data obtained through
the speech section estimation “the speech section data.”

3) Speaker Identification: The third step determines who
speaks in each speech section by combining the 1–0 data for each
user and speech section data. The algorithm focuses on each sec-
tion where a user is considered to speak based on the speech sec-
tion data. The algorithm extracts a user with the most labels 1
in each speech section and regards the user as a speaker in the
speech section on the basis of the 1–0 data for each user.

5.4 Learner’s Activity Estimation
Each learner’s activity can be estimated from the accelerom-

eter’s data during collaborative learning. We first take L2-
norm across three-axis accelerometer’s data every sample in each
Sensor-based Regulation Profiler Badge for the activity estima-
tion motivated by the study on the human activity estimation us-
ing the accelerometer [23]. Our proposed sensor mounts an ac-
celeration sensor ADXL362. ADXL362 quantizes and records
acceleration within twice the gravitational acceleration. We sub-
tract the offset in the data sheet of ADXL362 from all acceleration
data to make a zero-point correction. We convert quantized accel-
eration to relative values from 0 to 1 and visualize the values as
learners’ activity.

6. Experimental Evaluation: Time Synchro-
nization Preciseness

We experimentally evaluated the time synchronization accu-
racy between the sync node and the sensor node in the proposed
Sensor-based Regulation Profiler Badge. We set up a sync node
and a sensor node at a short distance on a desk and measured
the time deviation between the nodes based on the synchroniza-
tion signals sent from the sync node. We used an oscilloscope
to measure the clock rise time at each node to accurately get the
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Fig. 6 Time synchronization accuracy between the sync and sensor node.

time deviation between the nodes. We assumed that the number
of samples was 30,003 and the wireless synchronization module
of each Sensor-based Regulation Profiler Badge transmits a syn-
chronization signal every 10 ms.

Figure 6 shows the time synchronization accuracy between
the nodes. The horizontal axis shows the deviation of the time
synchronization and the vertical axis indicates the number of the
samples corresponding to the deviation. Figure 6 shows that the
time synchronization error is kept within ±30 µs. Here, the mean
and maximum synchronization errors are −7.7 µs and 30 µs, re-
spectively. Since the sampling rate of both the sound pressure
sensor and the acceleration sensor on the Sensor-based Regula-
tion Profiler Badge is 100 Hz, the synchronization error is suffi-
cient to meet the required synchronization accuracy of less than
1 ms. The proposed synchronization structure contributes to ac-
curately analyze sensor data for collaborative learning.

7. Experimental Evaluation: Sensor-based
Learning Analysis

We carried out collaborative learning experiments and evalu-
ated the feasibility of the automatic extraction of social graph,
learning phases, speakers, and activity with each learner’s Sensor-
based Regulation Profiler Badge during the activity. Figure 7
shows a snapshot of our experiments in the collaborative learning
activities. We carried out five cases of collaborative learning ac-
tivities with three learners and monitored each activity who pos-
sessed Sensor-based Regulation Profiler Badges. We set a sync
node at the center of the learners’ desk for synchronization be-
tween the sensor nodes. Each learner mounted a Sensor-based
Regulation Profiler Badge on his/her chest in case 1 and his/her
head in cases 2 through 5 during the activity. A whiteboard was
set up to assist the learners in their discussions. Two Sensor-based
Regulation Profiler Badges were put on both edges of the white-
board. In addition, an iPad was placed on the desk to present
learning tasks to the learners and one Sensor-based Regulation
Profiler Badge was attached to the top of the iPad.

7.1 Results on Social Graph Extraction
We evaluated the accuracy and validity of face to face detection

with social graph extraction. We did an experiment with infrared
sensors in our proposed business card-type sensors attached to
three users to calculate the accuracy of face to face detection.
We prepared the room with the dimensions of 10.6 m × 7.05 m ×
2.65 m. The room furnished multiple LED recessed ceiling lights.
Each user stood 1.50 m away from the other users and two out of
three users spoke face-to-face for 60 s. A non-speaker faced the

Fig. 7 Experimental environment of collaborative learning.

middle between two speakers during the conversation. We tried
all combination of speakers in the conversation and calculated the
accuracy of face to face detection.

