
IPSJ Transactions on Mathematical Modeling and Its Applications Vol.15 No.1 18–30 (Jan. 2022)

Regular Paper

Accelerating the Numerical Computation of Positive Roots
of Polynomials Using Suitable Combination

of Lower Bounds

Masami Takata1,a) Takuto Akiyama2 Sho Araki2 Hiroyuki Ishigami3

Kinji Kimura4 Yoshimasa Nakamura5

Received: June 16, 2021, Revised: October 13, 2021,
Accepted: November 1, 2021

Abstract: The continued fraction method for isolating the positive roots of a univariate polynomial equation is based
on Vincent’s theorem, which computes all of the real roots of polynomial equations. In this paper, we propose suitable
combination of lower bounds which accelerate the fraction method. The two proposed bounds are derived from a the-
orem stated by Akritas et al., and use different pairing strategies for the coefficients of the target polynomial equations
from the bounds proposed by Akritas et al. Moreover, we compute another bound. First, we compute a candidate for
the lower bound generated by Newton’s method. Second, by using Laguerre’s theorem, we check whether the candi-
date for the lower bound is appropriate. Numerical experiments show that the three lower bounds are more effective
than existing bounds for some special polynomial equations and random polynomial equations, and are competitive
with them for other special polynomial equations. Additionally, we determine a suitable combination of those lower
bounds.
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1. Introduction

In computer algebra, the quantifier elimination is one of the
important topics. The cylindrical algebraic decomposition algo-
rithm is a tool solving for the quantifier elimination [3]. In the
algorithm, only the real roots of univariate polynomial equations
are required. Thus, this paper focuses on the computation of all
real roots of polynomial equations. For polynomial equations
without multiple roots, we can isolate each root into a specific
interval. The accuracy of the isolated real roots can be easily en-
hanced using the bisection method.

The continued fraction (CF) method for isolating the positive
roots of univariate polynomial equations is based on Vincent’s
theorem [2], [13]. This method isolates each positive root us-
ing Descartes’ rule of signs [4], which focuses on the coefficients
of the polynomial equations, and can be accelerated by an ori-
gin shift. Thus, several coefficients of a polynomial equation
are transformed into nonzero coefficients, even in the case of
sparse polynomial equations that have many zero coefficients.
The Krawczyk method [10], which is based on numerical verifi-
cation, was developed to isolate the positive roots of polynomial
equations which have many zero coefficients. In this paper, we
focus on the CF method for isolating the positive roots of poly-
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nomial equations which have many nonzero coefficients.
To accelerate the CF method, the choice of the origin shift is

important. For the shift value, we should use a lower bound of the
smallest positive root of the target polynomial. In other words,
we must compute this lower bound to accelerate the CF method.
We can obtain the lower bound of positive roots of a polyno-
mial equation from the upper bound of the replaced polynomial
equation corresponding to the original equation. The Cauchy
bound [11] and the Kioustelidis bound [9] are well-known upper
bounds of the positive roots of polynomial equations, but these
bounds are known to produce overestimates in some cases. Akri-
tas et al. have given a generalized theorem including the Cauchy
bound and the Kioustelidis bound [1]. Using pairing strategies
derived from the generalized theorem, they proposed new upper
bounds called the first-λ bound, the local-max bound, and the
local-max quadratic bound.

In Ref. [12], we proposed a lower bound generated by New-
ton’s method. In Ref. [8], we introduced two lower bounds: the
“local-max2” bound and the “tail-pairing first-λ” bound. These
are derived from the local-max bound and the first-λ bound, re-
spectively, and use a different pairing strategy from the original
bound. The local-max2 bound is always better than or equal to
the local-max bound. The tail-pairing first-λ bound is expected to
be more suitable for the CF method than the first-λ bound. In this
paper, we propose a suitable combination of these lower bounds.

The remainder of this paper is organized as follows: Section 2
introduces the CF method based on Vincent’s theorem. In Sec-
tion 3, we introduce the bounds proposed by Akritas et al. In
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Section 4, we explain the local-max2 bound and the tail-pairing
first-λ bound. In Section 5, we review the lower bound gener-
ated by Newton’s method. In Section 6, we reports the results of
performance evaluations of these lower bounds and determine a
suitable combination of these lower bounds. We end with a sum-
mary of our conclusions in Section 7.

2. Continued Fraction Method

In this paper, we discuss the computation of positive roots
x ∈ R that satisfy the following polynomial equation:

f (x) = a0xn + a1xn−1 + · · · + an−1x + an = 0, (1)

where ai ∈ Z and an � 0. Note that we need not consider the case
x = 0 as one of the roots of f (x) = 0, since an = 0 is satisfied if
any real root is equal to 0.

In addition, all the polynomial equations have rational coef-
ficients and multiple roots in the interval [u, v], (−∞, v], (u,∞],
or (−∞,∞) (u, v ∈ R), and can be transformed into Eq. (1) in
x ∈ (0,∞) using certain operations. For details, see Ref. [12].

2.1 Continued Fraction Method
The CF method aims to compute the positive roots of a polyno-

mial equation f (x) = 0. It is based on Vincent’s theorem [2], [13],
and isolates the real roots in (0,∞) using Theorem 1, known as
Descartes’ rule of signs [4].

Theorem 1 (Descartes’ rule of signs) For a polynomial
equation

f (x) = a0xn + · · · + an−1x + an = 0, x ∈ R, ai ∈ R,
let W be the number of “changes of sign” in the list of coefficients
{a0, a1, . . . , an}, except for ai = 0, and let N be the number of
positive roots in (0,∞). Under these definitions, the following
relation holds:

N = W − 2h,

where h is a non-negative integer.
Using Theorem 1, the number of positive roots of the polyno-

mial equation f (x) = 0 is determined as the following conditional
branch:
• Case where W = 0: f (x) = 0 does not have any positive

roots in the interval x ∈ (0,∞).
• Case where W = 1: f (x) = 0 has only one positive root in

the interval x ∈ (0,∞).
• Case where W ≥ 2: the number of positive roots of f (x) = 0

cannot be determined.
If W = 1, the isolated interval should be set to (0, u b], where

u b denotes the upper bound of the positive roots of f (x) = 0.
Computation methods for the upper bound of the positive roots
of f (x) = 0 are described in Section 3.

