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Abstract: As networks increase in size, heterogeneity and complexity, the need to maintain their availability
and reliability grows in both importance and difficulty. In this paper, we propose a probabilistic distributed
approach to automatic network fault diagnosis and correction in Wide Area Networks (WANs) using Bayesian
networks. Each sub-domain of & WAN is assigned to a single agent that models its own partial knowledge as
a Bayesian sub-net. When the agent is notified of an anomaly in one of its managed objects, it computee an
initial optimal observation plan given reported abnormal observations. The plan specifies the order in whick
the objects are to be observed. Then, information gathering cbjects are sequentially evaluated using the myopic
value of information, and the agent decides upon the object to observe based on its potential to reveal useful
information about which component is faulty, and associated cost. To derive the globally optimal restoration
plan, agents maintain an énterfoce sei of objects through which they ccordinate observation and restoration
actions, and keep track of relevant information in other domains.

Key words Foult menagement, wide area networks, Buyesian metworks, decision-theoretic diagnosis-
restoration plenning
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1  Introduction

Wide Area Networks (WANs) represent the back-
bone of modern enterprises communication in-
frastructure. Faults and performance inefficien-
cies in these systems give raise to considerable
business losses. Hence, tools and approaches for
automating the process of identification, corre-
lation, and correction of faults should evolve to
meet the need of current and future communica-
tion environments [1, 2, 4].

Network fault management is one of the func-
tional areas defined by the OSI management stan-
dards. It concerns itself with the detection, di-
agnosis and correction of anomalous conditions
that occur in the network. It is a complex task,
due primarily to the fact that it has to deal with
the heterogeneity and distributed aspect of net-
works. Furthermore, a single fault results in a big
number of symptoms making it difficult to deter-
mine the primary cause of the observed abnormal
behavior. Approaches commonly adopted to net-
work fault management relies on techniques de-
veloped in Artificial Intelligence. Current exist-
ing systems cover expert systems [5], Petri Nets
[6], dependency graph models [7, 15].

In this article, we describe a computational
paradigm to decentralize and automate the fault
diagnosis and restoration of services in WAN.
Our approach is based on recent advances in prob-
abilistic reasoning. We model our fault diagnosis
problem using Bayesian Networks (BN) [10]. Un-
certainty in communication networks raises from
the fact that a network experiencing a fault may
be under stress, leading to packet loss and poten-
tially loss of information relevant to identifying
the nature of the fault. In our approach, we do
not model the whole domain in a single BN, but
rather assign each sub-domain to a single agent.
The rationale behind this choice is to lift the
computational complexity of reasoning with BN.
Moreover, WAN are naturally arranged as fed-
erated multi-domain organizations, where each
sub-domain is managed by local administrators.
In our model, each agent holds a partial belief
about its managed objects. It has the ability to
autonomously sense and correct its own environ-
ment. Agents keep track of relevant information
in other domains by maintaining an interface set,
and inter-agent communication permits comput-
ing globally the optimal restoration plans.

The rest of this paper is arranged as follows: sec-
tion 2 states the problem, and briefly reviews
BN. Section 3 presents the modules of the pro-
posed distributed diagnosis and restoration frame-
work. We conclude in section 4.

2 Problem definition and Bayesian

network model

2.1 Problem Statement

As networks grow larger, the accurate diagnosis
of faults gets difficult. A single fault in a WAN
results in a big number of symptoms making it
difficult to determine the primary cause of the
observed abnormal behavior. The network de-
vices in such WANs are monitored by data col-
lectors which produce status reports suggesting
which device is faulty. Because the network is
used for its own surveillance, and because faults
are often transitory, these reports are very un-
certain evidences of a fault and its location.

The process of isolating and correcting faults
is a sequential process in nature. Effective net-
work fault management should not stop at the
level of mapping currenily observed alarms to
probabilities over the state of possible faults, but
rather dynamically change these probabilities as
new insight is gained during the fault isolation
process. More importantly, the ultimate goal is
to restore the services of the network, and not
produce estimates of which component is faulty.
The Network management application should as-
sist the user to make sense of the computed prob-
abilities and suggest which action is going to con-
tribute considerably to restore the services in-
curring a minimal expected cost. Finally, it is
desirable that our fault management application
could scale well to large networks. The problem
we attempt to solve is this paper can be formu-
lated as:

Given a model for the network, and a set of
observed alarms, how one does design an algo-
rithm that can create a number of fault candi-
dates and assign to each a probability io be the
cause of the observed anomaly? The algorithm
should suggest which action to take nezt, and in
the light of newly acquired information, change
its belief about which component is the root cause



of the observed abnormal behavior. The algo-
rithm should be able to scale up to large WANs.

