V7 b2 7TIT¥ 119-3

(1998. 5. 15)

Dynamic Slicing of Object-Oriented Programs

Jianjun Zhao
Department of Computer Science and Engineering
Fukuoka Institute of Technology
zhao@cs.fit.ac.jp

Abstract

Program slice has many applications such as pro-
gram debugging, testing, maintenance, and com-
plexity measurement. A static slice consists of all
statements in program P that may affect the value
of variable v at some point p, and a dynamic slice
consists only of statements that influence the value
of variable occurrence for specific program inputs.
In this paper, we concern the problem of dynamic
slicing of object-oriented programs which, to our
knowledge, has not been addressed in the litera-
tures. To solve this problem, we present the dy-

- mamic object-oriented dependence graph (DODG)
which is an arc-classified digraph to explicitly rep-
resent various dynamic dependences between state-
ment instances for a particular ezecution of an
object-oriented program. Based on the DODG, we
present a two-phase algorithm for conmputing ¢ dy-
namic slice of an object-oriented program.

1 Introduction

Program debugging is the activity of analyzing
the program to locate and correct errors in a pro-
gram by reasoning about causal relation between
bugs and the error detected in the program. Pro-
gram debugging tools are essential for any pro-
gramming environments. During the debugging
process, once a symptom of error has been de-
tected, we always hope to use some strategies to
reduce the amount of code which can not have pro-
duced the error symptom. Such strategies are usu-
ally called filtering techniques {7}.

The most important filtering technique is pro-
gram slicing. Program slicing is the task of com-
puting program slices which consist of the parts of
a program that (potentially) affect the values com-
puted at some point of interesting, referred to as
a slicing criterion. The parts of a program which
have a direct or indirect effect on the values com-
puted at a slicing criterion are called the program

 slice with respect to the criterion. The original con-

cept of a program slice was introduced by Weiser
[13]. After that, a number of slightly different
notions of program slices and a number of algo-
rithms to compute slices have’been proposed. for
imperative programs [1,2,6,9,12]. Program slicing
can be divided into static slicing and dynamic slic-
ing. Static slicing computes program slices through
static data flow and control flow analysis and is
valid for all possible executions of the program,
whereas dynamic slicing computes slices through
dynamic data flow and control flow analysis and
is valid only for one set of input data to the pro-
gram. While static slicing is mainly used in' pro-

" gram understanding and software maintenance, dy-

namic slicing is particularly useful for program de-
bugging and testing.

However, although a number of approaches have
been proposed for slicing procedural programs, slic-
ing object-oriented programs is just starting. Al-
though researchers have extended the concept of
program slicing to static slicing of object-oriented
programs [6, 14, 16, 19, 21, 23], the dynamic slicing
of object-oriented programs is still being missing
until now.

" Object-oriented programming languages present
unique opportunities and problems for program
analysis schemes such as slicing and testing. For
example, to slice an object-oriented program, fea-
tures such as dynamic binding, encapsulation,
inheritance, message passing, and polymorism
must be considered carefully. Although the con-
cepts of inheritance and polymorphism provide
the great strengths of object-oriented programming
languages, they also introduce difficulties in pro-
gram analysis.)

In this paper, we present the first algorithm
for dynamic slicing of object-oriented ‘programs.
The main feature of the approach is to com-
pute slices of an object-oriented program using a

dependence-based representation named dynamic
object-oriented dependence graph (DODG). The
DODG is an arc-classified digraph to explicitly rep-
resent various dynamic dependences between state-
ment instances for a particular execution of an
object-oriented program.

As the first attempt to study the dynamic slic-
ing of object-oriented programs, our motivation is
to build a powerful, yet efficient debugging tool
for object-orierited programs by combining slicing
technique as a main step to filter the program dur-
ing bug location.

The rest of the paper is organized as follows.
Section 2 introduces a motivation example. Sec-
tion 3 describes some notions of dynamic slices of
object-oriented programs. Section 4 presents the
dynamic object-oriented dependence graph, and
describes how to construct the graph. Section §
shows how to find a dynamic slice of an object-
oriented program. Concluding remarks are given
in Section 6.

2 Motivation Example

We use a C++ program in Figure 1 as our tar-
get program. The program is taken from [16] and
claimed to implement an elevator controller.

