JI7 b7 IT¥ 121- 8
(1998. 11. 5)

V7 by =T HBEEICET B 2y K i v VERRYIO DO F — 2 BE

<~EF. x2Ax—Y— BH. 7y— SEHEE

t 7 338-8570 BEPLIHFIT FRAL 255
BEREHEH S 2 7 LT8R
Tel. 048-858-3489, Fax. 048-858-3716
E-mail. elkhouly@cit.ics.saitama~-u.ac.jp
http://www.cit.ics.saitama~-u.ac.jp/ " elkhouly/

HoEL: Y7V 2THEAAOT S e—FE S v ABROEERA Lo LTHRRIATH
bo BB BNTH, avyR—R Vv v EV), EY 7 V=T avf—RY FOTHLARELER
FTHCLREDVVEV P I bbavyFE—R v FORBEYT 27 - FHERERT S, tF2vF—Fv}
BZOBBEICL Y, 27 RCHHT B, a—FRBEBRI A2V #—2 Y 2 RET 3 D CHTFEEEA
T 50 TOFETR, ALYy FLAEIVF—RY PEZDR—N—=7 FZCHES L S v REV LB
BECEAZBHMCEIWCED I FRCEWTRDFE LY R—F v 2 2 F 2 v 7T 3, T n7F<0E
RKEBRREINa Vv E—RY FOHBO D EERF = v 7 2H V3, COFEOFLHRTEFRC<yF L
ELTH Pl v K—R v r2RATELC2TH B,

F—Y—F F—2#E V7 +v=7THEHFNH, R

Data Dictionary Support for Reusing Components in Automatic Software
Design

Mahmoud EL-KHOULY Behrouz H. FAR Zenya KOONO

{Department of Information and Computer Science,
Faculty of Engineering, Saitama University
255 Shimo-ckubo, Urawa 338-8570, Saitama, Japan
Tel. +81-48-858-3489, Fax. +81-48-858-3716
E-mail. elkhouly@cit.ics.sajtama-u.ac.jp
http://www.cit.ics.saitama-u.ac.jp/"elkhouly/

Abstract: Software reuse approach is proposed as a technique to increase productivity of program develop-
ment. We propose the data dictionary support to help in retrieving the software components that a programmer
wants to use from the components repository, definition and synonyms of each component had been taken into
consideration. We classify the components to classes according to its functionality. We apply a new technique to
find the required component. This technique can generalize the semi-matched component to its super class, and
then check the most suitable component at that class according to its instant variables and the similar names,
and it can use definition check to compare between the retrieved component with the programmer requirement.
The advantage of this technique is that the exact match is not necessary to find a similar software component.

Key words Date Dictionary,Sofiware Reuse,Information Retrieval , Design

1 Introduction

There are many definitions of what software reuse
means, but most involve some variation of the use
of engineering knowledge or ariifacts from exisi-
ing systems to build new ones [1]. This definition
encompasses many diverse areas, from applica-
tion generators, to domain analysis, to design
patterns, to classification and search, to man-
agement [2]. Our interest is in the use of ex-
isting software components, in particular func-
tions. Now, research dealing with searching soft-
ware libraries has principally focused on improv-
ing indexing [3,4,5]. Others have much atien-
tion towards antomated methods for gathering
information in response to a query from a user
[6,7,8,9]. In our research, first we classify the
software components into classes according to
its functionality, then we store these components
with what we call daia dictionery in a repository.
Second, we establish a new model contains two
levels for retrieving components from a reposi-
tory. In the first level, we retrieve it according to
the component specification (name, similar func-
tiom, ...} and we use a frame based representation
to inherit the supper-class characteristics. In the
second one, we use a definition check of the re-
irieved component with the definition required.
Third, we use Jackson System Process (JSP) to
represent the input and the output data siruc-
tures which will be the input to our system. By
using JSP, different programmers will produce
similar programs, which makes it easier for one
programmer to understand and maintain anoth-
ers’s. Fourth, we built a set of converter rules
bases which transform the JSP’ program data
structure to different computer source code’s lan-
guages (in this paper we use converter rules for
pseudo code). We give an example of how %o ap-
ply the above four steps in automatic software
design area, however, the design itself in not our
target, but the outcome of the design is. That is
why we use JSP in our design phase because its
outcome is straight forward to generate pseudo
code program automatically.

