
IPSJ SIG Technical Report

Efficient Machine Learning Method for Protocol
Fuzz Testing:

Improvement of Sequence-to-Sequence Model and
Refined Training Data

Bo Wang1,a) Toshihiro Maruyama1,b) Ako Suzuki1,c) Yuichi Kaji2,d)

Abstract: Fuzz testing is one of software testing methods for finding software vulnerabilities and is used as
a technology for finding unknown security vulnerabilities as a black-box test. Although many fuzz testing
methods that are based on machine learning have been investigated, they cannot analyze and learn the real-
time status of communication protocol. We focus on the method of efficient machine learning for protocol
fuzzing, and present major problems of current fuzzing tools, and introduce techniques to get around the
problems with an improvement of Sequence-to-Sequence model and refined training.

Keywords: Fuzz Testing, Protocol, Machine Learning, Seq2Seq

1. Introduction

With the practical use and spread of IoT (Internet of

Things) devices, there are concerns about security threats to

IoT devices, many of which are caused by software vulner-

abilities and erroneous packets in a communication proto-

col. Fuzz testing has been used as one of the most widely-

deployed techniques to discover software “security vulnera-

bilities” since its introduction in the early 1990s [1]. At a

high level, fuzz testing or fuzzing refers to a process of re-

peatedly running a program with machine-generated inputs

that may be syntactically or semantically malformed. In

practice, attackers routinely deploy fuzz testing in scenarios

such as exploit generation and penetration testing. Gener-

ally, fuzz testing is one of the most popular software testing

methods for finding software vulnerabilities in a device and

a computer system and is used as a technology for find-

ing unknown security vulnerabilities in the software that is

treated as a “black box,” or a “grey box,” or a “white box”

depending on the situation of the test.

Although many fuzz testing methods have been investi-

gated so far (see [2], [3] for extensive surveys of fuzz testing

tools), they cannot grasp the real-time status of a communi-

cation protocol. Moreover, there are still some serious chal-

1 JVCKENWOOD Corporation, 3-12, Moriyacho, Kanagawa-
ku, Yokohama-shi, Kanagawa, 221-0022 Japan

2 Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601
Japan

a) wang.bo@jvckenwood.com
b) maruyama.toshihiro@jvckenwood.com
c) suzuki.ako@jvckenwood.com
d) kaji@icts.nagoya-u.ac.jp

lenges to be solved. Although many fuzz testing methods

based on machine learning have been investigated, they can-

not analyze and learn the real-time status of communication

protocol.

The authors focus on efficient machine learning for proto-

col fuzz testing. This paper gives a brief review of the status

of communication protocol that was attacked and exposed to

security vulnerabilities. We present the major problems of

current fuzz testing tools (fuzzers) that have not yet been

solved, and then give the purpose of this paper, which is

an approach for efficient machine learning for protocol fuzz

testing.

2. Background

2.1 Fuzz Testing

Fuzz Testing is a technique in which a large number of

machine-generated inputs, both valid and invalid, are fed

into a program to search for flaws and vulnerabilities.

Fuzzers are automated by processes, feeding data (initial

program knowledge) and reporting it out that any discov-

ered interesting program states. On the other hand, users

without automated fuzzers are required to provide feed-

ing data and to analyze output program states. Tradition-

ally, “interesting program states” were program crashes that

identified flaws and vulnerabilities in the program, but more

complex program monitoring techniques now allow for the

identification of other types of interesting states.

The goal of a fuzzer is to create inputs that cause the

program to execute program paths, discovering those that

lead to interesting program states. Thus, fuzzers are re-

1ⓒ 2022 Information Processing Society of Japan

Vol.2022-SE-210 No.32
2022/3/12



IPSJ SIG Technical Report

peatedly measured by various types of explored program

paths, termed in test coverage [4]. A previous research, by

Gorbunov et al. [5], was the fuzzer, providing protocol fuzz

testing with machine generated random data and preparing

them before the test.