For the input data argv[1]=3 the program pro-
duces an
incorrect output current_floor = 3, rather than
2, caused by the incorrect statement s12 which
should have read return current_flooxr. By us-
ing the static slicing algorithm proposed by [186],
we can obtain a static slice on the slicing criterion
C = (539, current_floor) which consists of the
statements {e2, s3, s4, s5, 53, €11, 512, e15, 516,
517,¢18, 519, c20, €21, 522, €24, ¢25, 526, €31, 532, 33,
€34, 535, 536,537, ¢38,539}. The slice is shown in
Figure 2 (a) in more detail. However, by carefully
examining the execution trace of the program with
input argv[1]=3, we can observe that:

1. Since statement s36 has not been executed, it
can be removed from the slice.

2. Since $36 is a statement that creates an object
of class AlarmElevator, it might call to the
constructor of class AlarmElevator. There-
fore statements €24, c25, 526 contained in the
constructor can be removed also.

3. Since Statement s36 has not been executed,
statement ¢38 will call only the method go)

cel: class Elevator {
public:

a1 E£levator (int 1_top_floor)
83: (eurrent_tloor = 1;
sa: current_direction = UP:
85: top_tloox = 1_top_tloor:)
a6 virtual ~Elevator() {)
o7 void up(}
8: (current_direction = UP;}
o9 void down()
810: (current_diraction = DOWN;)
ol1: int which_fleor()
812: { return current_floor; }
el3: Direction direction()
14: { return current_dirsction;}
els: virtual veid golint floor)
216 (if (current_direction = UP)
817: { while (current_floor = floor
4 (current_floor <= top_flo
e18: add(current_floor, 1):}
elze
®19: { while (current_tloor t= floor
& {current_floor > 0
€20 add{current_floor, -1);)
)i
private:
21 add(int ka, conat int &b}
a22: (a=a+b:);
protacted:
int current_floor;
Direction current_direction;
int top_floor;
)i
c23: class AlarnBlevator: public Elavator
public:
24 AlarsZlevator (int top_floor);
c25: Elevator (top_tloor)
%26 { alarm_on = 0;)
«27: void set_alamm()
826 { alarmon = 1;)
e29: void resat_alarm()
230: { alarm_on = 0;)
e3l: void gotint floor)
832: ¢ 4f (ralarm_on)
€13 Elevator : :go(tloor)
¥
protectad:
int alarm_on;
1
©34: maintint arge, char **argv) (
Elavator ‘e_ptr;
#35: if f{argviil}
36+ o_ptr = now AlarmBlavator{10i;
else
#37: a_ptr = new Elevator(10);
c38: e_ptr -> gold):
839: cout << *\n Currently on flaor:*

<< e_ptr -> which_floor{) << *\n";
)

Figure 1: A sample C++ program.

in class Elevator, and therefore statements
€31, 532, s33 contained in method go () of class
AlarmElevator can be removed.

4. Since . the value
of variable current_direction in statement
516 has its value UP, statements s19, ¢20 have
not been executed. Therefore they can be re-
moved from the slice.

Therefore, we can obtain a dynamic slice of the
program that contains statements
{e2, 53, 54, 55, €11, 512, €15, 516, 517, c18, e2l, 522,
34, 537,38, 539} shown in Figure 2 (b). The size
of the resulting dynamic slice has been reduced sig-

nificantly compared with its corresponding static
slice. The above example shows that taking into
account a particular program execution might sig-
nificantly reduce the size of the slice. By applying
dynamic analysis it is easier to identify those state-
ments in an object-oriented program which do have
influence on the variables of interest.

3 Dynamic Slices of Object-Oriented
Programs

3.1 Preliminaries

A digraph is an ordered pair(V, A), where V is
a finite set of elements called wertices, and A4 is
a finite set of elements of the Cartesian product
V x V, called arcs, ie., A C V x V is a binary
relation on V. For any arc (v1,v2) € 4, v; is called
the initial vertex of the arc and said to be adjacent
to vy, and vg is called terminal verter of the arc
and said to be adjacent fromvy. A predecessor of a
vertex v is a vertex adjacent to v, and a successor
of v is a vertex adjacent from v. A simple digraph
is a digraph(V, A) such that no (v,v) € A for any
veV.

An arc-
classified digraph is an n-tuple(V, 41, Az, ..., An—1)
such that every (V,4;) : = 1,...,n — 1) is a di-
graph and A;NA; = ¢ fori=1,2,...,n—1 and
3=12,...,n—1. A simple arc-classified digraphis
an arc-classified digraph (V, 4;, 4s,..., A,-1) such
that no (v,v) € 4; ¢ =1,...,n—1) foranyv € V.