In the case that W ≥ 2, the interval (0,∞) should first be di-
vided into two intervals. Then, Descartes’ rule of signs can be
applied to each interval. In the CF method, the interval (0,∞) is
divided in (0, 1) and (1,∞). This division is performed by the re-
placement x → x + 1 and x → 1/(x + 1). Using the replacement
x → x + 1, the interval (0,∞) of the replaced polynomial equa-
tion corresponds to the interval (1,∞) of the original polynomial

Table 1 Synthetic division for g5(x).

x3 x2 x1 x0

a0 a1 a2 a3

a0 a0 + a1 a0 + a1 + a2

a0 a0 + a1 a0 + a1 + a2 a0 + a1 + a2 + a3

a0 2a0 + a1

a0 2a0 + a1 3a0 + 2a1 + a2

a0

a0 3a0 + a1

equation. Similarly, using the replacement x → 1/(x + 1), the
interval (0,∞) of the replaced polynomial equation corresponds
to the interval (0, 1) of the original polynomial equation. The in-
tervals (1,∞) and (0, 1) do not include the case x = 1. To solve
for this case, we must check that a constant term of the replaced
polynomial equation vanishes after either replacement. In other
words, if an = 0 in the replaced polynomial equation, then x = 1
is a root of the original polynomial equation.

The replacements described above require the coefficients of
the replaced polynomial equation to be calculated. This calcu-
lation can be performed by synthetic division. As an example,
Table 1 shows the calculation of the coefficients of

g5(x) = a0(x + 1)3 + a1(x + 1)2 + a3(x + 1) + a4. (2)

As can be seen in Table 1, the coefficients of x3, x2, x1, and x0 in
g5(x) are a0, 3a0+a1, 3a0+2a1+a2, and a0+a1+a2+a3, respec-
tively. Note that the computational complexity of the synthetic
division for obtaining the coefficients of the replaced polynomial
equation for a replacement x → x + 1 is O(n2), where n is the
highest order of the polynomial equation.

2.2 Acceleration Using a Lower Bound
The CF method requires many replacement operations x →

x + 1 and x → 1/(x + 1). If the positive roots are much larger
than 1, then the execution time increases, since we must repeat
many replacement operations x → x + 1. Thus, to decrease the
execution time, the lower bound of the smallest positive root of a
polynomial equation should be used as a shift.

The procedure for computing the lower bound l b of f (x) = 0
is as follows:
( 1 ) Replace x with 1/x in f (x).
( 2 ) Compute u b, the upper bound of the positive roots of the

replaced polynomial equation.
( 3 ) Obtain l b as l b = 1/u b.
However, the replacement x → x + l b should not always be
adopted, since l b is not sufficiently large to reduce the execu-
tion time if l b ≤ 1. Thus, the replacement x → x + l b is only
adopted in f (x) if l b > 1.

3. Computation of the Upper Bound of Posi-
tive Roots

The Cauchy rule [11] is a well-known idea for computing the
upper bound of the positive roots of f (x) = 0. The Kioustelidis
bound is related to the Cauchy rule [9]. However, both of these
bounds are known to overestimate the upper bound in some cases.

To overcome this problem, Akritas et al. derived the following
generalized theorem for computing the upper bound of the posi-
tive roots of f (x) = 0.
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Theorem 2 (Akritas, 2006) Let f (x) be a polynomial with
real coefficients, and assume a0 > 0. Let d( f ) and t( f ) denote its
degree and number of terms, respectively.
In addition, assume that f (x) can be reshaped as follows:

f (x) = q1(x) − q2(x) + · · · + q2m−1 − q2m(x) + g6(x), (3)

where the polynomials qi(x), i = 1, . . . , 2m, and g6(x) have only
positive coefficients. Moreover, assume that, for i = 1, 2, . . . , m,
we obtain

q2i−1(x) = c2i−1,1xe2i−1,1 + · · · + c2i−1,t(q2i−1)x
e2i−1,t(q2i−1) (4)

and

q2i(x) = b2i,1xe2i,1 + · · · + b2i,t(q2i)x
e2i,t(q2i) (5)

where e2i−1,1 = d(q2i−1) and e2i,1 = d(q2i), and the exponent of
each term in q2i−1(x) is greater than the exponent of each term in
q2i(x). If t(q2i−1) ≥ t(q2i) for all indices i = 1, 2, · · · ,m, then the
upper bound of the positive roots of f (x) = 0 is defined by

u b = max
i=1,2,...,m

{( b2i,1

c2i−1,1

) 1
e2i−1,1−e2i,1

, . . . ,

(
b2i,t(q2i)

c2i−1,t(q2i)

) 1
e2i−1,t(q2i )−e2i,t(q2i )

}
,

(6)

for any permutation of the positive coefficients c2i−1, j, j =

1, 2, · · · , t(q2i−1). Otherwise, for each of the indices i for which
we obtain t(q2i−1) < t(q2i), we break up one of the coefficients of
q2i−1(x) into t(q2i)− t(q2i−1)+ 1 parts, so that t(q2i) = t(q2i−1). We
can then apply the formula defined in Eq. (6).

Note that the ideas underlying both the Cauchy and Kiouste-
lidis bounds are included in this theorem.

The sharpness of the upper bound is dependent on pairing co-
efficients from the non-adjacent polynomials q2l−1(x) and q2i(x)
for 1 ≤ l < i.

For example, consider the polynomial

3x3 − 5x2 + 4x + 7. (7)

In this case, we can create the pair{
3x3,−5x2

}
.

However, for the polynomial

3x3 − 5x2 − 4x + 7, (8)

we cannot create the trivial pair, since the polynomial has only
one positive coefficient with the greater degree of x than the neg-
ative coefficient terms −5x2 and −4x. In this case, since

3x3 =
3
2

x3 +
3
2

x3 = x3 + 2x3,

we can create the pair as{
3
2

x3,−5x2

}
,

{
3
2

x3,−4x

}
or

{
x3,−5x2

}
,
{
2x3,−4x

}
.

Using Theorem 2, Akritas et al. proposed the “local-max”
bound and the “first-λ” bound as follows:

Definition 1 (“local-max”) For a polynomial equation

f (x) = 0 given by Eq. (1), the coefficient −ak of the term
−ak xn−k in f (x) = 0 is paired with the coefficient am/2t of the
term amxn−m, where am is the largest positive coefficient with
0 ≤ m < k and t denotes the number of times the coefficient am

has been used.
Definition 2 (“first-λ”) For a polynomial equation f (x)

given by Eq. (3) with λ negative coefficients, we first consider all
cases for which t(q2i) > t(q2i−1) by breaking up the last coefficient
c2i−1,t(q2i) of q2i−1(x) into t(q2i) − t(q2i−1) + 1 equal parts. We then
pair each of the first λ positive coefficients of f (x), encountered
as we move in non-increasing order of exponents, with the first
unmatched negative coefficient.

