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1. Introduction

The Optimal Transport (OT) problem has been focused and ap-
plied to widely various fields recently, thanks to representability
of distances between probability distributions [1]. Because it is
defined as a convex linear programming, many dedicated solvers
such as an interior-point method and a network-flow method en-
able us to obtain this solutions. However, it remains hard to solve
efficiently because its computational cost increases cubically in
terms of the data size.

To avoid this issue, an entropy-regularized approach has been
widely used because it enables us to bring about the Sinkhorn
algorithm [2], which is faster and enables a parallel implemen-
tation. In addition, although a stabler variant has been also pro-
posed to cope with its numerical unsuitability and non-robustness
against for small values of the regularizer, it still remain slow [3].

In another line of directions, some papers report that the strict
mass-conversation constraint in the OT problem diminishes the
performance of some applications where mass need not be nec-
essarily preserved. For this particular problem, some researchers
have recently utilized a constraint-relaxed approach, which re-
laxes such strict constraints. This approach has gained impor-
tance on various machine learning fields such as color trans-
fer [4] and multi-label learning [S]. However, it still suffers
from a slow convergence property. To address this slow con-
vergence, a faster algorithm has been proposed by use of the
Frank Wolfe (FW) and block-coordinate Frank-Wolfe (BCFW)
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for semi-relaxed problem [6]. These approaches are more effec-
tive thanks to projection-free property of FW algorithm. In addi-
tion, it enables us to obtain a sparser solution.

This paper gives a fast variant of BCFW for semi-relaxed prob-
lem improving the previously proposed algorithm [6]. We fo-
cus on another approach to accelarate the convergence speed,
which is an adaptive sampling strategy that is popular approach
in block-coordinate methods [7], [8], [9], [10]. This paper partic-
ularly utilizes the approach considering the duality gap. Herein,
we denote the BCFW with gap-adaptive sampling as BCFW-GA.

2. Preliminary and related work

R" is denoted as n-dimensional Euclidean space and R} is de-
noted as the set of vectors in which all elements are non-negative.
R™" is denoted as the set of mxn matrices and R7>" is denoted as
the set of m X n matrices in which all elements are non-negative.
We denote vectors as bold lower-case letters a, b, c, ... and ma-
trices as bold-face letters A, B, C,.... The i-th element of @ and
the element at the (i, j) position of A are represented as a; and A, ;
respectively. When a matrix A is denoted as (aj, ..., a,), a; rep-
resents the i-th column vector of A. e; is the canonical standard
unit vector, of which the i-th element is 1, and others are zero.
We denote [m] as the set {1,2,--- ,m. The probability simplex is
denoted as A, = {a e R" : }};a; = 1}. 4 is the delta function at
the vector a. (-,-) and (-, -)F represent the inner product and the
Frobenius norm. Given two matrices A, B, the Frobenius norm is
denoted as (A, B)r := XL (a;, b)) = XL X'y AijBi -

2.1 Optimal transport (OT)

Given two empirical probability distributions v = ;| a0,
u = X, b6, and the cost matrix C, the OT problem between
distributions is defined as:
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where the domain U(a, b) is defined as
U(a,b) = {T e R™" : T1, = a,T"1,, = b}. )

The resultant transport matrix T* brings a powerful distances
between distributions, which is known to Wasserstein distance.
Many problems appearing in machine learning and statistical
learning can be defined in the OT problem. We refer the inter-
ested readers to [1] for more comprehensive survey .

2.2 Relaxed optimal transport
Domain constraint relaxation. One approach is to relax
the constraint domain [11]. Ferradans et al. propose to al-
low each point of X to be transported to multiple points of
Y and versa. This method enables the transport matrix to in-
crease or decrease the mass between two points which are low
distances. The noteworthy point is that the relaxed domain
keeps the linear constraints as the original, thus, existing solvers
of linear programming can be used. We also have other re-
laxed formulations considering only T1, = a or T71,, = b as

min (T,C) or min (T,C). Because these optimal solutions
=a T'1,-b

are summation of minimum costs of each row or column vector,
they can be solved faster than linear programming. In practice,
this method is useful for document classification [12], and its ex-
tended formulation have recently been developed in context of
style transfer [13], [14].