Figure 1, shows the overall system mechanism
applying in an agent environemt. The user spec-
ifies his input data, output required and data
specification for the terms he uses. The program-
mer generates only two data structures (one for
input and the other for ocutput). By supplying

programmer’s output to the agent, the agent pro-
duces program data structure after retrieving the
similar software component from the repository.
Then, the agent generates the source code refer-
ring to the converter rules base.
If the user ask from beginning for definition check,
then the programmer supplies also the data spec-
ification table to be considered during retrieving
process. We applied the above mechanism also
in a multi-agent environment [10].

In the next section, we introduce the back-

Deta Specdlicetion Teble

™

Trput Dt Srtve

¥
[

Tt

Tizr gt ¢

Peeudo (o i

Figure 1: Overall system mechanism

ground which includes data dictionary and Jack-
son system process. In Section (3) we present
the retrieval system mechanism from construct-
ing the repository until implementation phase,
and we give an example in automatic software de-
sign at Section (4). Finally, Section (5) presents
the conclusion.

2 Background

2.1 Data Dictionary

The failure of component retrieving is mainly
caused by the disaccord of component designers
and other agents who want to reuse it. Each
component has the corresponding specification
(e.g., name, class, definition, ...). Usually, the
agents retrieve the appropriate components ac-
cording to the name or functionality. However,
if the keyword of the components at repository
and that of the agent disaccord, the retrieval
can be failure even if the eligible components
exist in the component repository. Moreover,
most information retrieval systems use Boolean
operations for searching large document, collec-
tions. While Boolean operations for information
retrieval systems [11] have been criticized, im-
proving their retrieval effectiveness has been dif-
ficult [12]. Intelligent matching strategies for in-
formation retrieval often use concept analysis re-
quiring semantic calculations at different levels
[13]. Ambrosio [14] used two auxiliary dictionar-
ies (Domain dictionary defining the relationships
between different application and Term dictio-
nary defining the semantic and syntactic rela-
tionships between concepts) to fulfill the previ-
ous shortage. However, using auxiliary dictionar-
ies requires a new query process at that dictio-
naries. In our repository we included the data
dictionary in the components repository, such
that no new query process is required to search
about the semantic of components. An item in
our repository is a "class”, in the object-oriented
sense. A class consists of a set of "methods”
which define its functionality. Each method has
a set of ”instance variables”, "formula”, "similar
names”, "similar function” and ”definition”, as
shown in Figure 2. By this structure, we found
that the retrieval process becomes faster than
using auxiliary dictionary, the contents of the
repository become complete, understandable, clear
and readable.

2.2 Jackson System Process

Jackson Structured Programming (JSP) [15] is
a method of program design which has arisen
within the field of commercial Data Processing
(DP) as part of a whole new approach to sys-
tems development [16]. JSP is a prescriptive de-

‘

Figure 2: Class hierarchy

sign method which can be taught and can be
learned. It enables a trainee programmer to learn
how to design programs without resort to frial
and error or the ’sit by Fred’ approach, in which
he/she is asked to sit next to an experienced pro-
grammer until by some magical process he/she
assimilates the latter’s knowledge. Using JSP,
different programmers will produce similar pro-
grams, which makes it easier for one programmer
to understand and maintain another’s. That is
the reason why we selected JSP method rather
than object oriented approaches. Moreover, the
theory of JSP cannot tell us how to code a pro-
gram, but in practice the implications of JSP for
coding are immense, such that, we put rules to
transform the JSP’ program data structure to
any programming language’s source code.

JSP has four types of component. They are:
elementary components, which are not further
dissected and have no parts, and three compos-
ite types: (a) sequence, which has two or more
parts occurring once each, in order, (b) iteration,
which has one part, occurring zero or more times,
and (c) selection, which has two or more parts
of which one, and only one, occurs once. The
three composite types form an effective structur-
ing system. Each is easy to understand, in the
sense that the relationship between its parts cor-
responds to an intuitively acceptable idea which
is simple and easy to remember. Also, it has been
shown that any program which can be expressed
in a flowchart can be expressed as a structure
of sequences, iterations and selections, so there
is no restriction on the programs we may write

[18].

3 Retrieval System

3.1 Data item

Suppose that we have a first order definition of
data item L with signature
L=(C,N,LR,S,JM), (1)

where C is a super class; N is a name of the
function; I is a set of instance variables; R is a
formula of the function; S is a set of synonym
functions’ names; J is a set of similar functions
that may have different names and M is a defini-
tion of the function. We are interested in some
formal criteria for obtaining a software compo-
nent, e.g., a function F, with signature

F=(N,I,R,M) (2)

i.e., afunction F should retrieve with its name,
instant variables, formula and definition.
We use equation (1) in building our repository,
while we use equation (2) as what we expect from
the retrieving process.