The algorithm should handle uncertain and
contradictory information. It is desirable that it
runs in a reasonable time.

2.2 Bayesian Network model

Data communication networks are hierarchically
organized structures. They can be modeled at
different levels of abstraction which are dictated
by the desired application and/or the available
information. Data communication network con-
gist of a number of managed objects that have
a separate and distinct existence (e.g. routers,
bridges, hubs... etc). Objects in such networks
are dependant on each other rather in a compli-
cated way. The knowledge of this dependency is
very important for effective fault management.
QOur approach to model such knowledge uses
Bayesian network [12]. BN provides a concise
representation of the modeled domain. It con-
sists of two parts:

o A qualitative part: a graphical representa-
tion of the relationship between the vari-
ables in the probability distribution that
is being represented. This part is a Di-
rected Acyclic Graph (DAG) where each
node represents a random variable that can
take its values from a pre-defined set of pos-
sible values. The arcs, formally, model the
dependencies between variables, but it can
be, safely, viewed as depicting the cause-
effect relationships between variables. Ab-
sence of an arc between two nodes means
that the corresponding variables do not di-
rectly influence each other, and hence, are
independent. The DAG captures the cause-
effect relationships between objects in the
network.

e A quantitative part: a set of Conditional
Probability Tables (CPT) associated with
each parent-child cluster. The CPTs to-
gether provide an economical decomposi-
tion of the joint probability. This CPTs
quantify the causal strength between each
parent and its children.

Figure 1 shows an example of a simplified net-
work problem. Once the Bayesian network is
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Figure 1: Example of a simple Bayesian network

constructed, it can be used as an inference en-
gine to infer the probabilities that a given ob-
ject is the cause of the observed abnormal be-
havior. The appendix summarizes belief update
algorithm in singly connected networks due to
Pearl [10, 12]. This algorithm is known to have a
polynomial runtime. In arbitrary networks, The
algorithm most commonly was designed by Lau-
ritzen Spiegelhalter, and later refined by Jensen
[14]. The algorithm compiles the initial BN into
a second structure called junction iree , through
a number of graphical operations. The nodes
of a junction tree, called cligues, are subsets of
nodes of the initial BN. After entering an obser-
vation in the appropriate clique, a message pass-
ing between neighboring cligues in the junction
tree results in each clique holding the joint dis-
tribution of its variables. To calculate the pos-
terior probability of some node of interest, the
joint probability is marginalized over other vari-
ables sharing the same clique with the node of
interest. Note however, that inference in arbi-
trary Bayesian networks is NP-Hard [13].

3 Distributed probabilistic fault
diagnosis and restoration

Effective network management requires distribut-
ing processing and control activities among dif-
ferent agents. Under a distributed architecture,
the system would benefit a lot in terms of net-
work traffic, overload of the management plat-
form and accuracy of the fault isolation process.
Decentralizing control among agents is also mo-



tivated by the need to speed up inference in BN.
We first discuss how agents can be assigned to
different domains. Then, we look at the prob-
lem of restoration planning from a single agent
view. We end this section by discussing the is-
sue of restoration planning from the multi-agent
perspective.

The distributed structure of our approach is ar-
rived at by assigning each sub-domain to a sin-
gle agent that models its partial knowledge as a
Bayesian sub-net (Figure 2).

Agent

L,

Agent

Figure 2: A model for distributing processing
and control among multiple agents

Typically, observations made by an agent within
its domain might be symptoms of a faulty object
in another sub-domain. It is, then, important
to make sure that the partitioning of the WAN
allows this information to propagate to the con-
cerned agent. To meet this requirement, we no-
tice that the apparent dependency between many
objects in different domains might be induced by
a small number of objects standing high in the
causal chain. If we could construct this set and
allow each two agent to keep a copy of it, we are
sure that no information is lost. Furthermore,
the set needed to keep each two agents from in-
fluencing each other’s belief is exactly the set of
nodes that d-separates ! their domains. It fol-
lows then that by searching the set d-separating
each two agent’s sub-domains, we guarantee that
no information is blocked during inference in BN.
We call this set an interface set (the black circle
in figure 2). A formal proof of this result can be
found in [11].