We found that 1) the infrared sensors detect face to face with
an accuracy of 75.3%, 78.0%, and 78.0% in each combination
of speakers and 2) our proposed face to face detection suffi-
ciently supports researchers in learning science to reduce qual-
itative analysis cost of face to face in each experiment case. Fig-
ures 8 (a) through (c) show social graphs in the learning phases in
case 1 as an example. The learning elapsed time (s) is displayed
at the bottom. In addition, Users 1 through 3 are the sensor nodes
mounted on each learner, WB R and WB L represent the sensor
nodes placed on the right and left edges of the whiteboard, iPad is
the sensor node attached on the iPad, and the arrows show the face
to face relationship across the sensor nodes. In Fig. 8 (a), we can
see the learners did not face each other during the video viewing
phase because the face to face relationship is scarce. Figure 8 (b)
shows that User 1, User 2, and the right edge of the whiteboard
faced each other and User 2 also faced the left edge of the white-
board. Since the learner closest to the right edge of the white-
board was User 1, User 1 used the whiteboard for discussion and
User 2 saw User 1’s writing. In Fig. 8 (c), all the users faced the
right edge of the whiteboard and Users 1 and 2 faced each other.
The result said that User 1 used the whiteboard to conclude the
activity and Users 2 and 3 saw User 1’s writing. Qualitative anal-
ysis requires researchers in learning science to repeat the recorded
video and carefully annotate who and when learners met face-to-
face. The proposed face to face detection reduces the process of
watching the video and automatically extracts learners’ face to
face.

7.2 Results on Learning Phase Extraction
We evaluated the accuracy and validity of learning phase ex-

traction in the collaborative learning activities. We simulated all
combinations of window size and slide width for sliding windows
in learning phase extraction by seconds and chose the best pa-
rameters to calculate face to face difference across the users for
learning phase extraction. We calculated the accuracy of learning
phase extraction based on the qualitative analysis result as ground
truth. Based on the design of learning phases in Section 5.2, we
extracted the best combinations of parameters for sliding win-
dows in learning phase extraction from all combinations which
output three phases with AutoPlait.

Table 3 shows the best combinations of parameters and quali-
tative/quantitative phase transitions in the learning phase extrac-
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Fig. 8 Extracted social graph in each learning phase.

Table 3 Best combinations of window size and slide width, accuracy, and phase transitions in learning
phase extraction.

Case Window size (s) Slide width (s) Accuracy
Transit from video viewing to discussion (s) Transit from discussion to conclusion (s)

Qualitative Quantitative Qualitative Quantitative
1 86 1 100 % 1,356 to 1,445 1,361 3,166 to 3,167 3,167
2 571 1 99.8 % 1,386 to 1,502 1,386 3,011 to 3,012 3,003
3 554 2 91.1 % 1,283 to 1,334 1,403 2,609 to 2,610 2,483
4 127 1 90.9 % 1,275 to 1,343 1,262 2,541 to 2,542 2,259

Fig. 9 Automatic extraction results of the learning phases.

tion. Cases 1 through 5 accurately extract learning phases with
an accuracy of 86.9%, 100%, 99.8%, 91.1%, and 90.9% and pre-
dict the transition between learning phases within 1 min on av-
erage. We found that the results sufficiently support researchers
in learning science to reduce qualitative analysis cost of learning
phase. Figure 9 shows the results of quantitative and qualitative
extraction of learning phases. The top figure in Fig. 9 shows the
time variation of face to face difference across the learners during
the learning activity. The horizontal axis represents the elapsed
time and the vertical axis represents the normalized time varia-
tion. The three figures in the middle of Fig. 9 show the results of
our learning phase extraction. The three figures show the duration
of video viewing, discussion, and conclusion phase. The bottom
figure in Fig. 9 shows the result of the qualitative extraction of the
learning phases by the researchers in learning science. The result
of the quantitative extraction indicates that 1) the learners do not
often turn around owing to watching the video in the video view-
ing phase, 2) the learners start to turn around to discuss the prob-
lem in the discussion phase, and 3) the learners often turn around
to conclude the solution for the problem in the conclusion phase.
The result shows the transitions between three phases appear in

1,202 s and 3,326 s. On the other hand, the result of the quali-
tative extraction shows that the transitions between three phases
are from 1,173 s to 1,213 s and 3,335 s to 3,360 s. Although there
are some deviations between the qualitative and quantitative ex-
traction results from 51 s to 403 s and from 2,289 s to 2,459 s, the
automatic extraction accurately extracts the transitions between
three phases.