2] @

Figure 3: a- Retrieve without semantic check, b-
Retrieve with semantic check

3.2 Find and Similar

Def.1 A function F is ezact match with L iff
((L(N) = F(N)) v (F(N) € L(5)))A

(F(M) C L(M)) vV (L(M) € F(M))) (3)

It means that a function F is ezact match
with the data item in the repository if and only
if the following two conditions are true: (a) they
have the same name; or the name of the required
function exists in the list of similar names of that
data item. (b) the definition of the required func-
tion is subset or equal the definition of that data
item; or vice versa.

Def.2 A function F is maich with L iff

(L(N) = F(N)) Vv ((F(N) € (L(5)) (4)
It means that the function F is match with the
data item in the repository if and ounly if they
have the same name; or the name of the required
function exists in the list of similar names of that
data item.
Def.3 A function F is similar to L iff

(L(C) = F(C)) A ((F(N) € (L(J)) (5)
i.e., the function F is similar with the data item
in the repository if and only if their super class
has the same name and the name of F exists in
the list of similar functions of that data item.
‘We use the above definitions tc construct two im-
portant commands in our retrieval system: Find
which uses definitions 1 and 2 to retrieve ezaci
match or match components, and Similar which
applies definition 3 to find sémilar components.

3.2 Query process

The interaction between the agent and the repos-
itory of reusable software components must fol-
low a well defined process. This process will con-
trol both the visual layer and the access to the
repository.
Def.4 Query process system can be formulated
as a guadruple

§ = (0, 8,7,) (6)
where
a = {a1,as,...,an} is a set of index terms (e.g.,
keywords);
B = {B1,B2,--,On} is a set of clauses in the
repository, 8; has the form of (1), and each g8; C
a;
¥ = {71,72,--»7L} is a set of queries each yp C
@
and A: g x B — RT is a ranking function that
evaluates the relevance between a query and a

— 60 —

clause. In a general form a clause f; can be de-
noted as a set of index term-weight pairs

B; = (a1, wj1; @52, Ws2; -0 Qjny Win) (7)

where
ajr € a and wyr € [0,1], r = 1, ..., n, reflect the
relative importance of terms a;, € ;.
A query @ € < can also be denoted as a set of
index term-weight pairs

Q = (Qq1,Wq1; g2, We3; .-} O, Wam) (8)

where ag, € a and wg, € [0,1], s = 1, ..., m.
The query process task is to yield a set

A= {la17l¢x2: -~-;Zun} cp

to the query Q with a ranking order of A(Q, L)
and [€ L. We use these term-weight pairs in
definition check-level.
We have implement this model in the retrieval
system as shown in Figure 3.
As shown, data dictionary is an important as-
pect of our retrieval system. The data dictio-
nary include synonyms (including abbreviation),
similarity, superordinate and subordinate names.
The element of the retrieval mechanism respon-
sible for the automatic modification of queries is
called the Query Process. The data dictionary
will be used by the query process to guide the
query modification through comparing with the
contents of repository. The query process per-
mits the agent to choose one of three approaches.
In the first, components are retrieved only if an
exact match is found. This is the traditional
approach to database querying. In the second,
query modification is applied if no exact match
could be found. In this case, the data dictio-
nary is checked to try to find similar names. In
the third approach, query modification is applied
again to find a name of similar function which
performs the same action (as shown in Figure
4).

3.4 Query Modification

As we have seen, the query process permits the
definition of exact and imprecise queries. The
first is treated in the traditional way, by inter-
rogating the repository to find components that
satisfy the conditions specified. At this stage the
query process uses the command Find to search
in the repository. If no satisfactory component is
found, the query process uses the second type by
changing the order variables in the Find com-
mand to search about similar names. If still no

(a) (b) (©

Figure 4: Query process

satisfactory component is found, the answer re-
turned to the agent is null. For the third type,
the query process replaces (Find command) with
(Similar command) which uses the data dictio-
nary to find similar functions’ names. Therefore,
if a query states that it wants all components
that have for example, "cosine” as a key con-
cept, the query will consult the data dictionary
and recover all the synonyms of "cosine” (e.g.,
"cos”) in the radius stated in the query.

