
IPSJ SIG Technical Report

An Optimal Selection Mechanism Using OpenFlow from
Multiple IP Addresses in DNS Response

ZHENGXU JIN1,a) YONG JIN2,b) NARIYOSHI YAMAI1,c) REI NAKAGAWA1,d)

Abstract: Load balancing technology not only provides fault tolerance functionality but also can distribute access
requests from the end clients to multiple web servers. An end client may receive multiple IP addresses for a web
server during the DNS based domain name resolution which will be performed in prior to accessing the web server. In
general, the end client will use the first IP address in the list to access the web server even it may cause high latency
due to the long distance between the end client and the physical web server or the web server is in high workload. As
a result, the Internet service providers cannot provide effective Internet services to the Internet users. In this paper, we
propose an optimal selection mechanism from multiple IP addresses which can make the end client access the most
proper web server in terms of causing low latency or being in low workload using Software Defined Network (SDN)
technology. In the proposed mechanism, by using OpenFlow protocol, the OpenFlow controller makes the OpenFlow
switch access the multiple IP addresses simultaneously when the end client attempts to access the first IP address and
only replies the response from the most proper web server to the end client. Consequently, the end client will access
the most proper web server transparently even there are multiple IP addresses available for the domain name of the
web server. We implemented a prototype system for the proposed mechanism and evaluated the features on a local
experimental network. The evaluation results confirmed that the prototype system worked correctly as designed and
the performance was acceptable with reasonable overhead.

Keywords: Load balancing, route selection, DNS, SDN, openflow

1. Introduction
The Internet has become one of the indispensable social infras-

tructures and with the dramatic increase of the Internet users the
stable and effective Internet services are required. In order to re-
duce the latency of responses to the requests from the end clients
and improve the quality of Web service, the distributed and par-
allel systems are configured at the Web server side. As a well-
known solution, load balancing method by using multiple appli-
cation servers is very popular especially on web-based Internet
services. In this case, the domain name of a web server may have
multiple IP addresses since there are multiple web servers pro-
viding the same service. In the literature, there have been many
approaches proposed in order to make end clients select the op-
timal web servers such as DNS Round Robin [1], Dispatcher of
Web servers and proxies which manages the incoming access re-
quests and are responsible for selecting the optimal connection
based on the state information of each of web servers. In prin-
ciple, an end client performs DNS [2][3] based name resolution
in prior to accessing a web server and receives multiple IP ad-
dresses as the result when there are mulpible web servers for a
domain name. In DNS Round Robin technology, in general, an

1 Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan
2 Tokyo Institute of Technology, Meguro, Tokyo, Japan
a) zxjin@net.cs.tuat.ac.jp
b) yongj@gsic.titech.ac.jp
c) nyamai@cc.tuat.ac.jp
d) rnakagawa@net.cs.tuat.ac.jp

end client always uses the first one when there are multiple IP ad-
dresses for the domain name of a web server. Accordingly, even
if the web server of the first IP addresses is in high workload sta-
tus or it is more far away from the end client which may cause
a high latency, the end client will still access the first web server
based on the DNS Round Robin load balancing technology. It be-
comes a critical issue in the Internet especially with the situation
of dramatic increase of Internet users.

On the other hand, in the solution of using dispatcher of web
servers and proxies, high administrative cost for collecting and
configuring the state information runtime is required. Since the
web proxy which receives the access requests from the end clients
needs to decide to which web server the requests should be for-
warded. Therefore, some new features with more flexible mech-
anism are required on the network layer in order to obtain net-
work conditions. However, it is difficult to add new features on
the existed network protocol and deploy the update to all net-
work facilities and computers. Software Defined Network (SDN)
technology [4] which supports the flexibility and scalability is
more low-cost and more effective for the innovation. The main
concept of the SDN is decoupling of the control plane and data
plane which provides the programmable environment for the net-
work administrators. By practically using the SDN technology, in
this thesis, I propose an optimal selection mechanism from mul-
tiple IP addresses from the DNS response which provides the end
client the most optimal choice for accessing a web server.