A path in a digraph (V, A) or an arc-classified
digraph (V, A1, Ay, ..., A,—1) is a sequence of arcs
(a1,a9,...,q;) such that the termina] vertex of a;
is the initial vertex of a;; for 1 <4 <[— 1, where
a;€A(1<i<)ora; € AJUAU...UA,_1(1 <
1< 1), and I{l > 1) is called the length of the path.
If the initial vertex of a; is vy and the terminal
vertex of a; is vy, then the path is called a path
from vy to vy, or path v; — w7 for short.

The flow graph of an object-oriented program P
is a digraph(V, A) where V is the set of vertices
that correspond to statements and control predi-
cates, and A is the set.of arcs between vertices in
V. If there is an arc from vertex u to vertex v it
means that control can pass from vertex u to vertex
v during program execution. A path is called feasi-
ble path if there exists input data which causes the
path that has actually been executed for some in-
put will be referred to as an erecution trace. For ex-
ample, < e34, $35, 537, €2, s3, 54, 55, ¢38, €15, 516,

§17,c18, €21, 522, 517, c18, 21, 522, 517, 539, el1,
s12 > is the execution trace when the program
in Figure 1 is executed on input data argv[1]=3.
This execution trace is presented in Figure 3 in a
more detail. Note that we use 0, 1, 2, etc. con-
tained in the brackets to distinguish between mul-
tiple occurrences of the same statement in the ex-
ecution trace.

3.2 Dynamic Slices

Generally, dynamic slicing of an object-oriented
program is similar to dynamic slicing of multi-
procedural programs since both can be solved
by interprocedural dynamic control-flow and data-
flow analysis. However, due to the introduction of
inheritance and dynamic binding in object-oriented
programs, the process of tracing dependences in
an object-oriented program becomes more complex
than that in a procedural program.

In the following we informally define some no-
tions of dynamic slicing of object-oriented pro-
grams.

® A slicing criterion for an object-oriented pro-
gram is of the form (s,v,t,1), where s is a
statement in the program, v is a variable used
at s, and ¢ is an execution trace of the program
with input .

Notice that we restrict the slicing criterion to
contain only a single variable v at a statement s,
rather than a set of variables since we can easily
combine each slice with respect to a single variable
of a statement to form a slice with respect to a set
of variables of the statement.

e A dynamic slice of an object-oriented program
on a given slicing criterion (s,v,%,¢) consists
of all statements in the program that actually
affected the value of a variable v at statement
S.

Note that our dynamic slice of an object-oriented
program is not necessarily executable. This is
in contrast to that presented in [13] which they
defined a dynamic slice as an’executable subpro-
gram. For program debugging and testing, a non-
executable ‘dynamic slice can also supply enough
information as an executable slice, but can be com-
puted more easily.

cal: class Elevator {
© public:

o
a.
.
.5
a6: virtual -Elevator() ()
e7: void up()
28: (current_direction = UP;)
es: void down (1
10 (_current_direction = DOWN; }
en:
az:
a13: Direction direction(]
sl4: { return currenc_direction:)
el5: virtual void go{int floor)
=16 T if (currenc_airection = UP]
5171 1 (whila (current_ floor != floor}
] && tcurrent_tfloor <= top_floorip
c18: add (current _floor, 1):)
else
519: [while (current_€loor t= fleor)]

% (currant_floor > 01)]

€20: . [Codaieurrent_fioor, -11:1

¥i
private:

iy
22, Lca=aen] .
protected: .

int current_floor;
Direction current_direction;
int top_floor;

)

€23: class AlarmElevator: public Rlevator (

024:
€25+

s26: [alamon=0:1

€27: void set_alarm()
“828: { alarmon = 1: }
°29; void reset_alame()
#30: alarm. Qn Q:
e3l:

#32:

€33:

protected:
int alarm_on;
b

e

Blevator *e_ptr;
835: if fazaviil)

236 £ ntx = new Al 1 o}
als

837

<38 e DLr c> goidls

839: . E :
<< e_ptr ~> which_floor() << *\n{:

cel: class Elevator {
public
e2:
o
st
=5:
o6 vircual -Blevator() {)
a7 void up{)
a8: (current_direction = UB;)
o void down ()
510: { current direction = DOWN: }
e
013: Direction direction)
sld: { return current_direction;)
e15: virtual vold golint floor)
216 [(if (current_direction = up) |
271 T while (currenc_floor (= floorl]