In this approach, if the retrieving request does
not contain definition check, then the agent scans
the methods names from top to bottom and se-
lects the first one that seems of sufficient inter-
est. The selected method is expanded to allow
an assessment of its functionality by a closer in-
spection of its variables and formula. If it needs
to adapt, we generalize that method, by going
up to its class, and then turn to other similar
method in that class, which is more suitable.
But, if the retrieving request contains definition
check, then we extract those methods which seem
of sufficient interest, and then apply some kind
of natural language processing method to check
its definition, to find a most suitable method for
accurate retrieval.

3.5 Implementation

We implemented the system using Prolog, since
Prolog is especially well suited for problems that
involve objects- in particular, structured objects-

2% ind(sin).
Class Name :math
Semantic :the sine of an angle

Hethod name :sin

no

?- find(cosine).

Class Name :math Method name :cos
Semant ic :the cosine of the angle

no
2~ simi lar{cos).

Class Name imath Method name :sin

Semantic :the sine of an angle

no
?..

Figure 5: AMZI output

and relations between them. The software com-
ponents were stored as clauses, while the search
technique had added ai the beginning as pred-
icate rules. By this way, we can add/modify
the software cornponents as will as the predicate
rules. Also, the feature of learning the structure
of new components is existing. Figure 5 shows
the implementation of first level using AMZI PRO-
LOG Ver 4.1

4 Automatic Software Design
Example

Consider a student file which contains the name
of students, their numbers, their degrees, etc.
and we simply want to print out each class with
its performance, and the total file performance at
the end (as shown in Figure 6). So, the manager
of the school (the user) will give to the trainee
programmer just the input data file (which con-
tains, student number, student name, class narme
and student’s degrees), and the output list re-
quired (which contains some fields not appear at
the input data file e.g., class performance). And
the user gives also what he means by the vari-
ables names which he uses in both input data file
and output list required in the form of data spec-
ification table. In this table for example avg-c-m
means average of sindents degrees in mathematic
at one class. The programmer will use JSP nota-
tions [15] to design both input data structure and
output data structure. Then, he/she supplies it
to the agent in the form of two dimensional ar-

ray ‘node[row,column] in which node[1,1] means
the first node in the chart and node[2,3] means
the third node at the second level in the chart.
The agent now, has four resources: (1) input

foserd Streztare

F -]

Prist Cat Lt bl

earia
otttk Y w g byt
(R Y Y

L=

TotsPefermemas Lsm A B

NN

Getpat Durgetiod

Tepet it trociens

Figure 6: Input example

data structure, (2) output data structure, (3)
repository which contains the software compo-
nent with the data dictionary, (4) converter rules
base for pseudo code. Therefore, the agent will
use the first three resources to generate the pro-
gram data structure, however, to produce pro-
gram data structure, it needs to recognize the
functions which suitable to transform the given
input to the required output. Therefore, it uses
the retrieval system to get a suitable components
from the repository. After constructing program
data structure, the agent uses the fourth resource
converter rules (Figure 7) to transform JSP pro-
gram data structure to pseudo code (as shown in
Figure 1). If the programmer is accurate, then
he/she can also supply the data specification ta-
ble as the fifth resource to the agent, such that
definition check can take place, as shown in Fig-
ure 3. As the result of this approach, we found
that the programimer generates only two charts
(in the above example, they contain 12 nodes)
which is transformed by the agent to (59 line
in Pseudo code without comment lines) and (74
line in C without comment lines). Considering
that the time required for producing one code
line is equal to the time required for producing
one of chart’s node, then we found that by us-
ing our new approach we save 79.6% ~ 83.7% of
the original time required, and therefore from the
cost. Moreover, existing of different converter
rules bases, help in generating the source code
with the language which user prefers.

Rulel:1f its the first node
then 1) write the name of the node + SEQ
2) infer all other nodes
3) write the name of the node + END

Rule2:If the node has no child & no SELECT NOTATION
then put do before its name.

the node has one or more child and don’t contain
(LOOP or SELECT notations)
then 1) write the name of the node + SEQ
2) put do before the name of each child
3) write the name of the node + END

Rule3:If

Ruie4: ¥ the node has LOOP notation
then 1) write the name of the nede + ITR UNTIL + node CONDITION
2) infer all childern
3) write the name of the node + END

Rule5:1f the node has SELECT notation
then 1) write SEL + the name of the node + YES
2) infer positive branch
3) write ALT + the name of the node + NO
4) infer negative branch
©6) write END