Note that the computational complexity of these bounds is
O(n).

Akritas et al. also proposed the “local-max quadratic” bound
as follows:

Definition 3 (“local-max quadratic”) For a polynomial
equation f (x) given by Eq. (1), each negative coefficient ai < 0
is “paired” with each of the preceding positive coefficients a j

divided by 2t j . That is, each positive coefficient a j is “broken up”
into unequal parts, as for the locally maximum coefficient in the
local max bound. t j is initially set to 1, and is incremented each
time the positive coefficient a j is used, and the minimum is taken
over all j. Subsequently, the maximum is taken over all i.

From Definition 3, the local-max quadratic bound is computed
as

u bLMQ = max
ai<0

min
a j>0: j>i

j−i

√
− ai

a j

2t j

. (9)

Note that the computational complexity of this bound is O(n2).

4. Local-max2 Bound and Tail-pairing First-λ
Bound

In this section, we introduce two upper bounds for the posi-
tive roots of a polynomial equation. The first is the “local-max2”
bound, and the second is the “tail-pairing first-λ” bound.

4.1 Local-max2 Bound
The local-max2 bound is derived from the local-max bound.

To compute the local-max bound, the largest positive coefficient
am is broken up into unequal parts am/2t(t = 1, · · · , s + 1). For
the local-max2 bound, we first break up the largest positive coef-
ficient am into unequal parts am/2t(t = 1, · · · , s). Then, since

am −
(am

2
+ · · · + am

2s

)
=

am

2s
, (10)

we use am/2s, which is the remaining part of am, as the last pair.
It is obvious that the local-max2 bound is better than or equal to
the local-max bound for all polynomials.

Algorithm 1 describes the implementation of the local-max2
bound. As for the local-max bound, the complexity of computing
the local-max2 bound is O(n).

For example, consider the polynomial

x3 + 10100x2 − x − 10100. (11)

For the local-max bound, we pair the terms
{

10100

2 x2,−x
}

and
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Algorithm 1 Implementation of the “local-max2” bound.
cl← {an, an−1, · · · , a1, a0}
if n + 1 ≤ 1 then

return u bLM2 = 0

end if

j = n + 1

negativeIndices = {}
for i = n to 1 step −1 do

if cl(i) < 0 then

negativeIndices = negativeIndices ∪ i

else if cl(i) > cl( j) then

if count(negativeIndices) > 0 then

t = 0

l = count(negativeIndices)

for k = 1 to l − 1 do

t + +

tempub = (2t(−cl(negativeIndices(k))

/cl( j)))1/( j−negativeIndices(k))

if tempub > u bLM2 then

u bLM2 = tempub

end if

end for

tempub = (2t(−cl(negativeIndices(l))

/cl( j)))1/( j−negativeIndices(l))

if tempub > u bLM2 then

u bLM2 = tempub

end if

end if

j = i

negativeIndices = {}
end if

end for

if count(negativeIndices) > 0 then

t = 0

l = count(negativeIndices)

for k = 1 to l − 1 do

t + +

tempub = (2t(−cl(negativeIndices(k))

/cl( j)))1/( j−negativeIndices(k))

if tempub > u bLM2 then

u bLM2 = tempub

end if

end for

tempub = (2t(−cl(negativeIndices(l)

/cl( j)))1/( j−negativeIndices(l))

if tempub > u bLM2 then

u bLM2 = tempub

end if

end if

return u bLM2

{
10100

22 x2,−10100
}
, and obtain a bound estimate of 2. For the local-

max2 bound, we pair the terms
{

10100

2 x2,−x
}

and
{

10100

2 x2,−10100
}
,

and obtain a bound estimate of
√

2. As a result, the upper bound
of the local-max2 bound is better than that of the local-max bound
for the polynomial (11).

4.2 Tail-pairing First-λ Bound
The tail-pairing first-λ bound is derived from the first-λ bound.

As for the first-λ bound, if there are more negative than positive

Algorithm 2 Implementation of the “tail-pairing first-λ” bound.
cl← {an, an−1 · · · , a1, a0}
λ← the number of negative elements of cl

if n + 1 ≤ 1 then

return u bTPFL = 0

end if

posS tartIndex = n + 1

negTailIndex = 1

while negTailIndex ≤ n + 1

and cl(negTailIndex) ≥ 0 do

negTailIndex + +

end while

while λ > 0 do

while posS tartIndex >= 0

and cl(posS tartIndex) ≤ 0 do

posS tartIndex − −
end while

posEndIndex = posS tartIndex + 1

while posEndIndex >= 0

and cl(posEndIndex) ≥ 0 do

posEndIndex − −
end while

negHeadS tartIndex = negHeadEndIndex

negHeadS tartIndex = posEndIndex

while negHeadEndIndex >= 0

and negHeadEndIndex ≤ negTailIndex

and cl(negHeadEndIndex) ≤ 0 do

negHeadEndIndex − −
end while

posCount = posEndIndex − posS tartIndex

negHeadCount = negHeadEndIndex

−negHeadS tartIndex

j = posS tartIndex

call Algorithm 3

while posCount > 0

and negHeadEndIndex < negTailIndex do

i = negTailIndex

tempub = (−cl(i)/(cl( j))1/( j−i)

if tempub > u bTPFL then

u bTPFL = tempub

end if

posCount − −
λ − −
if λ == 0 then

break

end if

negTailIndex + +

while negTailIndex >= 0

and cl(negTailIndex) ≥ 0 do

negTailIndex + +

end while

if posCount > 0 then

j − −
while cl( j) == 0 do

j − −
end while

end if

end while

end while

return u bTPFL
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Algorithm 3 Subroutine 1 of the “tail-pairing first-λ” bound.
if negHeadCount > 0 then

i = negHeadS tartIndex

while negHeadCount > 0 do

if posCount == 1

and negHeadCount > posCount then

k = negHeadCount − posCount + 1

for v = 1 to k do

tempub = (−cl(i)/(cl( j)/k))1/( j−i)

if tempub > u bTPFL then

u bTPFL = tempub

end if

negHeadCount − −
λ − −
i − −
while i ≥ 0 and cl(i) == 0 do

i − −
end while

end for

else

tempub = (−cl(i)/(cl( j))1/( j−i)

if tempub > u bTPFL then

u bTPFL = tempub

end if

negHeadCount − −
λ − −
i − −
while i ≥ 0 and cl(i) == 0 do

i − −
end while

end if

posCount − −
if posCount > 0 then

j − −
while cl( j) == 0 do

j − −
end while

end if

end while

end if

coefficients, we first break up the last positive coefficient into sev-
eral parts. In addition, we pair positive coefficients with unpaired
tail negative coefficients when the number of positive coefficients
is greater than that of negative coefficients.