2.2 Fuzzing and Machine Learning

In [6], Wang et al. explained the reasons why machine

learning techniques can be used for fuzz testing scenarios and

identified several different stages in which machine learning

has been used.

The use of machine learning techniques in fuzz testing

requires three prior conditions:

• Training requires massive samples

• Supervised learning requires the labeled data

• The inputs require to be converted to vectors

For the first and second conditions, the fuzz testing pro-

cess is sufficient because the fuzz testing can produce a large

number of test samples and crash samples, which can be la-

beled during sample generation (e.g., whether code coverage

increases during execution).

Since many of the input files of fuzz testing can be treated

directly as textual data, natural language processing provide

an effective means of converting various data into vectors.

Therefore, the third prior condition is also satisfied. The

satisfaction of these prior conditions and the advantages of

machine learning have led to rapid growth in the research of

machine learning-based fuzz testing.

Machine Learning has been used to generate new inputs

in the fuzz testing process and, to a lesser extent, to im-

prove post-fuzz testing [4]. Unsupervised learning has seen

the most successful applications to input generation, with

fuzz testing tools such as AFL [7] integrating genetic algo-

rithms (GAs) into the input generation process. There are

also recent applications of both supervised and reinforce-

ment learning (RL) to input generation. Additionally, all

three types of ML have been applied to symbolic execution,

primarily to reduce constraint equation solve times, such as

supervised learning, unsupervised learning, and reinforce-

ment learning. Both supervised and unsupervised learn-

ing have been applied to post-fuzz testing processes primar-

ily for crash triage and root cause categorization. These

pieces of the fuzz testing process tend not to be bottle-

necks, which may account for the lack of research. Fan

et al. have a method to automatically generate test cases

for black-box fuzz testing of proprietary network protocols

based on machine learning techniques to learn a generative

input model [8]. Zhao et al. proposed a method to learn the

protocol frame structures from communication traffic and

generates fake but plausible messages as test case, but it is

not suitable for fuzz testing [9].

2.3 Security Vulnerabilities

Security vulnerabilities mean that “any mechanism that

could lead to a breach of the security of a system in the

presence of a threat. Vulnerabilities may arise unintention-

ally due to inadequacy of design or incomplete debugging.

Alternatively, the vulnerability may arise through malicious

intent, e.g. the insertion of a Trojan horse [10].”

Software vulnerabilities are weaknesses or flaws pre-

sent in a program code. Unfortunately, conventional test-

ings and manual code reviews cannot always find every vul-

nerability. Left alone, vulnerabilities can impact the per-

formance and security of software. They could even allow

untrustworthy agents to exploit or gain access to products

and data.

2.4 Security Vulnerabilities of Communication

Protocol

Protocols are pervasive in computer systems, as they en-

able communication among parties over a local network or

the internet. Therefore, protocol implementations are an

appealing target for malicious actors, as a vulnerability in

an implementation may be remotely exploited. However, it

is challenging to test the security of protocol implementa-

tions, since protocols are most often stateful in nature. This

means that, compared to stateless programs, the input space

for testing is not limited to the format of individual messages

(which can be very large by its own), but is further enlarged

by the potential combinations of several messages. There-

fore, protocol security testing is in need of techniques that

can efficiently test such input space, by taking into account

the protocol states [11].

There is an effort that tries to get over the security vulner-

abilities of a communication protocol through the approach

of fuzz testing. Protocol Fuzz Testing [12] is a fuzz testing to

send forged packets to the tested application, or eventually

acts as a proxy, modifying requests on the fly and replaying

them.

3. Proposed Scheme

3.1 Sequence-to-Sequence Model

In protocol fuzzing, we need to model the state transi-

tion of a target software that is regarded as a black box.

The state transition is brought by a protocol message in

a predetermined format, where the data is interpreted ac-

cording to the current state of the communication system.