Figure 7: Converter rules for pseudo Code

5 Conclusion

The effectiveness of the reuse based approach to
software development is strongly dependent on
the underlying classification scheme and retrieval
mechanism. In this paper we tried to cover both.
We began from constructing the repository, and
we fulfill its shortage to analyze its contents due
to the absence of the semantic meaning of the
contents, by supporting it with s data dictio-
nary. In the retrieving point, we described a new
model consists of two level of retrieving, retrieve
without definition check and retrieve with def-
inition check. For the first level, we presented
three approaches to find a software component
in the repository which satisfies the rules of (ex-
act match; match; or similar). The advantage of
this level is that the exact keywords match is not
necessary to find a similar component. We also,
presented the application of this new model to
automatic software design area. The technique
has potential to be applied to other programming
areas.

References

[1] W. Frakes and §. Isoda, “Success factors for
systematic reuse,” IFEEE Software, pp 14-22,
Sept. (1994).

[2] T.J. Biggerstaff and A. J. Prelis, eds., “Soft-
ware Reusability,” ACM Press, Vol. 1, New
York (1989).

[3] S.D. Fraser, J.M. Duran and R. Aubin,
“Software Indexing For Reuse,“ Proc. 1989
IEEE International Conference On Sys-
tems, Man and Cybernetics, pp 853-858
(1989).

[4] R. Prieto-Diaz, “Implementing Faceted
Classification For Software Reuse,” CACM,
Vol 34, pp 89-97 (1991).

[6] Y.S. Maarek, D.M. Berry and G.E. Kaiser,
“An Information Retrieval Approach For
Automatically Constructing Software Li-
braries” IEEE Transactions On Software
Engineering,Vol. 17, No. 8 Aug., pp 800-813
(1991).

[6] Arens, Y., Chee, C.Y., Hsu, C., and
Knoblock, C.A., “ Retrieving and inte-
grating data from multiple information
sources,” International Journal on Intelli-
gent and Cooperative Information Systems,
2(2), pp.127-158 (1993).

[7] M.C. Bowman, P.B. Danzig, U. Manber,
and M.F. Schwartz, “Scalable Internet Re-
source Discovery: Research Problems and
Approaches,“ Communication of the ACM,
37(8), pp 98-107 (1994).

[8] Tim Oates, M.V. Negendra Prasad and

V.R. Lesser, “Cooperative Information

Gathering: A Distributed Problem Solving

Approach,“ Technicael Report 94-66, Dept.

Of Computer Science University of Mas-

sachusetts, Amherst, (1994).

Shigeru Fujita, Hideki Hara, Kenji Sug-

awara, Tetsuo Kinoshita and Norio Shi-

ratori, “Agent-Based Support for Reusing

Components in Library,“ Krnowledge-Based .

Software Eng., P.Navrat and H.Ueno (Eds.)

IOS Press, (1998).

[10] Mahmoud El-Khouly, Behrouz Far, Aboul-
Ella Hassanine and Zenya Koono, “Reuse
software components in multi-agent envi-
ronment, “ Proceeding of 33rd Conf. on
Statistics, Comp. Sci. and Operations Re-
searches, Dec. 12-14 (1998).

[11] Wartik, 8., “Boolean operations,” Info. Re-

trieval: Data Structures Algo., Frakes,

W.B. and Baeza-Yates, R.(eds)., Prentice

Hall PP 264-292 (1992).

Frakes, W.B., “Introduction to information

storage and retrieval systems, “ Info. Re-

trieval: Data Structures Algo.,Frakes, W.B.

[9

[12

[13

=

(14]

[15]

(16]

and Baeza-Yates, R.(eds)., Prentice Hall PP
1-27 (1992).

Kaname Funakoshi and Tu Bao Ho “A
Rough Set Approach to Information Re-
trieval,“ Studies in Fuzziness and Soft Com-
puting - Rough Sets in Knowledge Discover,
Lech Polkowski Andrzej Skowron (eds).,
Physica-Verlag Heidelberg (1998).

“Introducing Semantics in Concep-
tual Schema Reuse,* CIKM’94, Proceeding
of the 8rd Int. Conf. On Info. Know. Man-
agement, PP 50-56 (1994).

Jackson M.A., “Principles of Program De-
sign,“ Academic Press, (1975).

Ralph Storer, “Practical Program Devel-
opment using JSP,“ Blackwell Sci. Pub.,
(1987).