Although it is not always better than or equal to the first-λ
bound, we expect the tail-pairing first-λ bound to be better for the
total number of shifts. The CF method performs the replacement
x → x + l b many times. Thus, pairing negative coefficients of
low degree with positive coefficients is an important task. In the
tail-pairing first-λ bound, we pair high-degree coefficients with
low-degree coefficients whenever possible.

There are two strategies for computing the tail-pairing first-λ
bound. In the first strategy, we initially pair negative coefficients
in the corresponding list, and then pair the tail negative coeffi-
cients. We call this the “tail-pairing first-λ type-I bound”. The
second strategy pairs the tail negative coefficients first, and then
pairs the negative coefficients in the corresponding list. We call
this the “tail-pairing first-λ type-II bound”. Algorithm 2 describes
the computation of the tail-pairing first-λ type-I bound. As for the

first-λ bound, the computational complexity of both tail-pairing
first-λ bounds is O(n).

For example, consider the polynomial

x5 + 2x4 − 3x3 + 4x2 − 5x − 1010. (12)

For the first-λ bound, we pair the terms
{
x5,−3x3

}
,
{
2x4,−5x

}
,

and
{
2x2,−1010

}
, and obtain a bound estimate of

√
1010/2 =

50, 000
√

2. For the tail-pairing first-λ type-I bound, we pair
the terms

{
x5,−3x3

}
,
{
2x4,−1010

}
, and

{
4x2,−5x

}
, and find a

bound estimate of 4
√

1010/2 = 100
4√
50. For the tail-pairing first-

λ type-II bound, we pair the terms
{
x5,−1010

}
,
{
2x4,−3x3

}
, and{

4x2,−5x
}
, which gives a bound estimate of

5√
1010 = 100. Thus,

the tail-pairing first-λ bounds are better than the first-λ bound,
and the tail-pairing first-λ type-II bound is better than the type-I
bound for this polynomial.

5. Lower Bound Generated by Newton’s
Method

The acceleration of the continued fraction method based on
Vincent’s theorem employs the origin shift, which adopts the
lower bound l b of the smallest positive root of a given polyno-
mial equation. Thus, if the lower bound tends to the smallest
positive root, then the computation time of the continued fraction
method decreases.

In this paper, we review a lower bound generated by Newton’s
method. Note that in some polynomial equations, a bound gen-
erated by Newton’s method is not suitable as the lower bound.
Hence, by using Laguerre’s theorem, it must be checked whether
a bound generated by Newton’s method is a suitable lower bound.

Newton’s method is defined by the following recurrence for-
mula:

xm+1 = xm − f (xm)
f ′(xm)

. (13)

Here, f ′(x) denotes the first derivative of f (x). If Newton’s
method is adopted at the origin, then a candidate for the lower
bound r is computed as follows:

r = 0 − f (0)
f ′(0)

= − an

an−1
. (14)

The cost for computing r is O(1).
We can check whether a candidate for the lower bound r is

suitable by using the following theorem.
Theorem 3 (the Laguerre theorem) For a polynomial

equation

f (x) = a0xn + a1xn−1 + · · · + an = 0

with real coefficients, let N be the number of positive roots that
are larger than a positive value α. The number N is less than or
equal to the number of sign changes in the following polynomials
fk(α):

fk(α) = a0α
k + a1α

k−1 + · · · + ak, k = 0, 1, . . . , n.

Here, f (α) � 0 is assumed.
If x in Theorem 3 is replaced by 1/x, Theorem 3 can be trans-

formed into the following theorem.
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Theorem 4 The number of positive roots of a polynomial
equation

f (x) = a0 + a1x + a2x2 + · · · + anxn = 0,

in the interval 0 < x < r is less than or equal to the number of
sign changes in the following polynomials pk(r):

p0(r) = a0,

p1(r) = a0 + a1r,

p2(r) = a0 + a1r + a2r2, . . . ,

pn(r) = a0 + a1r + · · · + anrn.

Here, r > 0 and pn(r) � 0.
Thus, if the number of sign changes in pk(r), k = 0, · · · , n is 0,

then no positive roots in the interval 0 < x < r exist. In such a
case, the computation cost is O(n).

To get a candidate for the lower bound r, it is necessary that
the signs of an and an−1 must be opposite. Moreover, it is needed
to check pn(r) � 0.

If a candidate for the lower bound r generated by Newton’s
method is the lower bound of the smallest positive root, then we
adopt the lower bound lb as an origin shift defined in the follow-
ing equation:

l bNewton = r. (15)

If l bNewton > 1, then the origin shift x → x + l bNewton is per-
formed.

6. Numerical Experiment

In this section, we present numerical results that evaluate the
effect of the three lower bounds. Additionally, we determine a
suitable combination of those lower bounds.

6.1 Contents of the Numerical Experiment
To evaluate the effect of the proposed bounds, we implement

the CF method with the following bounds:
• FL+LM: (max(FL,LM))
• LMQ: local-max quadratic bound
• TPFL-I+LM2: (max(TPFL-I,LM2))
• TPFL-II+LM2: (max(TPFL-II,LM2))
• FL+LM+Newton: (max(FL,LM,Newton))
• LMQ+Newton: (max(LMQ,Newton))
• TPFL-I+LM2+Newton: (max(TPFL-I,LM2,Newton))
• TPFL-II+LM2+Newton: (max(TPFL-II,LM2,Newton))

Note that FL, LM, LMQ, TPFL, LM2, and Newton denote the
first-λ bound, local-max bound, local-max quadratic bound, tail-
pairing first-λ bound local-max2 bound, and the bound generated
by Newton’s method, respectively. In FL+LM, FL and LM are
computed respectively, and then the maximum value is used as
the bound. If no appropriate bound can be obtained, 0 bound is
used. Other combinations are the same.