This makes the relation between the states and the proto-

col messages more complicated and less obvious, making the

protocol fuzzing extremely difficult.

One possible approach to the issue is not to try to control

everything. Recently there is wide recognition that machine

learning algorithm contributes to constructing a model of

complicated data and phenomenon, even though the theo-

retical mechanism of the contribution is not understood well.

We would like to take a similar approach; use a widely rec-

ognized Sequence-to-Sequence (Seq2Seq) model to learn the

state transition of a communication protocol.

Seq2Seq can process input and output sequences of vari-

ous lengths and is good at handling sequential data such as

continuous values. In addition, Pytorch supports Encoder

and Decoder processing in the Seq2Seq model [13], [14],

2ⓒ 2022 Information Processing Society of Japan

Vol.2022-SE-210 No.32
2022/3/12



IPSJ SIG Technical Report

which is helpful for the realization of the investigated ap-

proach. Seq2Seq model is a learning model that converts an

input sequence into an output sequence [15]. In this context,

the sequence is a list of symbols, corresponding to the words

in a sentence. The seq2seq model has achieved great success

in fields such as machine translation, dialogue systems, ques-

tion answering, and text summarizing. All of these tasks can

be regarded as the task to learn a model that converts an in-

put sequence into an output sequence. To achieve the task,

the Seq2Seq model employs an encoder-decoder model as

its component. The encoder has a mechanism that converts

input data (such as image, text, audio, video, etc.) into a

(fixed-length) feature vector. The decoder receives the fea-

ture vector from the input and generates the output data

that corresponds to the input data. In a sense, the input is

encoded in the feature vector, and the encoded information

is decoded and processed by the decoder.

3.2 Possible Problems and Our Approach

3.2.1 Motivation

In the conventional approach of fuzz testing, we prepare

a massive quantity of machine-generated fuzz data, feed the

data to a target software, and try to detect vulnerabili-

ties. This approach is however not suitable for protocol fuzz

testing because the data used in communication protocol is

strongly context-sensitive. Randomly generated fuzz data

often bring early termination of the communication, which

makes it difficult to increase the test coverage of the target

software. For efficient protocol fuzz testing, it is essential

to filter out fuzz data that seems not like protocol data,

and machine learning techniques such as Seq2Seq might be

contributing for the sake; we construct a model of a com-

munication protocol by machine learning and use the model

to qualify randomly-generated fuzz data.

In this context, the sequence is a list of symbols, corre-

sponding to the words in a sentence. We will use the model

to gain efficient protocol fuzz testing. Generally, for model-

ing, the natural language translation of the Seq2Seq model is

processed by pairing massive input language sentences and

target (output) language sentences, where sentences are en-

coded as a fixed-length feature vector. However, this ma-

chine learning model is not suitable to learn communication

protocols because communication data in a protocol are dy-

namic, long, and variable both in length and in contents.

3.2.2 Problems

Although many fuzz testing methods have been investi-

gated, there are still some problems that need to be solved.

Problem 1: preparation of fuzz data. Conventional

fuzz testing tools cannot perform fuzz testing on the com-

munication protocol of target devices, because we must pre-

pare massive fuzz data in advance. The preparation of mas-

sive fuzz testing data is costly, and efficient tests cannot be

achieved during fuzz testing. It is difficult to prepare these

test data on the communication protocol, since a protocol

sequence is a long and context-sensitive bit stream. For fuzz

testing protocol, we need to make a bit conversion for any

bit, which is costly and useless most time.

Problem 2: context in the data. When fuzz test-

ing the communication protocol, the random protocol data

(bitstream) cannot gain efficient machine learning as input

of the Seq2Seq model. The reason is that random protocol

data has no intention of crashing a system. The tentative

goal of fuzzing is to increase the test coverage, as it con-

tributes to finding out new and/or unexpected information

about the system specifically unidentified bugs. This sug-

gests that it is not sufficient to let the machine learn ran-

dom data, as such random data are not intended to expose

unknown behavior of the system and thus not effective for

producing a good learning effect.