Regularized constraint relaxation. Another approach adds the
regularized term of the domains defined in (2) into the objective
function [15]. Relaxing both marginal constraints in (2) yields
the following relaxed formulation:

. 1 1
min (T,C) + ECI)(Tln,a) + ECD(TTlm, b),

where O(x, y) is a smooth divergence measure. We also have an
alternative formulation, which relaxes one of the two constraints
in (2). This is called a semi-relaxed problem and is defined as the
following:

min (T,C) + ®(T1,, a). 3)
T>0,T"1,=b

A similar formulation is also proposed and, is solved by use of
augmented Lagrangian [16]. Another formulation specifically
focuses on both color transfer and barycenter and is solved by
use of the proximal splitting method and the coordinate descent
method.[11]. Rabin et al. also propose the weighted regulariza-
tion term || k — 1, ||; as well as Relaxed Weighted OT so that the
ratio of the source image approaches that of the target image [4].
Recently, this approach is used in graph dictionary learning [17].

2.3 Frank-Wolfe and block-coordinate algorithms

The Frank-Wolfe (FW) algorithm is one of the constraint con-
vex optimization methods using conditional gradient [18]. Al-
though FW has sublinear convergence rate, its projection-free
property is preferable in the case where the convex constraint is
simple and the feasible point can be found easily. More specifi-
cally, at every iteration, the feasible point s is first found by min-
imizing the linearization of f over the convex feasible set M. To
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find the feasible point s, we need to solve the following subprob-
lem :

s = arg min(s’, V.f(x®)) )
s’eM

where x® represents the k-th current point. The convexity of the
domain M and the linearity of the objective enable us to solve (4)
by linear programming. Finally, the next iterate x**! can be ob-
tained by a convex combination as x**D = (1 —)x® + ys where
v is a stepsize. Therefore, the generated iterates can belong to the
feasible set M if the initial point x(© is in M.

Nevertheless, it is necessary in the FW algorithm to solve the
minimization problem in each iteration. For this issue, For this
issue, if the variable M can be block-separable as a cartesian
product M = MWD x M® x ... x M c R” overn > 1, we
can perform a single cheaper update on only M instead of on
an entire of M. In this line of algorithms, the block-coordinate
Frank-Wolfe (BCFW) algorithm has been proposed, for example,
in the structural SVM problem in [19] and in the MAP inference
[20]. This algorithm can be applied to the constrained convex
problem of the form

min X).
XEMDXMP - x M f
We assume that each factor M® is convex, withm = Y7 m;. We
solve the subproblem on the factor which is selected randomly.
As aresult, the BCFW algorithm can be implemented in cheaper
iteration. When n = 1, this algorithm is reduced to the FW algo-
rithm.

2.4 Block-coordinate Frank-Wolfe (BCFW) for semi-
relaxed OT problem
Our previous paper addresses the semi-relaxed problem with
O(x,y) = ﬁ | x—-y |I§ because it is not only smooth but also
convex [6]. This problem is formally defined as

. ._ 1 2
i {f(T) =(TC+ 57 I TL, —a ||2}, ®)
T'1,-b

where A is a relaxation parameter. The domain is transformed
into M = b1 Ay, X byAy, X -+ X by A, where b;A,, represents the
simplex of the summation b;. After following Frank-Wolfe (FW)
algorithm, we describe a block-coordinate Frank-Wolfe (BCFW)
algorithm for the semi-relaxed optimal transport problem.
Frank-Wolfe (FW) algorithm. The gradient Vf(T) € R™ is
given as (V, f(T)7, ..., V,f(TT)T where V;f(T) € R" represents
the gradient on the i-th variable block b;A,,. The linear subprob-
lem is equivalent to