As test polynomial equations, the following were used:
• Laguerre: L0(x) = 1, L1(x) = 1 − x, and Ln+1(x) =

1
n+1 ((2n + 1 − x)Ln(x) − nLn−1(x))

• Chebyshev-I: T0(x) = 1, T1(x) = x, and Tn+1(x) = 2xTn(x)−
Tn−1(x)

• Chebyshev-II: U0(x) = 1, U1(x) = 2x, and Un+1(x) =
2xUn(x) − Un−1(x)

• Wilkinson: Wn(x) =
∏n

i=1(x − i)
• Mignotte: Mn(x) = xn − 2(5x − 1)2

• Randomized polynomial
The randomized polynomials are defined as

f (x) =
r∏

i=0

(x − xi)
s∏

j=0

(x − α j + iβ j)(x − α j − iβ j), (16)

where xi, α j, β j ∈ R. Note that the parameters xi, α j, and β j were
randomly set in the following range:

−109 ≤ xi, α j, β j ≤ 109. (17)

The parameter s was set to 40, 490, 740, or 990, and r was
set to 20. We then generated 100 test polynomial equations for
each combination of parameters. All polynomials were prepro-
cessed to have integer coefficients using the method introduced
in Ref. [12].

The experiments were performed on an Intel Xeon E5-2695 v4
CPU with 128 GB of RAM, with GCC 10.1.1 used as the C com-
piler. In addition, we used GMP [5], since the CF method needs
multiple-precision arithmetic to compute the coefficients in the
replaced polynomial equations.
6.1.1 log2 Optimization

log2 optimization is used in various open-source software [6],
[7]. Assume that we wish to calculate bounds of the following
form in multiple-precision integer:

(
−b

c

) 1
d−e

, c > 0, b < 0, d > e > 0, (18)

using division and root functions. It takes a considerable amount
of time to calculate the bounds, and the execution time for each
function depends on the bit-length of the arguments. Here, we
can use log2 to find the bounds

1
d − e

(
log2(−b) − log2 c

)
, (19)

and the execution time of log2 for multiple-precision integer does
not depend on the bit-length of the argument. Therefore, we can
avoid division and root functions in multiple-precision integer by
comparing log2 values. The bounds computed with log2 can be
worse than those given by the division and root functions. How-
ever, this method saves a lot of time in computing the bounds, and
is fast in terms of total execution time.

6.2 Results
The appendix shows the ratio of each bound adopted in poly-

nomials. In special polynomials, Newton bound is not adopted.
This is due to the properties of polynomials. In a random polyno-
mial, all bounds are adopted at least once. Hence, it makes sense
to combine multiple bounds. In particular, for special polynomi-
als, Newton bound is not valid. However, for random polynomi-
als, Newton bound is more effective in some cases as is shown
in Table A·6. Therefore, it is effective to use Newton bound in
combination.

Figure 1 shows the execution time for special polynomial
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Fig. 1 Execution time for special polynomials [sec.].

equations, and Fig. 2 shows that for random polynomial equa-
tions. Here, these vertical axes represent the computation time,
and the horizontal axes correspond to degrees. Though the com-
putational complexity of the CF method and those bounds is O(n)
or O(n2), the computational time becomes very long as the degree
increases. Thus, the improvement of the lower bound is impor-
tant. In Fig. 2, the lines drawn on the bar graph represent the
maximum and minimum values. By Fig. 1 and Fig. 2, the com-
putation times in TPFL II+LM2 and TPFL II+LM2+Newton are
more often shorter than that in the others.

Table 2 lists the execution time for special polynomial equa-
tions, and Table 3 lists that for random polynomial equations.
Our proposed bounds are more effective than FL+LM and LMQ
for the Laguerre polynomial and the Chebyshev polynomial, and
are competitive with FL+LM for the Wilkinson and Mignotte
polynomials. The maximum speed-up for the Laguerre polyno-
mial is about 1.15, and for the Chebyshev-I and -II polynomials
it is about 1.08 and 1.08 times, respectively. TPFL-II+LM2 is

Fig. 2 Execution time for random polynomials [sec.].
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Table 2 Execution time for special polynomials.

Polynomial Degree Time [sec.]

Class
FL
+LM

LMQ
TPFL-I
+LM2

TPFL-II
+LM2

FL
+LM
+Newton

LMQ
+Newton

TPFL-I
+LM2
+Newton

TPFL-II
+LM2
+Newton

Laguerre 100 0.03 0.04 0.03 0.03 0.04 0.04 0.03 0.03
Laguerre 1,000 96.68 107.51 93.88 81.57 97.13 107.77 93.97 81.08
Laguerre 1,500 453.84 501.13 442.54 385.46 457.76 501.06 442.34 388.71
Laguerre 2,000 1,364.65 1,474.83 1,328.50 1,187.06 1,341.79 1,464.29 1,316.48 1,185.34

Chebyshev-I 100 0.04 0.04 0.03 0.03 0.04 0.04 0.03 0.03
Chebyshev-I 1,000 91.56 92.15 81.78 81.70 91.34 91.43 80.22 80.72
Chebyshev-I 1,500 436.02 429.64 387.35 389.72 439.02 438.68 395.56 388.59
Chebyshev-I 2,000 1,287.97 1,279.02 1,173.40 1,184.46 1,291.24 1,271.36 1,170.00 1,176.89
Chebyshev-II 100 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03
Chebyshev-II 1,000 90.35 91.53 79.04 80.36 89.56 91.23 80.10 79.03
Chebyshev-II 1,500 431.71 442.45 396.36 394.67 423.09 432.00 388.06 385.69
Chebyshev-II 2,000 1,284.83 1,261.85 1,160.02 1,172.12 1,290.67 1,275.41 1,167.55 1,166.38

Wilkinson 100 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Wilkinson 1,000 11.12 12.00 11.14 11.11 11.05 11.98 11.07 11.02
Wilkinson 1,500 51.45 54.56 51.46 51.42 51.00 54.07 50.93 51.48
Wilkinson 2,000 154.42 160.06 154.92 154.68 155.15 159.98 155.80 154.11
Mignotte 100 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Mignotte 1,000 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11
Mignotte 1,500 0.31 0.31 0.31 0.31 0.32 0.31 0.31 0.31
Mignotte 2,000 0.68 0.66 0.67 0.67 0.68 0.68 0.65 0.67

Table 3 Execution time for random polynomials.

Parameters Degree Time [sec.]