3.2.3 Contribution

To fit the Seq2Seq model to communication protocols, we

consider focusing on a certain part of communication data

instead of trying to learn the entire communication data. In

the case of Bluetooth protocol, for example, the “operations

field data” can be a good candidate to be learned.

Another concern of the approach is that it is not sufficient

to let the model distinguish seemingly correct/incorrect pro-

tocol data. To boost the efficiency of fuzz testing, we attach

training data with a heuristically determined tag that indi-

cates if the data is likely to bring software failure or not.

This makes the learned model more informative and should

contribute to improving the efficiency of protocol fuzz test-

ing.

3.3 Refined Training Data

3.3.1 Random Fuzz Generation and its Limit

Generation of random inputs is a focal point in fuzz test-

ing, but the truly random generation of inputs is useless in

protocol fuzzing.

Table 1 shows the taxonomy (classification) of common

operations that are used in generating fuzz in a protocol fuzz

test [16]. The generation of fuzz can be classified into three

kinds of taxonomy, 1) fuzz testing messages, 2) fuzz testing

payload, and 3) fuzz testing fields that 3) is classified into

two data types 3a) fuzz testing fields (numerical) and 3b)

fuzz testing fields (string), depending on the data type of

contents in the targeted field.

Fuzz testing messages. Fuzz testing messages tries to

bring confusion on the sequence of messages that are sent to

the target device. Typically this fuzz testing takes a well-

formed message (e.g. captured from a previous session, or

an older message in the current session of the protocol) and

inserts this message at a random position in the message se-

quence. As a result, the target device receives several valid

messages followed by a message with a valid structure, but

at an unexpected position in the message sequence.

Fuzz testing fields and payloads. Fuzz testing fields

and fuzz testing payloads mutate the internal structure of

individual messages. Fuzz testing payloads adds, removes,

or duplicates payloads. This results in missing or extra pay-

loads in the message. Fuzz testing fields alters the values

that are stored in the fields of a payload. Numerical fields

3ⓒ 2022 Information Processing Society of Japan

Vol.2022-SE-210 No.32
2022/3/12



IPSJ SIG Technical Report

Table 1 Taxonomy of Protocol Fuzz Testings.

Taxonomy Approach of Fuzz Testing Description

1) Fuzz Testing Messages Insert random message
Insert a well-formed message at a random
position in the messages sequence

2) Fuzz Testing Payloads
Insert random payload

Duplicate random payload
Remove random payload

Inserts a random payload at a random position
in the list of payloads
Duplicates a randomly chosen payload
Removes a randomly chosen payload

3a) Fuzz Testing Fields(numerical)
Set to random number
Set to zero

Set the field to a randomly chosen number
Set the field to zero

3b) Fuzz Testing Fields(string)

Append random bytes Append a sequence of random bytes
Modify random byte Replace a randomly chosen byte with a random byte
Set to the empty string Set the field to the string of length zero

Insert string termination
Insert the string termination character at a randomly
chosen position

often indicate the type or length of other fields/payloads.

In contrast, string fields hold values that are typically used

as inputs to the system’s internal functions, and hence they

often have specific syntax, for example, a string representing

a date.

Above mentioned operations are effective for most fuzz

tests such as simple file fuzzing, but sole utilization of ran-

dom operations is not effective in protocol fuzzing. It is com-

mon that a system aborts a communication session once an

inconsistency to an underlying protocol is detected because

digital communication is erroneous in nature. Even if there

is no malicious entity in the communication, unfortunate

accidents and system failures easily corrupt the communi-

cation. Therefore, a communication system usually has a

mechanism that tries to detect errors extensively. Most ran-

domly generated fuzz data are detected by the error checking

mechanism and bring controlled abortion of the communi-

cation session. This means that it is difficult to increase

the test coverage of the target software even if we prepare

a massive quantity of random fuzz data that are generated

by the above-described taxonomy.