7.3 Results on Speaker Identification
We evaluated the accuracy and validity of our proposed speaker

identification. Our paper [37] shows the proposed system accu-
rately identifies speakers under different numbers of users, en-
vironmental noises, and reverberation conditions as well as for
long or short utterances. The experimental evaluations of col-
laborative learning show that the proposed speaker identification
streamlines transcription of learners’ utterance for collaborative
learning analysis in each experimental case. Figures 10 (a), (b),
and (c) show the results of speaker identification in parts of the
video viewing phase, the discussion phase, and the conclusion
phase in case 1 as an example. The horizontal axis represents the
elapsed time and the blue bars represent each learners’ speech.
Tables 4 (a) and (b) show the results of qualitative speech tran-
scription in the sections of Figs. 10 (b) and (c). We extracted
60 seconds of the speaker identification result in each learning
phase for simplicity. Figure 10 (a) accurately detects no speech
from 500 s to 560 s in the video viewing phase. The result shows
that the learners did not speak in the video viewing phase. Fig-
ures 10 (b) and (c) accurately extract each speech section from
1,300 s to 1,360 s in the discussion phase and from 3,700 s to
3,760 s in the conclusion phase. Qualitative analysis requires
researchers in learning science to repeat the recorded video and
observe speech timing and speakers as Tables 4 (a) and (b). The
proposed speaker identification reduces the process of watching
the video and automatically extracts speakers as Figs. 10 (a), (b),
and (c).
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Fig. 10 Speaker identification results in each learning phase.

Table 4 Qualitative transcription in each phase for case 1.

(a) Discussion

Number Start (s) End (s) Speaker Speech content (in Japanese)
1 1302 1303 User 1 Then two thousand feet are... Ah, I see.
2 1303 1309 User 2 One foot is one-third yard so three feet are two thousand-third yards.
3 1310 1314 User 1 Really... I learn something new.
4 1310 1311 User 2 Ha ha.
5 1310 1311 User 3 Ha ha.
6 1314 1316 User 2 I’m not confident...
7 1314 1315 User 3 Ha ha.
8 1317 1319 User 2 Six pounds...
9 1322 1323 User 2 Fifteen pounds.

10 1323 1325 User 1 Fifteen pounds.
11 1325 1326 User 3 Pound...
12 1332 1333 User 2 Ten...
13 1334 1339 User 1 I know that the normal plane is two thousand feet long, but...
14 1339 1441 User 2 They used this plane?
15 1441 1347 User 1 Didn’t the video say that the fuel is half?
16 1342 1343 User 2 Yes, the video said.

17 1350 1357 User 1
At the end of the video...

Well, as I said before, the part of the normal plane is two thousand feet long...
18 1352 1353 User 3 At the end?

(b) Conclusion

Number Start (s) End (s) Speaker Speech content (in Japanese)
1 3706 3711 User 1 Yes, yes, yes, fifteen plus sixty, the fuel is loaded here and fully used...
2 3708 3710 User 2 Ah, I see.
3 3710 3711 User 3 (Whispered)
4 3714 3716 User 1 About six gallons.
5 3717 3719 User 2 One gallon is six pounds, right?
6 3720 3721 User 1 Yes, yes, yes, yes.
7 3722 3724 User 2 Then eight gallons are...
8 3727 3728 User 1 Forty eight?
9 3728 3729 User 2 Forty eight pounds.
10 3729 3730 User 1 I see.
11 3730 3731 User 2 Can they load the fuel of forty eight pounds?
12 3731 3732 User 3 Forty eight pounds are bad.
13 3732 3733 User 2 Bad?
14 3733 3734 User 3 Less than forty five.
15 3736 3737 User 2 Oh my!
16 3737 3738 User 1 Ah...
17 3738 3742 User 2 Ha ha ha, and they also have to load the eagle.
18 3742 3743 User 1 The eagle, guy.
19 3743 3754 User 3 But they use fifteen so reduce one gallon when the eagle, the eagle arrives.
20 3755 3756 User 2 Hmm... ha ha ha.
21 3756 3757 User 3 So...

7.4 Results on Activity Estimation
We evaluated the activity estimation of three learners in the col-

laborative learning activity. Figures 11 (a), (b), and (c) show the
estimated results of each learner’s activity. The horizontal axis
shows the elapsed time and the vertical axis indicates the relative
acceleration. Tables 5 (a) and (b) show the result of qualitative
records of learners’ activity in the sections of Figs. 11 (b), and

(c). We extracted 60 seconds of the same section as the speaker
identification in each learning phase. Figure 11 (a) accurately de-
tects small movements from 500 s to 560 s in the video viewing
phase. The result shows that the learners did not move to watch
the video. Figures 11 (b) and (c) accurately extract each particu-
lar movement from 1,300 s to 1,360 s in the discussion phase and
from 3,700 s to 3,760 s in the conclusion phase. Qualitative analy-
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Fig. 11 Activity estimation results in each learning phase.