1ⓒ 2022 Information Processing Society of Japan

Vol.2022-IOT-56 No.17
2022/3/7



IPSJ SIG Technical Report

Fig. 1 SDN infrastructure

2. Load balancing and SDN technologies
2.1 Load Balancing

DNS-based load balancing technology [1] is one of the well-
used solutions for distributing the access requests from the end
clients to multiple servers and separate the workload of web
servers in to different machines. This technology also can pro-
vide fault tolerance functionality so that when one of the web
servers is down others can provide the same service. One of the
well-used DNS-based load balancing technology is named DNS
Round Robin, in which, multiple IP addresses are configured for
a web server and they will be replied to the end clients in an alter-
native order during the DNS name resolution. In general, an end
client uses the first IP address to access the web server even if it
is in high workload or far away from the end client. Therefore,
in DNS Round Robin, the end client cannot select the proper IP
address based on the network condition and web server status.

2.2 Software Defined Networking (SDN)
The concept of SDN technology is defined by the Open Net-

working Foundation (ONF) [5] which is the most accepted SDN
standard worldwide. The main character of SDN technology is
that the decoupling the control plane from data plane. The SDN
framework is illustrated in Figure 1. The data plane is responsi-
ble for forwarding packet according to the flow table. The con-
trol plane makes use of the objects provided by data plane that
not matched with flow table to make the instructions and popu-
lates them to data plane for updating the flow table. The types
of instructions include modification, transferring and discarding.
The control plane communicates with the data plane through stan-
dardized interfaces which are named as southbound interfaces.
The application plane which brings the new features in the SDN
configuration has the global view of network. The control plane
communicates with the application layer through another type of
interface which is called by northbound interface.

Fig. 2 The process of handling packets

Fig. 3 Flow entry format

2.2.1 OpenFlow Protocol
The communication protocol used in SDN technology is Open-

Flow [6] which has been standardized by the ONF. Based on
the OpenFlow protocol, two components consist the SDN archi-
tecture, one is the control plane which is referred as OpenFlow
controller and the other is responsible for processing the pack-
ets which is referred as OpenFlow switch. The OpenFlow switch
receives or forwards packets according to the flow table. The
OpenFlow controller constructs and populates the flow tables us-
ing OpenFlow protocol. The flow table consists of flow entries
each of which has three parts and the brief mechanism of packet
processing in OpenFlow switch is illustrated in Figure 2. When
an OpenFlow switch receives a packet, the header of the packet
is parsed and then checked against the flow table. If the packet is
matched to one of the flow entries, the subsequence of the opera-
tion that the counter of the flow entry will be updated. At the end,
the OpenFlow switch handles the packet based on the specified
actions. If there are no any mached flow engries, the OpenFlow
switch sends the packet to the OpenFlow controller using Packet-
In method. When the OpenFlow controller receives the Packet-
In message, it sends an appropriate insturction to the OpenFlow
switch using Packet-Out method in order to make the OpenFlow
switch complete the packet processing such as forwarding the
packet via the proper port.
2.2.2 OpenFlow controller and switch

There have been more than 30 different OpenFlow controllers
developed by different groups in order to precisely control packet
fordarding and contruct flexible instructions on a flow entry [7].
To ensure that the programmable control plane is more compat-
ible and applicable to different administrators, it is written in a
variety of programming languages. It is not only the Southbound
API that needd to be focused on, but also the aspect of North-
bound API needs to be considered.

The Open vSwitch (OVS), one of OpenFlow switch, has been
developed in recent years. There are two main components of
processing packets in Open vSwitch. One is ovs-vswitchd that is
same as from one operating system and operating environment to
another. The other is datapath kernel module which is used for
the performance of operating system [8].

Figure 4 illustrates two major components of Open vSwitch

2ⓒ 2022 Information Processing Society of Japan

Vol.2022-IOT-56 No.17
2022/3/7



IPSJ SIG Technical Report

Fig. 4 Open vSwitch infrastructure

Fig. 5 Group table format

to handle packets. At first, when the kernel datapath module re-
ceives a packet from the NIC, it processes the packet under ovs-
vswitchd instructions. There are two kinds of conditions, one
is that set up instructions in advance by the ovs-vswitchd. An-
other one is that there are no prescribed instructions about how
to handle the received packets, the kernel datapath module sends
it to ovs-vswitchd and then the new instruction established and
populated from ovs-vswitchd. The OVS and OpenFlow con-
troller communicates through OpenFlow protocol which allows
the OpenFlow controller to add, remove, update, monitor, and
obtain statistics of flow tables and their flow entries, as well as to
divert selected packets to the OpenFlow controller and to inject
packets from the OpenFlow controller into the OpenFlow switch
[8]. For the datapath kernel, there are two types of caching flows
which called as Microflow caching and Megaflow caching. In
the design of the first one, the cache entries are extremely fine-
grained and match at most packets of a single transport connec-
tion. And the second one, it supports caching forwarding deci-
sions for large aggregates of traffic.
2.2.3 Group Table