In a machine-learning based fuzzing, we train a learning

model by providing training data and letting the model dis-

tinguish good fuzz data that are likely to detect software

vulnerabilities and bad fuzz data that are less likely to do

that. The performance of the learning model is affected by

the quality of the provided training data. Better training

data makes the learning model more effective and informa-

tive, boosts the efficiency of fuzz testing. With this regard,

it is easily understood that randomly-generated fuzz data is

not suitable as the training data.

It is essential to prepare certain amounts of training data

that have better quality than randomly generated fuzz data.

3.3.2 Refined Training Data with Tag

It is ideal if we can prepare a sufficient amount of train-

ing data that indeed makes the target software malfunction.

However, such training data are hardly obtained in practice.

Therefore, we consider preparing training data by slightly

modifying rather small amounts of quality fuzz data. The

obtained training data have better quality than randomly

generated ones and are called as refined training data in

this paper.

To generate refined training data, we focus on operation

fields in a protocol packet. The data in the focused oper-

ation fields are processed and/or changed by tactics. For

example, we can change the data structure of a header of

one operation field, or we can change a specific value in a

header of one operation field to special values such as the

maximum, null, or out-of-the-boundary value.

Once the refined training data is prepared, we may be

given an empirical tag to each datum of the training data.

The tag indicates if the generated datum is likely to cause

any malfunction of the target software. Of course, such tags

are not always available, and some empirical work should be

needed to determine the tag of a specific datum. This point

will be described in a later section.

The refined training data with Tag are then used to train

a learning model.

3.4 Improvement of Seq2Seq Model

To fit the Seq2Seq model to communication protocols, we

improve the Seq2Seq model. We consider focusing on a cer-

tain part of communication data instead of trying to learn

the entire communication data. In the case of Bluetooth

protocol, for example, the “operations field data” can be a

good candidate to be learned.

As described previously, a Seq2Seq model consists of an

encoder and a decoder. Both the encoder and decoder con-

sist of several long short-term memory (LSTM) blocks con-

catenated. In the typical training phase of the model, the

LSTM block of the encoder is provided with an input sym-

bol, and the LSTM block of the decoder is provided with

an output symbol. Upon this framework, we consider to

provide the LSTM block of the encoder a piece of operation

field data as its input and consider providing the LSTM

block of the decoder the tag that has been attached to the

corresponding input.

4. Case Study and Evaluation

4.1 The Target of the Case Study

Bluetooth is a wireless technology that is designed for

data exchange between two devices. The technology sup-

ports wireless communication with a physical range of 10

to 100 meters and is widely used in many devices includ-

ing smartphones, personal computers and gaming consoles,

etc [17]. Even though Bluetooth IoT (Internet of Things) de-

4ⓒ 2022 Information Processing Society of Japan

Vol.2022-SE-210 No.32
2022/3/12



IPSJ SIG Technical Report

Table 2 Operation Fields of Major Bluetooth Profiles.

BT Profile Operation Field

OBEX

Connect
Disconnect
Put
Get
Abort

PBAP

Connection ID
Name
Type
Application Parameters

MAP

Connection ID
Type
Application Parameters
Body/EndOfBody
Flags
Name

FTP

Connect
Disconnect
Put
Get
Abort
SetPath
Action
Session

OPP

Count
Name
Type
Length
Time
Description
HTTP
Body/EndOfBody
Single Response Mode
Single Response Mode Parameters
Session Parameters
Session Sequence Number

vices are widely spreading recently, there are concerns about

security threats to Bluetooth IoT devices [18], [19]. The se-

curity threats to Bluetooth should be challenged and solved,

the authors consider.