Table 5 Qualitative recodes of movement in each phase for case 1.

(a) Discussion

Number Start (s) End (s) Learner Movement
1 1300 1316 User 1 He wrote on the whiteboard.
2 1303 1314 User 3 She watched the iPad and whiteboard in turn.
3 1308 1314 User 2 She spoke moving the chair back and forth.
4 1323 1336 User 1 He wrote on the whiteboard.
5 1323 1326 User 2 She watched the iPad and whiteboard in turn.
6 1323 1326 User 3 She manually replayed the video on the iPad.
7 1329 1330 User 3 She turned her head toward the whiteboard from the iPad.
8 1339 1342 User 3 She manually replayed the video on the iPad.
9 1343 1344 User 2 She pulled away from the desk.

10 1346 1348 User 3 She manually replayed the video on the iPad.
11 1350 1356 User 1 He turned his head toward the whiteboard from the iPad.

(b) Conclusion

Number Start (s) End (s) Learner Movement
1 3705 3717 User 1 He wrote on the whiteboard.
2 3708 3713 User 3 She pointed out to the whiteboard.
3 3720 3722 User 3 She scratched the side of her nose.
4 3723 3730 User 3 She nodded repeatedly.
5 3726 3734 User 2 She gestured in thinking.
6 3734 3740 User 1 He swang the body with laughing.
7 3735 3739 User 3 She laughed.
8 3736 3740 User 2 She swang the body with laughing.
9 3742 3749 User 1 He wrote on the whiteboard.
10 3744 3749 User 3 She pointed out to the whiteboard.
11 3750 3758 User 3 She swang the body with putting hand on her hip.
12 3752 3754 User 2 She wondered scratching her head.

sis requires researchers in learning science to repeat the recorded
video and observe learners’ particular behaviors as Tables 5 (a)
and (b). The proposed activity estimation reduces the process of
watching the video and automatically extracts learners’ particular
behaviors as Figs. 11 (a), (b), and (c).

8. Related Works

Our study relates to the studies on collaborative extraction us-
ing business card-type sensors, sensor-based activity recognition,
and collaborative learning analysis.

8.1 Collaborative Extraction Using Business Card-Type
Sensors

Several studies have extracted collaboration between users us-
ing business card-type sensors on the users. Hitachi proposes a
business card-type sensor called Business Microscope [29], [30]
equipped with an infrared sensor which each user wears. The use
of face to face information from the infrared sensors has shown
that the appropriate frequency of meetings has an impact on work
efficiency. MIT also proposes a business card-type sensor called

Sociometric Badge [31] equipped with an accelerometer, a sound
pressure sensor, a position sensor, Bluetooth, and an infrared sen-
sor which each user wears. Sociometric Badge collects face to
face information between the users, conversation tone changes,
and proximity. The study [31] found that the face to face informa-
tion between the users affects the work productivity and efficiency
of the users. MIT extends Sociometric Badge to a small and low-
energy sensor called Open Badges [11] with a sound pressure sen-
sor and Bluetooth around the neck. Open Badges visualize face
to face information between the users based on the sound pres-
sure data and the Received Signal Strength Indicator (RSSI) from
Bluetooth. MIT also develops hybrid software-hardware platform
called Rhythm [12] with Open Badges. The platform measures
face to face interaction in co-located contexts with Open Badges
and in distributed contexts with their designed online applica-
tions.

However, the studies have a drawback in precise analysis of
human collaboration in terms of synchronization across sensor
data. The studies attempt to synchronize sensor data by means
of software correction. For example, the study [30] finds similar
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patterns in each sound pressure and synchronizes sound pressure
data sampled at 8 kHz within 100 ms. Pattern recognition fur-
ther decreases the synchronization accuracy across our proposed
sensors sampling sound pressure at 100 Hz for low power con-
sumption. Such error causes inaccurate and meaningless analysis
of collaborative learning activity.