In this paper, we practically use a special fow table on the
Openflow switch named group table. The format of a group ta-
ble is showed in Figure 5. The group identifier is a 32-bit un-
signed integer uniquely identifying the group. The group type
determines which type of group table will be used. For now,
there are four types defined by ONF. The types of ALL and IN-
DIRECT are marked as“ Required”and the types of SELECT
and FAST FAILOVER are marked“ Optional”which switch is
not required to support [5]. In the proposed mechanism, the type
of ALL is utilized for cloning and sending queries to all associ-
ated Web servers. When the Open vSwitch handles the packet
following the rules of ALL type group table, the packet is effec-
tively cloned for each bucket in the group, if a bucket contains
the actions which is instructed directly to forward the packet to
the ingress port, then this packet clone is dropped. The counters
are updated when packets are processed by a group. The actions
buckets contain a list of buckets, and each bucket contains an
array of actions that are to be executed based on the associated
parameters.

Fig. 6 Topology of the proposed mechanism

3. Proposed Mechanism
3.1 Architecture design

There are three main components in the proposed mechanism.
The first component is DNS proxy which is responsible for

forwarding DNS queries and DNS responses. When the DNS
proxy receives the DNS responses, a list of IP addresses, from the
DNS full-service resolver which may cache the associated map-
ping addresses, it performs two processes. The first process is
sending information which consists of Group ID, end client IP
address and the list of IP addresses from resource records to the
Ryu controller by northbound channel. The second process is se-
lecting one IP address which is the top of the list to ensure end
client which of IP address to access and sending it to end client
as the DNS response. The second component is RESTful API. At
the RESTful API, Ryu controller defines the URL to receive the
information from the DNS proxy in the Ryu controller.The Ryu
controller builds the flow entries and populates them to OVS.

The second component is RESTful API. In the RESTful API,
the Ryu controller defines the URL to receive the information
from the DNS proxy in the Ryu controller. The Ryu controller
builds the flow entries and populates them to OVS.Two different
kinds of flow entries will be populated to OVS. In the first type,
the match filed consists of TCP SYN flag, source IP address (end
client IP address) and destination IP address (top of the IP list)
and the actions field points to the the associated group table. The
group table consists of two parts. The first part is the type field
in which the ALL type is assigned. As described in section 2.2.3,
the ALL type provides the clone function. The second part is
bucket field which consists of a set of bucket actions. Depending
on the IP list, one of the bucket actions consist of rewriting desti-
nation IP address and transferring the packets to the correspond-
ing web server. The second kind of flow entries which instruct
OVS how to handle when receive packets from web servers. The
match field consists of TCP SYN and ACK flags, source IP ad-
dress (Web server) and destination IP address (end client). The
action field instructs OVS to transfer the received packets to Ryu
controller by Packet-In method. After building flow entries, Ryu
controller sends them to the OVS. Then OVS updates the flow
table based on these instructions.

The third component is a function of Ryu controller that sends
RST packets to the Web servers which spend more time respond-
ing to the end client. The Ryu controller whether or not to send
RST packet to web server based on the following two steps. The

3ⓒ 2022 Information Processing Society of Japan

Vol.2022-IOT-56 No.17
2022/3/7



IPSJ SIG Technical Report

Fig. 7 Detail of mechanism

first step is that Ryu controller requests OVS to check whether
the flow entry exists or not at the flow table according to source
IP address, destination IP address, TCP source and destination
port numbers. If the answer is empty which means there is no as-
sociated flow entry exists, then Ryu controller build flow entries
for next packet forwarding which transferring between end client
and Web server to OVS by Packet-Out method. If the answer
meaning there is associated flow entry exists, then Ryu controller
builds RST packet according to the received packet from OVS
which transferred by Packet-In method.