T & tcurrent_floor <= top_floor))

c18: add(current_floor, 1);)

alse
#19: (while (eurront_floor t= floor)
&& (current_floor > 0))
ca0: add(current_tloor, -1):)
"

private:
e21 agd(ing &a oana n
22 Ciaca b

protected:
int curxent_floor:
Direction current_direction;
int top_floor;

Vi

€23 class AlarmSlevator: public Elevator {
public:
°24: AlarmElavator {int top_floor);
c©25: Elavator {tep_floor)
826 { slarm.on = 0; }
27: void set_alarm()
28: ¢ alarm_on = 1;)
«29: void resat_alarm()
=30 { alarm_on = 0;)
edl: void golint floor)
a32: if (‘alarm_on)
e33: Elevator::go(floor)
Yi
protected:

int alarm. on;
N

®34: main(int axge, char °*argv) {
Elevator *e_ptr:

35:

836: e_ptr = naw AlarmElevactor (10):
elge

637: @ ptr = new Elevator (10}:

c38: [aptr -> goDd):

839: [eout << "\n Currently on floor::® |

[<< eptr -> which_floor() << *\n‘:]

)

Figure 2: A static slice (a) and a dynamic slice (b) on C = (539, current_floor) of Figure 1.

4 The Dynamic Object-Oriented De-
pendence Graph ‘

This section shows how to construct the dynamic
object-oriented dependence graph of an object-
oriented program on which dynamic slices can be
computed efficiently.

To find a dynamic:slice of an object-oriented pro-
gram, we construct.a dependence-based represen-
tation named dynamic object-oriented dependence
graph (DODG) for a particular execution trace of
the program. The DODG is an arc-classified di-
graph (V, A) where V is the multi-set of flow-graph
vertices, and A is the set of arcs representing dy-

namic control dependences. and data dependences
between vertices. .

Usually there are two types of dependence rela-
tionships between statements, i.e., control depen-
dences and data dependences. v

Control dependences represent control condi-
tions on which the execution of a statement or ex-
pression depends. Informally, a statement u is di-
rectly control-dependent on the control predicate v
of a conditional branch statement (e.g., an if state-
ment or while statement) if whether u is executed
or not is directly determined by the evaluation re-
sult of v.

Data dependences reflect the data flow between

34(0)

main(int argc, char **argv)

while (current_ floor != floor) && (currenc floor <= top_floor))

35(0) if (argvil])

37(0) e_ptr = new Elevator(10)
2(0) Elevator(int 1_top_£floor)
3(0) current_floor = 1 -
4(0) current_direction = UP
5(0) top_floor = 1_top_floor
38(0) e_ptr -> go(3)

15(0) virtual void go(int floor)
16(0) if (current_direction = UP)
17(0)

18(0) add (current_floor, 1)
121(0) add (int &a, const int &b)
22(0) a=a+b

17(n

18(1) add(current_£floor, 1)
21(1) add{int &a,; const int &b)
22(1) a=a'+b - ’

17(2)

35(0)

11(0) int which_floor()

12(0) return current_floox

while (curtent_floor I= Eloof) && (current_floor <= top_floor))

while (current floor != floor) && (current_floor <= top_flooxr))

cout << *\n Currently on floor:* << e_ptr -> which_. floor() << *

Figure 3: An execution trace of the program in Figure 1 on input argvl] = 3.

statements and expressions. Informally a state-
ment v is directly data-dependent on a statement v
if the value of a variable computed at » has a direct
influence on the value of a variable computed at u.

Our construction of the dynamic object-oriented
program dependence graph of an object-oriented
program is based on dynamic analysis of control
flow vand data flow of the program, and similar to
those for constructing dynamic dependence graphs

for procedural programs [1]. However, to construct
the DODG of an object-oriented program, we must
consider specific features of.ob ject-oriented pro-
gramming languages carefully.

For example, in a procedural program, a call
statement usually regards to a statement that calls
a procedure or a statement that has function appli-
cation. However, in an object-oriented program, in
addition to these two kinds of statements, we have
to consider classes and their instances, objects, and
dynamic. bindings. = Therefore, we should give. a

more broad meaning for what a call statement is -

in an object-oriented program. In this paper, we
regard a call statement in an object-oriented ‘pro-
gram as one of the following statements:

& a statement that calls a free standing proce-
dure, :

._21._

e 3 statement that has function application,

o a statement that creates an object,

® a statement that invokes a method, or

e 3 statement that returns a value to its caller.