FL
+LM

LMQ
TPFL-I
+LM2

TPFL-II
+LM2

FL
+LM
+Newton

LMQ
+Newton

TPFL-I
+LM2
+Newton

TPFL-II
+LM2
+Newton

Ave.
s = 40
r = 20

100 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

s = 490
r = 20

1,000 43.24 46.32 41.22 40.64 41.77 41.86 39.96 38.11

s = 740
r = 20

1,500 144.31 152.38 137.67 132.12 141.95 142.45 134.08 127.29

s = 990
r = 20

2,000 389.94 407.25 370.77 357.20 376.79 371.99 358.18 336.99

Max.
s = 40
r = 20

100 0.06 0.06 0.05 0.05 0.05 0.06 0.05 0.05

s = 490
r = 20

1,000 65.17 87.62 61.53 60.61 58.75 57.20 55.41 52.00

s = 740
r = 20

1,500 244.77 344.02 214.41 205.77 215.31 220.02 197.31 190.44

s = 990
r = 20

2,000 579.54 772.44 565.13 533.85 574.59 583.78 579.29 536.14

Min.
s = 40
r = 20

100 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04

s = 490
r = 20

1,000 30.49 29.75 28.75 27.80 28.73 29.41 27.90 27.94

s = 740
r = 20

1,500 85.45 94.66 86.37 90.65 81.79 93.31 86.84 84.17

s = 990
r = 20

2,000 278.80 265.84 271.74 249.39 267.18 262.67 266.51 249.64

more effective than TPFL-I+LM2 for some special polynomial
equations. We can see this tendency for random polynomial equa-
tions: both TPFL-I+LM2 and TPFL-II+LM2 are more effective
than FL+LM and LMQ. We can also see that TPFL-II+LM2 is
more effective than TPFL-I+LM2. Additionally, we can confirm
that the lower bound generated by Newton’s method is effective
for random polynomial equations. In Table 3, the maximum and
minimum values in TPFL-II+LM2 is almost equal to the time in
TPFL-II+LM2+Newton. It is because the Newton bound is not
so employed in these cases. In the case of the maximum values,

namely, when the input polynomials such as special polynomials
in Table 2 are difficult to solve, the Newton bound is light but
may not be sharp (or, tight) and effective and then other bounds
may be employed. In the case of the minimum values, the input
polynomials are easy to solve. In the case, Newton bound is also
not employed because other bounds work effectively. Therefore,
we propose TPFL-II+LM2+Newton as a suitable combination of
the lower bounds for accelerating the numerical computation of
positive roots of polynomials.

A t–test is presented for the null hypothesis that the experi-
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Table 4 t–test.

Degree p–value
100 0.044934725

1,000 1.40089∗10−20

1,500 2.43597∗10−20

2,000 1.52971∗10−22

mental results obtained from the two different methods are equal.
The target methods are LMQ, which is an existing method, and
TPFL-II+LM2+Newton, which is a proposed method combining
all the methods. Table 4 shows the p–values for the 100 test poly-
nomial equations. By Table 4, since the p–value is smaller than
0.05, the null hypothesis is rejected and a significant difference is
confirmed.

7. Conclusions

In this study, we have proposed a suitable combination of the
lower bounds based on the local-max bound, the first-λ bound,
and the lower bound generated by Newton’s method for acceler-
ating the CF method. The local-max2 bound is sharper than or
equal to the local-max bound. The tail-pairing first-λ bound is
expected to be more suitable for the CF method than the first-λ
bound. The reason is as follows: in the CF method, the coeffi-
cients of the lower order terms tend to be large because the re-
placement x → x + l b is needed many times in the CF method.
The tail-pairing first-λ bound takes care of the lower order (tail)
terms firstly. The feature makes tail-pairing first-λ bound work
more effectively than first-λ bound. Here, l b is generally an inte-
ger larger than 2. Thus, the above can be confirmed by consider-
ing the relationship between the order and the coefficients in the
binomial expansion. The numerical results show that the average
execution time of the CF method with both the local-max2 bound,
the tail-pairing first-λ bound, and the lower bound generated by
Newton’s method is faster than or nearly equal to that with the
local-max bound, first-λ bound, and local-max quadratic bound
for all polynomial equations.
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Appendix

Table A·1 Ratio of each bound adopted in a special polynomial (Laguerre).

Degree Method ratio
0 bound LMQ LM Newton FL TPFL-I TPFL-II LM2

100 FL+LM 0.510309 - 0.0257732 - 0.463918 - - -
LMQ 0.482759 0.517241 - - - - - -
TPFL-I+LM2 0.475 - - - - 0.08 - 0.445
TPFL-II+LM2 0.552486 - - - - - 0.0497238 0.39779
FL+LM+Newton 0.510309 - 0.0257732 0 0.463918 - - -
LMQ+Newton 0.482759 0.517241 - 0 - - - -
TPFL-I+LM2+Newton 0.475 - - 0 - 0.08 - 0.445
TPFL-II+LM2+Newton 0.552486 - - 0 - - 0.0497238 0.39779

1,000 FL+LM 0.540261 - 0.023395 - 0.436344 - - -
LMQ 0.484666 0.515334 - - - - - -
TPFL-I+LM2 0.53148 - - - - 0.0839478 - 0.384572
TPFL-II+LM2 0.667354 - - - - - 0.0756014 0.257045
FL+LM+Newton 0.540261 - 0.023395 0 0.436344 - - -
LMQ+Newton 0.484666 0.515334 - 0 - - - -
TPFL-I+LM2+Newton 0.53148 - - 0 - 0.0839478 - 0.384572
TPFL-II+LM2+Newton 0.667354 - - 0 - - 0.0756014 0.257045

1,500 FL+LM 0.528397 - 0.0176132 - 0.45399 - - -
LMQ 0.481642 0.518358 - - - - - -
TPFL-I+LM2 0.508561 - - - - 0.0757741 - 0.415665
TPFL-II+LM2 0.647006 - - - - - 0.0661305 0.286863
FL+LM+Newton 0.528397 - 0.0176132 0 0.45399 - - -
LMQ+Newton 0.481642 0.518358 - 0 - - - -
TPFL-I+LM2+Newton 0.508561 - - 0 - 0.0757741 - 0.415665
TPFL-II+LM2+Newton 0.647006 - - 0 - - 0.0661305 0.286863

2,000 FL+LM 0.537649 - 0.0181473 - 0.444204 - - -
LMQ 0.484521 0.515479 - - - - - -
TPFL-I+LM2 0.5201 - - - - 0.0817854 - 0.398115
TPFL-II+LM2 0.619202 - - - - - 0.0687642 0.312034
FL+LM+Newton 0.537649 - 0.0181473 0 0.444204 - - -
LMQ+Newton 0.484521 0.515479 - 0 - - - -
TPFL-I+LM2+Newton 0.5201 - - 0 - 0.0817854 - 0.398115
TPFL-II+LM2+Newton 0.619202 - - 0 - - 0.0687642 0.312034

Table A·2 Ratio of each bound adopted in a special polynomial (Chebyshev-I).