Figure 6 shows the network topology of the proposed mech-
anism. In order to reduce the latency of data transfer in North-
bound and Southbound, we configure DNS proxy, Ryu controller
and OVS in the same local network. The end client requests and
receives DNS query and response directly from the DNS proxy as
shown with the red line. The blue line is the process of accessing
to the web server after end client received the IP address of the
web server from DNS proxy. As shown in Figure 6 , the distance
between web server A and end client is shorter than web server B
which means the response times from the web server B is longer
than web server A. In the following procedure description, we
always assume the web server B causes long latency.

3.2 Procedure of the proposed mechanism
Figure 7 illustrates the procedure of the proposed mechanism.

The end client directly sends DNS query to the DNS proxy (step
1), and the DNS proxy forwards it to the DNS full-service re-
solver without any processes (step 2), and as described in section
3.1, the DNS proxy does not provide cache function. The DNS
full-service resolver answers the DNS query to the DNS proxy
(step 3). When the DNS proxy receives the DNS response, it
performs two procedures. The first one is that the DNS proxy
sends the information of the received DNS response to the Ryu
controller using RESTful API (step 4-1). Then the Ryu controller
creates the flow entries based on the informaion received from the
DNS proxy and add them to the OVS (step 4-2). The other pro-
cedure is that the DNS proxy selects the IP address at the top of
the IP addresses list and sends it to the end client (step 5). Then
the end client accesses to the web server based on the received IP
address (step 6). And then the OVS processes packets from the
end client and web servers based on the flow table and instruc-
tions from Ryu controller. The detailed of the mechanism about
how to judge the fastest responses from multiple web servers is
explained in the following.

First of all, when the OVS receives a SYN packet from the end

Fig. 8 Flow entry state

client which is the first step of establishing the TCP connection
between the end client and the web server, the OVS clones the
packet and modifies the destination IP address according to the
actions defined in the group table. Then the OVS transfers the
cloned and modified SYN packets to the destination web servers
(step 7-a and step 7-b).

Then the OVS receives the corresponding SYNACK packet
from both of the two web servers but the one from the the web
server A is faster than that of the web server B as expected (step
8-a) which are replied to the end client from the two web servers.
Then the OVS encapsulates the headers of the packets and sends
to the Ryu Controller by Packet-In method (step 9). Based on
the information of the packet headers, the Ryu controller con-
firms whether the related flow entry has already added on the
flow table by sending requests to the OVS with OFPFlowStat-
sRequest method. This method requests the source IP address,
destination IP address, TCP source port, TCP destination port and
cookie. Due to this SYNACK packet is being received from web
server side for the first time, the reply must be empty, as showed
in the Figure 8 (a), then Ryu controller makes the flow entries
and populates them to the OVS for transferring the next packets
from end clients and Web server and instructs OVS to transfer
this SYNACK packet to the end client.

For the other SYNACK packet which is received from the
web server B, as showed in the Figure 8 (b), the Ryu controller
conducts a different process. In order to prevent the end client
from receiving duplicate ACK packets due to the implementa-
tion of sending SYN packet to all associated web servers, the
Ryu controller sends a RST packet to the web server based on
the SYNACK packet (step 10-b). Finally, the OVS transfers the
packets to end client (step 10) and only transfers the packets from
the web server A which responds faster to end client.

4. Implementation and evaluations
4.1 Experimental local netowrk construction

We implemented a prototype system based on the pro-
posed mechanism. For the DNS proxy, we used the
Net::DNS::Dynamic::Proxyserver module (version 1.2) [9]
which is a dynamic DNS proxy server and its main task is to
receive the DNS queries from the end clients and forwards them
to the DNS full-service resolver. Then the DNS proxy also
receives DNS responses from the DNS full-service resolver and
replies them back to the end clients. For the DNS full-service

4ⓒ 2022 Information Processing Society of Japan

Vol.2022-IOT-56 No.17
2022/3/7



IPSJ SIG Technical Report

resolver, we used Berkeley Internet Name Domain (BIND) [10]
for the DNS server software.

For the web server construction, we used the Apache HTTP
Server [11] which is an open-source cross-platform web server
software. We set up two web servers with a simple web page and
the end clients can access them via the OpenFlow switch.

For the OpenFlow switch, we used OVS 2.13.3 and for the Ryu
controller we used python 3.7. We used Raspberry Pi 3 models
[12] in the experimental network for all the components with 4GB
flash memory and 1.2GHz CPU.