A set of nodes Z d-separates the sets X and Y, if X
and Y are conditionally independent given Z

Once the local Bayesian sub-nets are constructed,
each agent compiles its own model into a junction

tree, and the junction trees are interconnected

through the interface sets.

This approach has a number of advantages. WAN
are naturally arranged as federated multi-domains
according to some geographical or organizational

c¢riteria. It make sense, then, to process, filter

symptoms first within the domain, and after-

wards process the results between domains. For

example, in the example of figure 1, the Back-

bone Router (router, DNS server, Proxy server,

physical links ...etc ) domain may be managed by

an Internet Service Provider, while local admin-

istrators would typically manage the LAN do-

main. Furthermore, an agent containing a faulty

object may not be aware of it within its own

domain. By cooperatively communicating with

other agents, it can benefit from various views of
the same problem, leading to more efficient fault

restoration schemes.

3.1 Single Agent Restoration Planning

In this section, we present an algorithm for schedul-
ing observation and/or repair actions within the
domain of a single agent. We assume that the
agent manages n objects that we denote by {
01,...,0, }. Each object O; can be exactly in
either of two states: it is working properly, de-
noted by O; = ok, or it is faulty, denoted by
0; = —ok. Let p; denote the probability the ob-
ject O; is the faulty given the notification. The
set of objects an agent can manage is represented
as nodes of a Bayesian sub-net. The nodes are
divided into two types:

o Fault Nodes: these nodes represent the ob-
ject that might be a cause to the observed
abnormal behavior. Each fault node O; can
be observed incurring a cost ¢, and if the
object is found faulty, it is repaired incur-
ring a cost ¢f. The costs may denote an
estimation in terms of monetary units of
the resources, for example number of hu-
man operators, time consumed, and money
needed to observe the object O;.

e Sensor Nodes: These nodes represent ob-
jects of the network that do not confirm
any system failure, but can be consulted
to gain more information about faulty ob-
jects. This type of nodes are observable,



but not eligible for repair. Each sensor
node O; is observed incurring a cost .

The problem facing the agent is to determine
a restoration plan that orders the observation
and/or repair actions, such that the faulty ob-
ject is located with minimal expected cost.

If we observe the objects sequentially in the
order {Oy,...,0n}, that we denote by n(,...,n)
(or simply II when there is no risk of confu-
sion), depending on which object is faulty, we
incur different costs up to locating the faulty
object. Specifically, under the plan II(1,... ,n),
we pay ¢§ + ¢] if Oy is the only faulty object;
¢ + ¢ + ¢ if Oz is the only faulty object in
the set {O3,...,0,}. Generally, we incur the
cost ¢+ ¢§ + ...+ ¢ + ¢ if and only if O; is
the only faulty object in the set {O;,...,0n}.
This event occurs with the probability P(C; =
-0k,Ciy1 = ok,...,Cp = ok). Hence, the ex-
pected cost of restoration under plan II(1, . .. y R,
denoted EC(II), is obtained by weighting the
costs that we would possibly incur under plan
T(1,...,n) with the probability of that event to
happen. Furthermore, if we assume that there is
only a single fault, the expression of the expected
cost simplifies to:

EC(I) = i(i Pk) ¢+ zn:pw? (1

=1 k=t i=1

Note that 3.7, p;c} does not depend on the or-
dering. Consequently, we need to minimize only
the first part of equation 1. Furthermore, note
that for any given plan II(1,...,5,%+ 1,...,n),
swapping the position of any two consecutive ob-
jects, say O; and O;j1, and keeping the posi-
tion of all other objects intact, we get another
restoration plan II(1,...,% + 1,%,...,n) that is
dominated by II(1,...,%,% + 1,...,n) if its ex-
pected cost EC(I(1,...,%,i + 1,...,n)) is big-
ger than the expected cost of the initial plan
EC(U(1,...,i+ 1,%,...,n)). That is to say :

EC(I(,...,5i+1,...,0)) = (2)
EC(I(L,...,i+1,4,...,m)) < 0

This expression can be easily simplified to the
equation derived by Kalagnanam & Henrion [8]:

Pi Di+1
_ > 3
¢ T ®)

Tt follows that, by sorting the objects according
to probability-to-observation-cost ratio, we ob-
tain an optimal observation plan. For instance,
if the cost of observation are the same, we first
observe the object with high probability of fail-
ure.