Degree Method ratio
0 bound LMQ LM Newton FL TPFL-I TPFL-II LM2

100 FL+LM 0.525773 - 0.0103093 - 0.463918 - - -
LMQ 0.531915 0.468085 - - - - - -
TPFL-I+LM2 0.547619 - - - - 0.0119048 - 0.440476
TPFL-II+LM2 0.547619 - - - - - 0.0119048 0.440476
FL+LM+Newton 0.525773 - 0.0103093 0 0.463918 - - -
LMQ+Newton 0.531915 0.468085 - 0 - - - -
TPFL-I+LM2+Newton 0.547619 - - 0 - 0.0119048 - 0.440476
TPFL-II+LM2+Newton 0.547619 - - 0 - - 0.0119048 0.440476

1,000 FL+LM 0.618119 - 0.0137615 - 0.368119 - - -
LMQ 0.597387 0.402613 - - - - - -
TPFL-I+LM2 0.597132 - - - - 0 - 0.402868
TPFL-II+LM2 0.597132 - - - - - 0 0.402868
FL+LM+Newton 0.618119 - 0.0137615 0 0.368119 - - -
LMQ+Newton 0.597387 0.402613 - 0 - - - -
TPFL-I+LM2+Newton 0.597132 - - 0 - 0 - 0.402868
TPFL-II+LM2+Newton 0.597132 - - 0 - - 0 0.402868

1,500 FL+LM 0.645849 - 0.0114242 - 0.342727 - - -
LMQ 0.615262 0.384738 - - - - - -
TPFL-I+LM2 0.606034 - - - - 0 - 0.393966
TPFL-II+LM2 0.606034 - - - - - 0 0.393966
FL+LM+Newton 0.645849 - 0.0114242 0 0.342727 - - -
LMQ+Newton 0.615262 0.384738 - 0 - - - -
TPFL-I+LM2+Newton 0.606034 - - 0 - 0 - 0.393966
TPFL-II+LM2+Newton 0.606034 - - 0 - - 0 0.393966

2,000 FL+LM 0.661394 - 0.016403 - 0.322203 - - -
LMQ 0.624319 0.375681 - - - - - -
TPFL-I+LM2 0.608442 - - - - 0 - 0.391558
TPFL-II+LM2 0.608442 - - - - - 0 0.391558
FL+LM+Newton 0.661394 - 0.016403 0 0.322203 - - -
LMQ+Newton 0.624319 0.375681 - 0 - - - -
TPFL-I+LM2+Newton 0.608442 - - 0 - 0 - 0.391558
TPFL-II+LM2+Newton 0.608442 - - 0 - - 0 0.391558
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Table A·3 Ratio of each bound adopted in a special polynomial (Chebyshev-II).

Degree Method ratio
0 bound LMQ LM Newton FL TPFL-I TPFL-II LM2

100 FL+LM 0.537634 - 0.0215054 - 0.44086 - - -
LMQ 0.54023 0.45977 - - - - - -
TPFL-I+LM2 0.529412 - - - - 0.0235294 - 0.447059
TPFL-II+LM2 0.529412 - - - - - 0.0235294 0.447059
FL+LM+Newton 0.537634 - 0.0215054 0 0.44086 - - -
LMQ+Newton 0.54023 0.45977 - 0 - - - -
TPFL-I+LM2+Newton 0.529412 - - 0 - 0.0235294 - 0.447059
TPFL-II+LM2+Newton 0.529412 - - 0 - - 0.0235294 0.447059

1,000 FL+LM 0.626424 - 0.00797267 - 0.365604 - - -
LMQ 0.598109 0.401891 - - - - - -
TPFL-I+LM2 0.606299 - - - - 0 - 0.393701
TPFL-II+LM2 0.606299 - - - - - 0 0.393701
FL+LM+Newton 0.626424 - 0.00797267 0 0.365604 - - -
LMQ+Newton 0.598109 0.401891 - 0 - - - -
TPFL-I+LM2+Newton 0.606299 - - 0 - 0 - 0.393701
TPFL-II+LM2+Newton 0.606299 - - 0 - - 0 0.393701

1,500 FL+LM 0.657165 - 0.0138675 - 0.328968 - - -
LMQ 0.609968 0.390032 - - - - - -
TPFL-I+LM2 0.608621 - - - - 0 - 0.391379
TPFL-II+LM2 0.608621 - - - - - 0 0.391379
FL+LM+Newton 0.657165 - 0.0138675 0 0.328968 - - -
LMQ+Newton 0.609968 0.390032 - 0 - - - -
TPFL-I+LM2+Newton 0.608621 - - 0 - 0 - 0.391379
TPFL-II+LM2+Newton 0.608621 - - 0 - - 0 0.391379

2,000 FL+LM 0.664512 - 0.0152761 - 0.320212 - - -
LMQ 0.626521 0.373479 - - - - - -
TPFL-I+LM2 0.616393 - - - - 0 - 0.383607
TPFL-II+LM2 0.616393 - - - - - 0 0.383607
FL+LM+Newton 0.664512 - 0.0152761 0 0.320212 - - -
LMQ+Newton 0.626521 0.373479 - 0 - - - -
TPFL-I+LM2+Newton 0.616393 - - 0 - 0 - 0.383607
TPFL-II+LM2+Newton 0.616393 - - 0 - - 0 0.383607

Table A·4 Ratio of each bound adopted in a special polynomial (Wilkinson).

Degree Method ratio
0 bound LMQ LM Newton FL TPFL-I TPFL-II LM2

100 FL+LM 0.989899 - 0 - 0.010101 - - -
LMQ 1 0 - - - - - -
TPFL-I+LM2 0.989899 - - - - 0 - 0.010101
TPFL-II+LM2 0.989899 - - - - - 0 0.010101
FL+LM+Newton 0.989899 - 0 0 0.010101 - - -
LMQ+Newton 1 0 - 0 - - - -
TPFL-I+LM2+Newton 0.989899 - - 0 - 0 - 0.010101
TPFL-II+LM2+Newton 0.989899 - - 0 - - 0 0.010101

1,000 FL+LM 0.998999 - 0 - 0.001001 - - -
LMQ 1 0 - - - - - -
TPFL-I+LM2 0.998999 - - - - 0 - 0.001001
TPFL-II+LM2 0.998999 - - - - - 0 0.001001
FL+LM+Newton 0.998999 - 0 0 0.001001 - - -
LMQ+Newton 1 0 - 0 - - - -
TPFL-I+LM2+Newton 0.998999 - - 0 - 0 - 0.001001
TPFL-II+LM2+Newton 0.998999 - - 0 - - 0 0.001001