4.2 Experiments with latency generation
In order to generate extra latency between the end client and

a specific web server, we used tc tool [13] to set 50ms latency
between the end client and web server B. The tc tool is used to
control the traffic in the Linux kernel. The main parameters which
we configured for the web server B are‘qdisc’and‘netem’. The
‘qdisc’is short for‘queueing discipline’and it is the elementary

to understand the traffic control. When the kernel needs to send a
packet to an interface, it is enqueued to the qdisc configured for
that interface. Immediately afterwards, the kernel tries to get as
many packets as possible from the qdisc for transferring them to
the network adaptor driver. The‘ netem’, which means Network
Emulator, is an enhancement of the Linux traffic control facilities
that allow to add delay, packet loss, duplication and more other
characteristics to the packets outgoing from a selected network
interface. In the experiment, we added 50 ms delay to the packets
outgoing from the web server B.

With the above exter latency added to web server B, we con-
ducted two experiments on the local experimental network in or-
der to evaluate the prototype system of the proposed mechanism.
In the first experiment, we conducted 1000 times of HTTP ac-
cesses from the end client to the web servers under the DNS
Round Robin and the proposed mechanism conditions respec-
tively. In order to make the end client access the web servers
as much as possible with performing DNS name resolution each
time, we set the TTL (Time To Live) of the DNS Resource
Records in the DNS proxy and used wget tool [14] for conduct-
ing web accesses on the end client. The wget tool is a simple
program that retrieves the content from the web servers and it
also provides the function of downloading the web contents via
HTTP protocol from the web servers. The wget tool repeats the
processing of content download from the web server, if there is a
network problem which makes the download incompletely, until
the whole content has been retrieved. In this experiment, we is-
sued 1000 requests in sequence and counted the total execution
time in different environments.

In the second experiment, we used the httperf tool [15] to eval-
uate the stability and measure the throughout for the prototype
system of the proposed mechanism per second. The httperf tool
provides a variety of workload generators based on the HTTP
protocol. Once the httperf tool is applied, it keeps track of several
performance metrics that are summarized in the form of statistics
that are printed at the end of a test run. We issued 1000 requests
for establishing the connections between the end client and the
web servers at a rate from 15 requests per second to 24 requests

Fig. 9 Result of wget execution

Fig. 10 Result of httperf execution

per second. In addition, the parameter of timeout is set to 5 sec-
ond to wait for the responses.

The evaluation results of the above two experiments are de-
scribed in the following section.

4.3 Evaluation results
In the evaluations, we focus on the communication overhead

between the Ryu controller and the OVS in order to check the
performance of the prototype system of the proposed mechanism.

First, Figure 9 shows the total execution time of wget tool run
under different conditions. The leftmost bar chart shows the to-
tal execution time of the wget tool when DNS Round Robin was
adoppted for load balancing. The second bar chart from the left
illustrates the execution time of the wget tool when the prototype
system of the proposed mechanism is used. From the evalua-
tion results, we can confirm that comparing to DNS Round Robin
load balancing, the protytpe system of the proposed mechanism
needed low execution time in the same network condition.

In addition, in order to confirm the performance of the proto-
type system of the proposed mechanism, we conducted the same
execution that accessing to the two web servers with and with-
out adding extra latency respectively under the same condition.
The results are shown on the right half of Figure 9. Although the
prototype system of the proposed mechanism spends more execu-
tion time than the measurement, it spends less time than the DNS
Round Robin load balancing observably.

Moreover, we also measured the throughput of the prototype

5ⓒ 2022 Information Processing Society of Japan

Vol.2022-IOT-56 No.17
2022/3/7



IPSJ SIG Technical Report

system of the proposed mechanism using httperf tool and Fig-
ure 10 shows the evaluation results. As shown in Figure 10, when
we sent web access requests with the rate from 15 per second to
18 per second from the end client, there was no any erros or time-
out occured. However, as the rate of the web access requests
increases, the bottleneck of the OVS which is responsible for
replicating SYN packets, rewriting headers of the IP addresses for
providing optimal choice to end client and checking related flow
entries are available at the flow table is revealed. The hardware
specs of the components used in the local experimental network
may be the reason of the low throughput and it can be improved
by using high spec hardware compnents.