Note that some objects fault nodes may not be
observable. Accounting for this case is straight-
forward: each unobservable fault node is observed
with its repair cost and always found faulty.

3.2 Integrating isolation and restora-
tion planning

Up to this point we restricted the action avail-
able to the agent to be only observation of ob-
jects before eventual repair. In many cases, the
agent has the possibility to take sensing action
that may reduce its uncertainty about the state
of the world. For example, an agent suspecting
a link failure may run the ping utility, and thus
reduce its uncertainty about the objects suscepti-
ble to be the root cause of the observed anomaly.
In this subsection, we integrate fault diagnosis
and the restoration planning in a single process.
We show how to map a set of observation in
the agent’s domain to an optimal plan. The
proposed approach is based on an approximate
method for evaluating information-gathering ac-
tions [9].

Let us assume that the agent has m possible sen-
sors nodes Si,...,5, that it can consult to re-
duce the uncertainty about which object is faulty.
Furthermore let {sf,... ,s{j} be the set of pos-
sible values S; can take, and let TI(() denote
the restoration plan initially computed, assum-
ing no sensing information. Recall from section
3.1, that TI(§) can be derived by ordering the ob-
jects according to their probability-to-observation-
cost ratio. The problem is to determine at each
decision point whether to try an observation ac-
tion, as dictated by II(@), or observe the value of
some sensor node. The aim is to keep the cost of
restoration as cheap as possible.

The merit of querying a sensor node 5; can be
decided before actually observing its value, us-
ing the following consideration: if we observe S
and find the value to be sf , the gain from this
sensing action is the cost of the restoration plan
given that the agent observed S; and found that
its value is s7 minus the expected cost of restora-



tion plan when the value about S; is not known.
It is clear that this quantity is positive, since an
agent that knows the state of §; will restore the
network cheaper than an agent without this in-
formation. However, since we are not sure of the
actual outcome of querying S;, we must average
over all possible outcomes of S;. We write:

L
EC(I(S;) = 3 (W()P(S; = ) (4)
k=1

II(5;) denote the improvement in the restora-
tion plan if the agent decides to query the value
of §;. Let ¢, denote the cost of observing S;.
Adding this cost to the improvement EC(I(S; ))
may not remain smaller than the expected cost of
II(@). That is to say, the improvement brought
by §; may not justify its cost. To identify the
best information gathering action, the above pro-
cess is iterated for all the sensors, and the agents
ends by selecting to observe the sensor with a
minimal improvement in the restoration plan even
if the cost of observation is added. If such sensor
is not found, the object with high probability-
to-observation-cost is observed and possibly re-
paired if found faulty.
The following algorithm summarizes the result of
the previous two subsections:
Diagnosis-Restoration
(Observed Symptoms) Returns Action

1. identify potential fauity objects not yet ob-
served or repaired.

2. Order the ratios E of components not yet
observed or repaired , and let II(0) the re-
sulting order.

3. For all the sensors §; not yet observed
J
3 slj}

(a) Submit §; = .sg as observation to the
agent Bayesian sub-net

4. For All s e {sf,...

(b) calculate the optimal restoration plan
using equation (4)

(c) calculate the restoration plan II(S;), if
S is to be observed using equation (4).

5. End For

6. Find the plan with minimal expected cost
among the quantities EC(II(S;)) + c3, and
EC(11(0)).

7. End For

8. Suppose that O; is the object with highest
observation cost-probability ratic, not yet ob-
served or repaired. If there exist a sensor such
that TI(S;) + ¢(S;) is minimal, then return
OBSERVE-S;, Otherwise return REPAIR-0;.

3.3 Multi-agents diagnosis-restoration
planning

In the previous section, we showed how observa-
tions in the agent’s domain are mapped into ac-
tions. This section explains the inter-agent com-
munication, and how the contents of messages
are used to coordinate agents actions.