s; = bie; = b; arg min {ek,V,-f(T(k)», (6)
e €N, ke[m]

where j € [m] and e; is the extreme point on probability simplex
[21]. The computational cost of the subproblem (6) is greatly im-
proved from O(n® log n) to O(n). A line-search algorithm can be
applicable to search an optimal stepsize y. Concretely, we solve
minyepo,17 f((1 —y)x +ys), and calculate y directly since the ob-
jective of the semi-relaxed problem is quadratic.
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Block-coordinate Frank-Wolfe (BCFW) algorithm. The sep-
arability of the domain (5) enables us to develop the block-
coordinate Frank-Wolfe algorithm for the semi-relaxed problem.
The subproblem is identical to (6), but we solve the subproblem
only for the i-th column, which is selected randomly. Then, all
the other columns of T remain the same. Similarly to the FW al-
gorithm, an exact line-search (ELS) algorithm can be also used.
The optimal stepsize y; g is calculated as

KW —si ey + (tP -5, TO1, - a)
k
I —s; 11

Yis = @)
where t; is the i-th column of T, and s; is the solution of the i-th
subproblem in (6). The duality gap can be used for the stopping
criterion, and in a practical implementation, we monitor the value
of the duality gap because the subproblem is solved at every iter-
ation.

3. Block-coordinate Frank-Wolfe with adap-
tive sampling (BCFW-GA)

We construct in this paper the BCFW with gap sampling
for semi-relaxed optimal transport problem according to meth-
ods [8], [22] because they address the duality gap whereas oth-
ers mainly focus on the Lipschitz constants of the gradients
[7], [8], [9], [10]. The main idea behind our proposed approach
is as follows: Because the columns with larger duality gaps ad-
mit higher improvement to the objective function value, such
columns should be sampled more often. In this way, we try
to make more significant progress than the uniform-sampling
method. For this purpose, after update of ¢;, the proposed BCFW-
GA updates the duality gap for each column. Here, note that g(T)
is given as

(T-S,C)+ %(Tln -81,,T1, - a)

i(ti =8, ¢) + %(i(ti -5),Tl,~a) = i gi(D),
o1 =1 =1

where g;(T) is given by g;(T) = (¢t;—s;, ¢;)+ %(ti—si, T1,—-a).Ni €
[n]. Therefore, updating the column-wise duality gap g;(T) every

g(T)

iteration, we select an index i at random in proportion to the prob-
ability generated from (g;(T), g2(T), ..., g.(T)).

In the meantime, the update of g;(T) apparently depends on
T. Hence, every time one single ¢; is updated, it is necessary to
re-calculate g;(T) of all other (n — 1) columns to obtain its cor-
rect probability. Nevertheless, this is intractable, and wastes the
benefit of the block coordinate approach. Therefore, in practice,
at every M X n iterations, we periodically update g;(T) of all the
columns to obtain their exact values. This update is specifically
called the global update in this paper, and the loop of this global
update is called an outer iteration. In contract to the outer iter-
ation, the update of single ¢;(T) within the cycle of the global
update is called an inner iteration. Within the global update pe-
riod, i.e., the inner iteration, we store the calculated g,;(T) for each
i-th column, and do not perform the global update for the other
columns. For the update of g;(T) of the j-th column (j # i),
we utilize the stored latest (but outdated) g;(T). Hence, we ex-
pect that, when M is reasonably small, the convergence can be
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achieved, otherwise not.
4. Theoretical analysis

We analyze the convergence behaviour of BCFW-GA proposed
in the previous section. In addition, we reveal computational
complexity and the worst convergence iteration of the proposed
algorithm. In the presentation, we will present them.

5. Numerical evaluations in color transfer
problem

We compare BCFW-GA with our previously proposed algo-
rithm. In addition, we investigate the effectiveness of semi-
relaxed optimal transport problem for color transfer problem. In
the presentation, we will show these numerical evaluation results.
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