Based on the above evaluation results, we can confirm that the
protype of the proposed mechanism worked correctly as designed
and the overhead and throughput is acceptable with reasonable
overhead.

5. Conclusion
In this paper, we proposed an optimal selection mechanism

from multiple IP addresses of a web server for end clients us-
ing OpenFow in order to reduce the latency of web access and
improve the performance of load balancing for web servers. In
the proposed mechanism, when an end client attempts to access
a web server with multiple IP addresses the OpenFlow controller
makes the OpenFlow switch access the multiple IP addresses si-
multaneously during the DNS name resolution stage and let the
end client access the web server which is near to the end client or
under a low workload. We implemented a prototype system of the
proposed mechanism using Ryu application and Open vSwitch
which are one of the OpenFlow applications and conducted the
evaluations. Based on the evaluation results, we confirmed that
the prototype system worked correctly as designed and the per-
formance was acceptable with reasonable overhead. In the future
work, we consider to add some extra functionalities in order to
support DNSSEC [16] and design a redundant network topology
to solve the single point of failure issue. Moreover, performance
improvement and evaluation in a real network environment are
also included in the future plan.

References
[1] T. Brisco, “DNS support for load balancing,” RFC1794, IETF, April

1995.
[2] P. Mockapetris, “Domain names – concepts and facilities.” RFC1034,

IETF, November 1987.
[3] P. Mockapetris, “Domain names – implementation and specification.”

RFC1035, IETF, November 1987.
[4] Open Networking Foundation, “Software-Defined Networking (SDN)

Definitaion” (online), available from https://opennetworking.org/sdn-
definition/.

[5] Open Networking Foundation (online), available from
⟨https://opennetworking.org⟩

[6] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner. “OpenFlow: enabling innova-
tion in campus networks.” SIGCOMM Comput. Commun. Rev. 38, 2
(April 2008), 69–74. DOI:https://doi.org/10.1145/1355734.1355746

[7] A. Shalimov, D. Zuikov, D. Zimarina, V. Pashkov, and R. Smelian-
sky, “Advanced study of SDN/OpenFlow controllers,” In Pro-
ceedings of the 9th Central & Eastern European Software Engi-
neering Conference in Russia (CEE-SECR ’13). Association for
Computing Machinery, New York, NY, USA, Article 1, 1–6.
DOI:https://doi.org/10.1145/2556610.2556621

[8] B. Pfaff, J. Pettit, T. Koponen, E. J. Jackson, A. Zhou, J. Rajahalme,

J. Gross, A. Wang, J. Stringer, P. Shelar, K. Amidon, and M. Casado,
“The design and implementation of open vSwitch,” In Proceedings of
the 12th USENIX Conference on Networked Systems Design and Im-
plementation (NSDI’15). USENIX Association, USA, 117–130.

[9] Jakobs, M. S.: Net::DNS::Dynamic::Proxyserver - A dy-
namic DNS proxy-server, CPAN (online), available from
⟨https://metacpan.org/pod/Net::DNS::Dynamic::Proxyserver⟩

[10] Internet Systems Consortium, Inc. “BIND 9 - Versatile, clas-
sic, complete name server software” (online), available from
https://www.isc.org/bind/.

[11] The Apache Software Foundation, Apache HTTP server
project(online),available from ⟨https://httpd.apache.org⟩

[12] Raspberry Pi, “What is a Raspberry Pi?” (online), available from
https://www.raspberrypi.com/products/raspberry-pi-3-model-b/.

[13] Repogitory, U. M.: tc - show/manipulate traf-
fic control settings(online), available from
⟨https://manpages.ubuntu.com/manpages/xenial/man8/tc.8.html⟩

[14] Free Software Foundation, I.: Wget - The non-interactive network
downloader(online), available from ⟨https://linux.die.net/man/1/wget⟩

[15] Mosberger, D. and Jin, T.: httperf― A tool for measuring web server
performance, ACM SIGMETRICS Performance Evaluation Review,
Vol. 26, No. 3, pp. 31–37.

[16] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose, “DNS se-
curity introduction and requirements,” IETF, RFC4033, March 2005.

6ⓒ 2022 Information Processing Society of Japan

Vol.2022-IOT-56 No.17
2022/3/7