Using similar techniques proposed by Agrawal
et. al. [1], we can solve the problem of representing

‘a call statement in the DODG.

Figure 4 shows the DODG of the program in Fig-
ure 1 with respect to the execution trace in Figure
3.

5 Computing Dynamic Slices of Obj ject-
Oriented Programs

The notions of dynamic slices introduced in Sec-
tion 3 give only some general views of dynamic
slicing of object-oriented programs and do not tell
us how to compute them. In this section, we re-
fine those notions based on the DODG of object-
oriented programs and present an algorithm to

.compute a dynamic slice of an object-oriented pro-

gram based on its DODG. Our algorithm consists
of two phases

- Computing a dyna.mlc slice over the DODG of
an object-oriented program, ‘ :

control dependence arc data dependence arc

Figure 4: The DODG of the program in Figure 1 with respect to the execution trace in Figure 3.

2. Mapping the slice over the DODG to the
source code to obtain a dynamic slice of the
program.

In the following we describe some notions of dy-
namic slicing of an object-oriented program based
on the DODG of the program. Let P be an object-
oriented program and G = (V, A) be the DODG of
P.

o A dynamic slicing criterion for G is of the form
(v,t,7) where v € V representing a statement
occurrence for a particular execution trace t
with input 4 of P. '

© The dynamic slice DS, of G on a given. dy-
namic slicing criterion (v, s,%,1) is a subset of
vertices of G, DSGA'(v,s,t,i) C V, such that
for any v’ € V,v' € DS;(v,s,t,1) if and only
if there exists a path from v’ to v in G.

- Note that once we have constructed the DODG

for the given execution trace, we can easily obtain
the dynamic slice by using a usual depth-first or
breadth-first graph traversal algorithm to traverse
the DODG of the program by taking the vertex
corresponding to the statement of interest as the
start point of traversal.

However, the above description of a dynamic
slice over the DODG of an object-oriented program
is only a set of vertices of the DODG. Since our aim
is to obtain a dynamic slice of an object-oriented

_program, we should map a vertexin the DODG to a

statement of the program to obtain a dynamic slice
of an object-oriented program. By simply defining
a mapping function, we can obtain such a dynamic
slice straightforwardly.

6 Concluding Remarks

We presented the first algorithm for dynamic
slicing -of object-oriented programs. The main fea-
ture of the approach is to compute slices of an
object-oriented program using a dependence-based
representation named dynemic object-oriented de-
pendence graph (DODG). The DODG is an arc-
classified digraph to explicitly represent various dy-
namic -dependences between statement instances
for a particular execution of an object-oriented pro-
gram. Although here we presented the approach in
term of C-++, other versions of this approach for
other object-oriented programming languages such
as Java and Ada95 are easily adaptable because
they share their basic execution mechanisms with
C++. Now we are developing a debugging envi-

ronment for C++ programs in which the dynamic
s]icing‘ technique has been used as a filtering tech-
nique to aid bug location during debugging.

References
[1] H. Agrawal, R.A. Demillo, and E.H. Spafford, “Dy-
namic Slicing in the Presence of Unconstrained Point-
ers,” Proc. ACM Fourth Symposium on Testing, Anal-
ysis, and Verification (TAV{), pp.60-73, 1991.

[2

oy

H. Agrawal, R. Demillo, and E. Spafford, “Debugging
with Dynamic Slicing and Backtracking,” Software-
Practice and Erperience, Vol.23, No.6, pp.589-616,
1993.

3

S. Bates, S. Horwitz, “Incremental Program Test-
ing Using Program Dependence Graphs,” Conference
Record of the 20th Annual ACM SIGPLAN-SIGACT
Symposium of Principles of Programuming Languages,
pp.384-396, Charleston, South California, ACM Press,
1993.

<

[4] J. Beck, D. Eichmann, “Program and Interface Slicing
for Reverse Engineering,” Proceeding of the 15th Inter-
national Conference on Software Engineering, pp.509-
518, Baltimore, Maryland, IEEE Computer Society

Press, 1993.

{5] J. M. Bieman, L. M. Ott, “Measuring Functional Co-
hesion,” IEEE Transaction on Software Engineering,
Vol.20, No.8, pp.644-657, 1994.