According to the discussion in previous sections, we con-

duct a case study for the Bluetooth protocol. In order to

use Bluetooth, a device must be compatible with the sub-

set of Bluetooth profiles (often called services or functions)

necessary to use the desired services. A Bluetooth profile is

a specification regarding an aspect of Bluetooth-based wire-

less communication between devices. Bluetooth has various

types of Bluetooth profiles of communication protocols [20],

including OBEX, PBAP, MAP, FTP, and OPP. Every Blue-

tooth profile has its own operation fields as Table 2.

In this case study, we focus OBEX (OBject EXchange)

profile of Bluetooth. The profile defines a communication

protocol that facilities the exchange of binary objects be-

tween devices. The profile is versatile and almost all Blue-

tooth devices support the OBEX profile.

4.2 Training the Seq2Seq Model

As discussed in previous sections, the training data set is

made by some tactics and attached with heuristically deter-

mined tags.

The training data is generated by modifying the operation

field data of the OBEX protocol. Table 3 shows examples

of operations that are used to prepare the refined training

data. The operations include, for example, changing the

data structure to a binary, and to change specific field val-

ues to unexpected ones such as the maximum, null, and

out-of-range values.

Then the fuzz data are attached heuristically tags which

are either of “e0” or “f0.” The tag “e0” means that the fuzz

data are less likely to cause any malfunction of the target

device, while the tag “f0” means that the fuzz data are more

likely to cause some malfunction of the target. The tags are

computed empirically according to the preceding works of

the authors.

Once the refined training data with empirical tags are pre-

pared, we start training the Seq2Seq model. The encoder is

given with the fuzz data as its input, and the decoder is

given with the empirical tag as its input. For training the

Seq2Seq model, we have six training sets as Table 4; a hun-

dred pairs of Connect field data, a hundred pairs of data

that is composed of 20 pieces of data for each of five OBEX

operations, two hundred pairs of data that is composed of

40 pieces of data for each of five OBEX operations, three

hundred pairs of data that is composed of 60 pieces of data

for each of five OBEX operations, four hundred pairs of data

that is composed of 80 pieces of data for each of five OBEX

operations, and five hundred pairs of data that is composed

of 100 pieces of data for each of five OBEX operations. Each

empirical fuzz data has its tag, such that it is tagged with

“e0” or “f0.” The Seq2Seq model is trained to “translate”

fuzz data which are prepared by modifying the Bluetooth

OBEX operation field data to a tag that indicates if the

fuzz data is good or not. Thus, after training the Seq2Seq

model, we could input a new fuzz data to the model, and

then give a machine learning perspective result, which is its

tag.

As Table 4, we trained the Seq2Seq model. As a result,

we could input a new fuzz data to the model, which is not

training data, and then the model outputs a machine learn-

ing perspective result, which is its tag, such that the new

fuzz data can be translated to a tag “e0” or “f0.”

4.3 Evaluation and Discussion

To evaluate the Seq2Seq efficient machine learning model,

we focus on the volume of operations and epochs (learning

data) with learning loss that we change the condition in the

cases of Operation Fields and Total Epochs by operations.

We count one Epoch, is as a training data set of each Op-

eration Field, vary in fuzz data: for example, we count one

for complete one Connect operation, then count two for the

next repetition or another operation

Table 4 shows the Training Patterns of Case Study. The

first and the second rows are compared by the volume of Op-

eration Fields with one-hundred learning data to the Con-

nect operation only and 20 learning data each to five Oper-

ations Fields, including Connect and Disconnect/Put/Get/

Abort, in which total of one-hundred learning data. And

from the second row and blow, the Total Epochs are added

5ⓒ 2022 Information Processing Society of Japan

Vol.2022-SE-210 No.32
2022/3/12



IPSJ SIG Technical Report

Table 3 An Example of Preparing Refined Training Data of OBEX Operations.