1,500 FL+LM 0.999333 - 0 - 0.000667111 - - -
LMQ 1 0 - - - - - -
TPFL-I+LM2 0.999333 - - - - 0 - 0.000667111
TPFL-II+LM2 0.999333 - - - - - 0 0.000667111
FL+LM+Newton 0.999333 - 0 0 0.000667111 - - -
LMQ+Newton 1 0 - 0 - - - -
TPFL-I+LM2+Newton 0.999333 - - 0 - 0 - 0.000667111
TPFL-II+LM2+Newton 0.999333 - - 0 - - 0 0.000667111

2,000 FL+LM 0.9995 - 0 - 0.00050025 - - -
LMQ 1 0 - - - - - -
TPFL-I+LM2 0.9995 - - - - 0 - 0.00050025
TPFL-II+LM2 0.9995 - - - - - 0 0.00050025
FL+LM+Newton 0.9995 - 0 0 0.00050025 - - -
LMQ+Newton 1 0 - 0 - - - -
TPFL-I+LM2+Newton 0.9995 - - 0 - 0 - 0.00050025
TPFL-II+LM2+Newton 0.9995 - - 0 - - 0 0.00050025
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Table A·5 Ratio of each bound adopted in a special polynomial (Mignotte).

Degree Method ratio
0 bound LMQ LM Newton FL TPFL-I TPFL-II LM2

100 FL+LM 0.4 - 0 - 0.6 - - -
LMQ 0.4 0.6 - - - - - -

TPFL-I+LM2 0.2 - - - - 0 - 0.8
TPFL-II+LM2 0.2 - - - - - 0 0.8
FL+LM+Newton 0.4 - 0 0 0.6 - - -
LMQ+Newton 0.4 0.6 - 0 - - - -
TPFL-I+LM2+Newton 0.2 - - 0 - 0 - 0.8
TPFL-II+LM2+Newton 0.2 - - 0 - - 0 0.8

1,000 FL+LM 0.4 - 0 - 0.6 - - -
LMQ 0.4 0.6 - - - - - -
TPFL-I+LM2 0.2 - - - - 0 - 0.8
TPFL-II+LM2 0.2 - - - - - 0 0.8
FL+LM+Newton 0.4 - 0 0 0.6 - - -
LMQ+Newton 0.4 0.6 - 0 - - - -
TPFL-I+LM2+Newton 0.2 - - 0 - 0 - 0.8
TPFL-II+LM2+Newton 0.2 - - 0 - - 0 0.8

1,500 FL+LM 0.4 - 0 - 0.6 - - -
LMQ 0.4 0.6 - - - - - -
TPFL-I+LM2 0.2 - - - - 0 - 0.8
TPFL-II+LM2 0.2 - - - - - 0 0.8
FL+LM+Newton 0.4 - 0 0 0.6 - - -
LMQ+Newton 0.4 0.6 - 0 - - - -
TPFL-I+LM2+Newton 0.2 - - 0 - 0 - 0.8
TPFL-II+LM2+Newton 0.2 - - 0 - - 0 0.8

2,000 FL+LM 0.4 - 0 - 0.6 - - -
LMQ 0.4 0.6 - - - - - -
TPFL-I+LM2 0.2 - - - - 0 - 0.8
TPFL-II+LM2 0.2 - - - - - 0 0.8
FL+LM+Newton 0.4 - 0 0 0.6 - - -
LMQ+Newton 0.4 0.6 - 0 - - - -
TPFL-I+LM2+Newton 0.2 - - 0 - 0 - 0.8
TPFL-II+LM2+Newton 0.2 - - 0 - - 0 0.8

Table A·6 Ratio of each bound adopted in random polynomials.

Degree Method ratio
0 bound LMQ LM Newton FL TPFL-I TPFL-II LM2

100 FL+LM 0.462123 - 0.022208 - 0.525669 - - -
LMQ 0.411793 0.598207 - - - - - -
TPFL-I+LM2 0.377454 - - - - 0.066387 - 0.566158
TPFL-II+LM2 0.360135 - - - - - 0.090284 0.559581
FL+LM+Newton 0.463192 - 0.022431 0.001204 0.523173 - - -
LMQ+Newton 0.41255 0.596237 - 0.001214 - - - -
TPFL-I+LM2+Newton 0.377069 - - 0.001154 - 0.066071 - 0.565705
TPFL-II+LM2+Newton 0.360689 - - 0.001369 - - 0.091499 0.556443

1,000 FL+LM 0.480478 - 0.027954 - 0.501568 - - -
LMQ 0.465412 0.544588 - - - - - -
TPFL-I+LM2 0.447046 - - - - 0.069961 - 0.492993
TPFL-II+LM2 0.462829 - - - - - 0.104902 0.442269
FL+LM+Newton 0.497423 - 0.024113 0.014243 0.47422 - - -
LMQ+Newton 0.480076 0.51092 - 0.019004 - - - -
TPFL-I+LM2+Newton 0.457372 - - 0.016016 - 0.047278 - 0.489333
TPFL-II+LM2+Newton 0.486612 - - 0.01888 - - 0.082564 0.421944

1,500 FL+LM 0.501306 - 0.024251 - 0.484442 - - -
LMQ 0.462036 0.547964 - - - - - -
TPFL-I+LM2 0.456905 - - - - 0.052323 - 0.500772
TPFL-II+LM2 0.461266 - - - - - 0.10205 0.446684
FL+LM+Newton 0.511473 - 0.024046 0.009817 0.464664 - - -
LMQ+Newton 0.475204 0.520537 - 0.014259 - - - -
TPFL-I+LM2+Newton 0.461589 - - 0.011905 - 0.03305 - 0.503457
TPFL-II+LM2+Newton 0.47086 - - 0.015639 - - 0.086116 0.437385

2,000 FL+LM 0.490812 - 0.027281 - 0.491907 - - -
LMQ 0.466728 0.543272 - - - - - -
TPFL-I+LM2 0.45005 - - - - 0.060527 - 0.499423
TPFL-II+LM2 0.463252 - - - - - 0.110232 0.436516
FL+LM+Newton 0.504082 - 0.027923 0.013191 0.464804 - - -
LMQ+Newton 0.490855 0.500833 - 0.018312 - - - -
TPFL-I+LM2+Newton 0.456051 - - 0.014843 - 0.0382 - 0.500906
TPFL-II+LM2+Newton 0.482208 - - 0.019193 - - 0.094456 0.414142
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