[6] J. L. Chen, F. J. Wang, and Y. L. Chen, “Slic-
ing Object-Oriented Programs,” Proceedings of the

APSEC’97, pp.395-404, Hongkong, China, December
1997.
{7} M. Ducasse, “A Pragmatic Survey of Automated De-

bugging,” Proc. 1st Workshop on Automated and Al-
gorithmic Debugging, LNCS, Vol.749, 1993.

[8] J.Ferrante, K.J.Ottenstein, J.D.Warren, “The Pro-
gram Dependence Graph and Its Use in Optimization,”
ACM Transaction on Prograrnming Language and Sys-
tem, Vol.9, No.3, pp.319-349, 1987.

9

-

K. B. Gallagher and J. R. Lyle, “Using Program Slicing
in Software Maintenance,”IEEE Transaction on Sofl-
ware Engineering, Vol.17, No.8, pp.751-761, 1991.

[10] S. Horwitz, T. Reps and D. Binkley, “Interprocedural
Slicing Using Dependence Graphs,” ACM Transaction
on Programming Language and System, Vol.12, No.1,
pp.26-60, 1990.

{11] M. Kamkar, N. Shahmehri, P. Fritzson, “Bug Localiza-
tion by Algorithmic Debugging and Program Slicing,” -
Proceedings of International Workshop on Program-
ming Language Implementation and Logic Program-
ming, Lecture Notes in Computer Science, Vol.456,
pp.60-74, Springer-Verlag, 1990.

[12] M. Kamkar, N. Shahmehri, and P. Fritzson, “Interpro-
cedural Dynamic Slicing and Its Application to Gen-
eralized Algorithmic Debugging,” Proc. International

{13

(14

[15]

[16]

{17

118

[19]

20]

(21]

[22

[23]

[24]

Conference on Programming Language Fmplementation
and Logic Programming Implementation, Lecture Notes
in Computer Science, Vol.631, pp.370-384, Springer-
Verlag, 1992.

B. Korel and J. Laski, “Dynamic Program Slicing,” In-
formation Processing Letters, Vol.29, pp.155-163, 1988.

A. Krishnaswamy, “Program Slicing: An Applice-
tion of Object-oriented Program Dependency Graphs,”
Technical Report TR94-108, Department of Computer
Science, Clemson University, 1994.

D. Kuck, R.Kuhn, B. Leasure, D. Padua, and M.
Wolfe, “Dependence Graphs and Compiler and Opti-
mizations,” Conference Record of the 8th Annual ACM
Symposium on Principles of Progremming Languages,
pp.207-208, 1981.

L. D. Larsen and M. J. Harrold, “Slicing Object-
Oriented Software,” Proceeding of the 18th Interna-
tional Conference on Software Engineering, German,
March, 1996.

K. J. Ottenstein and L. M. Ottenstein, “The Program
Dependence Graph in a software Development Envi-
ronment,” ACM Software Engineering Notes, Vol.9,
No.3, pp.177-184, 1984.

A. Podgurski and L. A. Clarke, “A Formal Model of
Program Dependences and Its Implications for Soft-
ware Testing, Debugging, and Maintenance,” IEEE
Transaction on Software Engineering, Vol.16, No.9,
pp-965-979, 1990.

R. C. H. Law, “Object-Oriented Program Slicing”
Ph.D. Thesis, University of Regina, Regina, Canada,
1994. :

F. Tip, “A Survey of Program Slicing Techniques,”
Journal of Programming Languages, Vol.3, No.3,
pp.121-189, September, 1995.

F. Tip, J. B. Choi, J. Field, and G. Ramalingam
“Slicing Class Hierarchies in C++,” Proceedings of the
11th Annual Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications, pp.179-
197, October, 1996.

M. Weiser, “Program Slicing,” IEEE Transaction on
Software Engineering, Vol.10, No.4, pp.352-357, 1984.

J. Zhao, J. Cheng, and K. Ushijima, “Static Slicing of
Concurrent Object-Oriented Programs,” Proceedings
of the 20th IEEE Annual International Computer Soft-
ware and Applications Conference, pp.312-320, August
1996, IEEE Computer Society Press.

J. Zhao, “Using Dependence Analysis to Support Soft-
ware Architecture Understanding,” in M. Li (Ed.),
“New Technologies on Cormputer Software,” pp.135-
142, International Academic Publishers, September
1997.