As explained earlier, agent influence each other’s
belief through the interface set. Note that an
agent may have in one of its interface sets, ob-
Jjects that it does not manage. To illustrate how
agent communication is performed, assume that
we have only two agents: A and B, and suppose
that agent A has been notified of some abnormal
behavior in its managed domain. Agent A first
determines the probability of each object to be
the root cause of the anomaly, and consequently
it updates the probability of all the managed ob-
jects including the objects in the interface set.
Agent B, notices this change?, and launches a
diagnosis-restoration activity. It calculates the
expected cost of restoring its sub-domain and
broadcast it to agent A. The sum of this two
quantities is indexed by the corresponding action
and, then, stored. This process continues during
all the time agent A evaluates its sensors. Once,
this evaluation is finished, agent A sorts its mem-
ory, and returns the plan with minimal cost to
agent B. Let us denote the expected cost of this
restoration plan by «. Agent B, in turn, begins
investigating the possibilities to improve o. For
all sensors the agent B can access, it calculates
its restoration plan, and asks agent A to send its
restoration plan, computed given the observed
changes in the interface set. This two quantities
are summed, and stored only if the sum is smaller
than the quantity a previously sent by A. Once
communication ends, agent B takes an action if

*Note this change may not be a certain observation.
BN allows even changes in the probability distribution
to be entered as a special type of observation called soft
evidences



it succeeded to find a restoration plan with ex-
pected cost smaller than o, otherwise agent A
takes the appropriate action, namely action in-
dexed by the quantity c.

The process we explained above allows the agents
to restore the network with a globally optimal
cost. We restricted the discussion to the case of
two agents, but generalization to multi-agents is
straightforward.

4 Conclusion

In this paper, we presented a distributed proba-
bilistic framework for fault diagnosis and restora-
tion in WAN. The proposed approach differs from
earlier network management methods in two ma-
jor ways: it explicitly recognizes the incomplete-
ness of information inherent in communication
networks {3, 7]; it interleaves diagnosis and restora-
tion in a single process : the ultimate goal is to
restore the network, and information gathering
actions are worthwhile only to the extend they
honor this goal. The assumption of single fault
is reasonably realistic: more than one objects are
unlikely to fail in the same time. Extending to
the general of dependent faults can be compu-
tationally expensive. The concepts discussed in
this paper are being realized in a network man-
agement system currently under active develop-
ment.

APPENDIX

Pearl’s algorithm views each node as an in-
dividual processor. Each node performs local
computation, and the results are communicated
only to neighboring nodes. A typical fragment
of a singly connected network is shown is Figure
4. The conditional probabilities P(z|u1,...,Un)

Figure 3: An example of multi-domain WAN

quantitatively relate the node X to its parents.

Let Wxy, denote the evidences (the observed
value of nodes) on the head side of the arc X —
V,and W x denote the evidence in the subnet-
work on the tail side of the arc U; — X. The
total evidence is given by W = {Wx-,Wx+},
where Wx- = {Wxy,,...,Wxy, } and Wx+ =
{Wo.x:--- Wy, x} Note that for singly con-
nected networks, all Wxy, and Wg‘ x are disjoint.
In figure 4, the 7 message

wx(w) = P(ui| Wi, x) (5)

is the current strength of the causal support con-
tributed by incoming arc U; — X, and ) message

My (2) = P(Wiy o) ®)

is the current strength of the diagnostic support
contributed by each outgoing arc X — V;
Belief update algorithm ([10, 12})

A node X is activated when it receives the =«
messages from its parents, the A messages from
its children, or the node itself is instantiated for
a specific value z. Upon the activation, X per-
forms the following three times in any order.
Step 1: Initialization

1. Set all A messages and m messages to 1,
2. For all roots U, set w(u) = P(u).

3. For all roots U and all children X of U, the
node U posts new 7 messages to X:

[ P(u) if U is not instantiated
0 if U is instantiated but
not to the value u
1 if U is instantiated
to the value u

w(z) =

(7)

Step 2: Belief updating. The node X updates its
belief measure to

Bel(z) = aA(z)r(z) (8)
where
[1; v;(z) if X is not instantiated
0 if X is instantiated but

Az) = not to the value z
1 if X is instantiated

to the value @

(9)



is the A value of node X, and

Zm,..‘,un P(zluls s ,'U'n) Hi 7!'2(11,,‘)
if X is not instantiated

n(z) = 0 if X is instantiated but
- not to the value z
1 if X is instantiated

to the value z
(10)
is the 7 value of node X, and where « is a nor-
malizing constant.
Step 3:Bottom-up propagation. The node X com-
putes new A messages and posts them to its patents:

Ax(w) = EA(x) E p(x|ug,. .. u,) H'Ir(uk)
z up ks k#i

(11)

Step 4:Top-down propagation. The node X com-
putes new 7w messages and posts them to its chil-
dren:

Bel(z)/Av;(z} if X is not instantiated
0 if X is instantiated but
ny,(z) = not to the value z
1 if X is instantiated
‘ to the value z
(12)
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