Operation Processing Type Tactic Fuzz data Tag Description

Connect Data structure change Binary 0x8A e0

Change the data structure of
Connect’s HeaderWho
Header Encoding/Header ID
with a binary data

Disconnect Change specific value Maximum 65535 f0
Change the Disconnect’s
Maximum Packet Length
to the maximum value data

Put Change specific value Null 0x00 f0
Change the Put’s Response
Code to NULL

Get Change specific value Outside 254 f0
Change the Get’s Maximum
Packet Length a value
outside the boundary

Abort Change specific value Indeterminate 0xA1 f0
Change the Abort’s Response
Code to an indeterminate value

Table 4 Training Patterns of Case Study.

Color Total Epochs Operation Fields Epochs/Operation Description

Black 100 Connect 100
Total of 100 Epochs
to Connect Operation only.

Green 100

Connect
Disconnect
Put
Get
Abort

20
20
20
20
20

Total of 100 Epochs,
20 each to 5 Operations.

Navy 200

Connect
Disconnect
Put
Get
Abort

40
40
40
40
40

Total of 200 Epochs,
40 each to 5 Operations.

Red 300

Connect
Disconnect
Put
Get
Abort

60
60
60
60
60

Total of 300 Epochs,
60 each to 5 Operations.

Blue 400

Connect
Disconnect
Put
Get
Abort

80
80
80
80
80

Total of 400 Epochs,
80 each to 5 Operations.

Orange 500

Connect
Disconnect
Put
Get
Abort

100
100
100
100
100

Total of 500 Epochs,
100 each to 5 Operations.

by each one hundred of total learning data, which is evenly

distributed to the five operations.

The result of learning efficiency is Figure 1, The Loss

Curves by Epochs. The vertical y-axis shows Learning Loss

and the horizontal x-axis shows the volume of Total Epochs.

For the x-axis, it scales only one hundred maximum unless

more Total Epochs in Table 4, since our concern about time,

although it was not much difference around hundreds. The

black, green, navy, red, blue, orange curve illustrates dif-

ferent practical training patterns, respectively. The pink

additional dashed line is at y=0.0001, where we put a rough

indication for a value of learning convergence, and it should

be required to analyze an appropriate value later. A graph

shifting left means less the training volume, and shifting be-

low means less the training loss. As we see in Figure 1,

by increasing the number of Operation Fields, it is quickly

converging the Learning Loss, such that we are able to re-

duce the volume of preparing training data and to improve

efficiency.

5. Conclusion and Future work

Efficient training is essential in machine learning-based

protocol fuzzing. This study investigated the refinement of

the training data and conducted a case study by focusing on

the Bluetooth OBEX protocol. The results show that varia-

tions on the operation field items are effective in increasing

the learning efficiency.

There are several directions to extend the research of this

paper. It is needed to further refine training data and empir-

ical tag so that the learning model shows better capabilities

on finding good fuzz. It is also possible to apply our ap-

proach to other profiles of Bluetooth and to other protocols

such as Wi-Fi, Ethernet, and so on. From a wider perspec-

tive, we need to evaluate how our approach contributes to

the whole framework of protocol fuzzing.

6ⓒ 2022 Information Processing Society of Japan

Vol.2022-SE-210 No.32
2022/3/12



IPSJ SIG Technical Report

Fig. 1 The Loss Curves by Epochs

References

[1] B. Miller, L. Fredriksen, and B. So, “An empirical study
of the reliability of UNIX utilities,” Communications of the
ACM, vol. 33, no. 12, pp. 32–44, 1990.

[2] V. Manès, H. Han, C. Han, S. Cha, M. Egele, E. Schwartz,
and M. Woo, “The art, science, and engineering of fuzz test-
ing: A survey,” IEEE Transactions on Software Engineering,
2019.

[3] H. Wen, Z. Lin, and Y. Zhang, “FirmXRay: Detecting blue-
tooth link layer vulnerabilities from bare-metal firmware,”
Proceedings of the 2020 ACM SIGSAC Conference on Com-
puter and Communications Security, pp. 167–180, 2020.