Considering the abovementioned drawbacks, we develop a
novel business card-type sensor based on our initial study [1] to
realize accurate synchronization across the sensors and learning
analysis algorithm with the acquired sensor data. The proposed
sensor mounts the hardware structure to realize precise synchro-
nization across the sensors. The proposed sensor receives and for-
wards synchronization packets from its synchronizer across the
other sensors. The proposed sensor accurately acquires sound
pressure, acceleration, and infrared data with synchronization
across the sensors. We have shown that 1) the proposed sensors
achieve synchronization accuracy less than the error of 1 ms for
acquired sensor data sampled at 100 Hz [32], 2) the learning anal-
ysis algorithm extracts social graph, learning phases, and speak-
ers [33], [34], [35], and 3) the algorithm improves the accuracy of
speaker identification under various environments [36], [37]. This
paper finally develops an IoT system with business card-type sen-
sors for collaborative learning analysis. The proposed scheme ex-
tracts social graph extraction, learning phase extraction, speaker
identification, and activity estimation from the acquired sensor
data. Experimental evaluations show the validity of each learning
analysis algorithm in the collaborative learning activities. Our
proposed sensor and algorithms contribute to support qualitative
analysis of collaborative learning by researchers in learning sci-
ence.

8.2 Sensor-based Activity Recognition
Some studies have been carried out to recognize a user’s be-

havior by using multiple sensors attached to the user [3], [6], [8],
[10], [15], [16]. In the literature [6], the sensor data obtained from
attaching accelerometers to the user’s wrist, ankle, and chest are
transmitted to the cloud. The cloud uses decision tree analysis to
classify user’s six activities: lying down, sitting, standing, walk-
ing, running, and riding a bike. In the literature [15], the user
wears a wristwatch-type wearable device with built-in accelerom-
eter, light sensor, thermometer, and sound sensor to classify the
user’s six activities: sitting, standing, walking, going up stairs,
going down stairs, and running. They demonstrated that the clas-
sification could be realized in real-time with 92.5% accuracy by
using decision tree analysis. Literature [10] uses Zephyr BioHar-
ness Bluetooth to collect acceleration and biometric information
on each user and then classify three activities of running, walking,
and sitting by using the decision tree analysis. In addition, they
showed that the classification can cope with new users without
re-learning by using the data of various users. Literature [8] used
fuzzy basis functions for 3-axis accelerometer’s values worn on
the wrist of the user’s dominant arm to classify seven activities:
brushing teeth, tapping a person, tapping a desk, working on a
computer, running, waving, and walking.

Our proposed Sensor-based Regulation Profiler uses sensor
data obtained from the proposed Sensor-based Regulation Profiler

Badges to extract and visualize the key points during the collabo-
rative learning activity. For example, the proposed Sensor-based
Regulation Profiler automatically extracts the variations of the
learning phases by measuring the network variation among the
learners from the infrared sensor data mounted on each Sensor-
based Regulation Profiler Badge. The automatic extraction of the
learning phases can reduce the qualitative analysis cost of col-
laborative learning as well as proper navigation in collaborative
learning by the researchers in learning science.

8.3 Collaborative Learning Analysis
A general way to evaluate the effects of collaborative learning

is to analyze the captured video and audio data corresponding to
the activity of the collaborative learning [17], [19], [20]. On the
other hand, the above-mentioned way has the following two is-
sues.
( 1 ) The cost of detailed learning analysis
( 2 ) The inclusion of the researcher’s subjectivity in the analysis
The first issue stems from the transcription of the learners’ con-
versations from the captured video and audio data and the anal-
ysis of the conversations considering collaboration using nonver-
bal behaviors. The second issue stems from the misalignment of
notation between the researchers when they analyze the learners’
conversations.

To solve the aforementioned issues, our study quantitatively
analyzes the collaborative learning activity by using the proposed
sensor-based learning analysis. The quantitative analysis of col-
laborative learning realizes the detailed and quick analysis of the
interaction between the learners. In addition, our Sensor-based
Regulation Profiler Badge can regard the learner’s nonverbal be-
haviors as the value of each sensor. The proposed sensor-based
learning analysis enables the analysis of collaborative learning
activity without the researcher’s subjectivity.

9. Conclusion

We proposed Sensor-based Regulation Profiler to automati-
cally extract and visualize the key points that researchers in learn-
ing science pay attention to during collaborative learning activ-
ity. Specifically, the proposed sensor-based learning analysis ob-
tained social graph, learning phases, speakers, and activity from
the acquired data of the proposed Sensor-based Regulation Pro-
filer Badges. Experimental evaluations show that our proposed
Sensor-based Regulation Profiler Badge achieves synchroniza-
tion accuracy across the sensors within ±30 µs. In addition, our
proposed sensor-based learning analysis extracts social graph,
learning phases, speakers, and activity in collaborative learning.
Each quantitative analysis reduces qualitative analysis cost of col-
laborative learning by researchers in learning science.
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