[4] G. Saavedra, K. Rodhouse, D. Dunlavy, and P. Kegelmeyer,
“A Review of Machine Learning Applications in fuzz test-
ing,” CoRR, vol. abs/1906.11133, 2019.

[5] S. Gorbunov and A. Rosenbloom, “Autofuzz: Automated
network protocol fuzz testing framework,” IJCSNS Interna-
tional Journal of Computer Science and Network Security,
vol. 10, no. 8, pp. 239–245, 2010.

[6] Y. Wang, P. Jia, L. Liu, C. Huang, and Z. Liu, “A systematic
review of fuzz testing based on machine learning techniques,”
Wang, Yan and Jia, Peng and Liu, Luping and Huang, Cheng
and Liu, Zhonglin, PloS one, vol. 15, no. 8, e0237749, Public
Library of Science San Francisco, CA USA, 2020.

[7] lcamtuf, “afl-fuzz: crash exploration mode,” https://
lcamtuf.blogspot.com/2014/11/afl-fuzz-crash-exploration-
mode.html, accessed at Dec. 14, 2021.

[8] R. Fan and Y. Chang, “Machine learning for black-box
fuzz testing of network protocols,” International Conference
on Information and Communications Security, pp. 621–632,
Springer, 2017.

[9] H. Zhao, Z. Li, H. Wei, J. Shi, and Y. Huang, “SeqFuzzer:
An industrial protocol fuzz testing framework from a deep
learning perspective,” 2019 12th IEEE Conference on Soft-
ware Testing, Validation and Verification (ICST), pp. 59–67,
IEEE, 2019.

[10] A. Butterfield, G. Ngondi, and A. Kerr, A dictionary of com-
puter science(7 ed.), Oxford University Press, 2016.

[11] R. Natella and V. Pham, “ProFuzzBench: A Bench-
mark for Stateful Protocol fuzz testing,” arXiv preprint
arXiv:2101.05102, 2021.

[12] owasp.org, “fuzz testing,” https://owasp.org/www-
community/fuzz testing, accessed at Dec. 14, 2021.

[13] pytorch.org, “NLP FROM SCRATCH: TRANSLATION
WITH A SEQUENCE TO SEQUENCE NETWORK

AND ATTENTION,” https://pytorch.org/tutorials/
intermediate/seq2seq translation tutorial.html, accessed at
Dec. 14, 2021.

[14] pytorch.org, FROM RESEARCH TO PRODUCTION: An
open source machine learning framework that accelerates the
path from research prototyping to production deployment,
https://pytorch.org/, accessed at Dec. 14, 2021.

[15] I. Sutskever, O. Vinyals, and Q. Le, “Sequence to sequence
learning with neural networks,” Advances in Neural Informa-
tion Processing Systems, Curran Associates, Inc., pp. 3104–
3112, 2014.

[16] P. Tsankov, M. Dashti, and D. Basin, “SECFUZZ: Fuzz-
testing security protocols,” 2012 7th International Workshop
on Automation of Software Test (AST), pp. 1–7, IEEE, 2012.

[17] ieee802.org, “IEEE 802.15 WPAN Task Group 1 (TG1),”
https://www.ieee802.org/15/pub/TG1.html, accessed at
Dec. 14, 2021.

[18] T. Panse and P. Panse, “A survey on security threats and
vulnerability attacks on bluetooth communication,” Interna-
tional Journal of Computer Science and Information Tech-
nologies, vol. 4, no. 5, pp. 741–746, 2013.

[19] K. Crawley, “Bluetooth security risks explained,” AT&T Cy-
bersecurity, https://cybersecurity.att.com/blogs/security-
essentials/bluetooth-security-risks-explained, accessed at
Dec. 14, 2021.

[20] Blutooth SIG, Inc., “Specifications List,” https://
www.bluetooth.com/specifications/specs/, accessed at
Dec. 14, 2021.

7ⓒ 2022 Information Processing Society of Japan

Vol.2022-SE-210 No.32
2022/3/12


