

Preliminary Implementation of Measurement Method
for ROS1 Callback Execution Time

MASATO FUKUI†1 YOICHI ISHIWATA†2
TAKESHI OHKAWA†3 MIDORI SUGAYA†1

Abstract: Currently, Robot Operating System (ROS) is widely used as a framework for distributed processing in autonomous
mobile robot software development. ROS uses a process as a node and communicates between nodes by publishing/subscribing
asynchronously. These mechanisms make it easier for users to use an asynchronous system with multiple processes. However, in
ROS, it is difficult to measure the function called by the subscriber when it returns from waiting for an event (callback function).
Therefore, in this study, we triggered messages on the ROS middleware to identify the part where the node function is executed
and measured the execution time. This paper presents our results on running the application and measuring the node processing
time.

Keywords: ROS, execution time, measurement

1. Introduction

 In recent years, Robot Operating System (ROS) [1] has been
widely used as a framework for distributed systems in robot
software development. ROS is a software that includes useful
tools and libraries to support the development of robot
applications. Robot software development requires the
development of various modules such as sensor, actuator, driver,
and data processing logic. In ROS, which is a distributed system,
the application is implemented separately in multiple nodes. This
enhances code reusability and productivity. Data is exchanged
between the divided nodes in the publish/subscribe pattern. This
makes it possible to communicate without specifying other
parties, but at the same time makes the structure of the application
complicated. Consequently, it is difficult to correctly evaluate the
performance of a ROS application in which multiple nodes
operate asynchronously. In order to measure the performance of
the application, it is necessary to investigate the execution time
of each node and the communication time between them.
However, ROS communicates via queue. In addition, it is
difficult to grasp the callback execution time of node. For this
reason, there is a problem that it is difficult to investigate the
overall performance.

Therefore, this research proposes a mechanism to measure the
execution time of node, especially at the time of callback of ROS.
We also implemented the proposed mechanism in ROS and
measured the execution time of the SLAM Gmapping algorithm,
which is a typical ROS application consisting of multiple nodes.

The structure of this paper is as follows: Section 2 describes
the problem of measurement with ROS. Section 3 explains the
proposed method. Section 4 describes time measurement using
the proposed method. A conclusion is given in Section 5.

2. ROS Issues

2.1 Structure of ROS
 This section describes the basic structure of ROS. In ROS,

 †1 Shibaura Institute of Technology
 †2 Ales K.K.

node is used as the basic unit of software. This is the same as the
process in the OS. Each node has a single function. In robot
software development using ROS, a system is constructed by
connecting multiple nodes. For ROS communication, the
publish/subscribe pattern via a communication path called topic
is used. Figure 1 illustrates data transmission and reception by the
ROS nodes. In the figure, node and topic are represented by
ellipse and rectangle, respectively. Node has a publisher that
sends data and a subscriber that subscribes to it and receives and
processes the data when there is an update. In our proposed model,
we created two nodes, /talker_node for publisher and
/listener_node for subscriber, and these nodes communicate via
the topic /chatter.

Figure 1 ROS communication model

The publisher, which is the starting point of the data flow, has

a role in acquiring data from sensors and passing that data to other
nodes. The subscriber receives and processes the data. Then, the
processing result is sent to another node or used for robot
operation. There are two types of ROS, ROS1 and ROS2. In this
study, ROS1 was targeted.

2.2 Issues in measuring execution time in ROS applications
 Node subscribes to the input topic and waits for an event to
update the topic, and set a handler function (callback function)
that triggers the reception of a message in node in advance. When
a message is received, a callback function is called to process the
data and output the result as a topic with a different name. We
defined this processing time as the node execution time.

When measuring the node execution time, it is not possible to
measure only the input/output topic time. Figure 2 shows the
message flow of the ROS nodes. Similar to other message
queuing systems, the ROS publish/subscribe pattern also puts
received messages into the receive queue. Then, the message is

 †3 Tokai University

Asia Pacific Conference on Robot IoT System Development and Platform 2021 (APRIS2021)

ⓒ 2022 Information Processing Society of Japan 106

taken out from the queue and processed. The time that the
message is waiting in the queue cannot be measured. In addition,
the message may be discarded if the queue overflows. Therefore,
it is not possible to measure the execution time of node just by
monitoring topic. From these points, ROS has a problem that it is
difficult to measure the execution time of an application in detail.

Figure 2 Dataflow in ROS publish/subscribe pattern. Node
temporarily adds the message received from Topic1 to the
message queue. When a message is queued, node's handler

function (callback function) retrieves the data and executes the
process. The processing result is sent to another node using

Topic2.

2.3 Measurement tools in the ROS
 A rosbag [2] is a toolset for recording and playing back ROS
topic. It can record the time the message is sent and the content
of the message. The rosbag subscribes the topic to be recorded,
and records the current time and data contents each time the topic
is changed. Since this tool targets topic, it is not possible to
measure the execution time of node.

3. “hCT”: high precision Callback Tracer

The ROS measurement tool cannot measure callback
functions. Therefore, in this resarch, we designed and
implemented a tool for tracking callback functions in ROS node.

It is necessary to track the callback function inside ROS in
order to identify which topic-related function was called along
with the callback function. Inside ROS, two types of keys are
used to identify node and callback functions. A hash value called
md5sum is used in the API that creates a node and sets a callback
function. On the other hand, the key called removal_id is used in
CallbackQueue :: CallOneCB (), which is the API that actually
calls the callback function. Therefore, hCT binds and saves these
two keys to identify the callback function. To measure how long
it took to process the node, we used the clock_gettime() function
before and after calling the callback function and calculated the
difference.

4. Measurement

 We measured the execution time of the ROS node using the
proposed measurement tool. We measured the execution time of
/turtlebot3_slam_gmapping node of the SLAM gmapping
package, which is one of the ROS applications. SLAM gmapping
is an application for map generation and robot self-position
estimation using robot sensor data.

 For the experimental environment, we used Gazebo, a ROS
physics simulator, and the TurtleBot3 burger robot. SLAM
gmapping was executed using the sensor data from the TurtleBot3
burger installed in the simulation space. At this time, the time
required for processing was measured using hCT.

Table 1 shows the experiment environment. The experiment
was performed using Ubuntu 18.04.5 on KVM. After starting the
Gazebo simulator, the target node was executed for 10 minutes.
We measured the execution time of the callback function for each
event.

Table 1 Experiment environment
CPU Intel Xeon Gold 6230 (20Core, 2.1GHz,

27.5MB cache) x 2
RAM 32GiB

OS Ubuntu18.04.5
ROS distro melodic

Figure 3 shows the measurement result. The horizontal axis

shows the number of simulations SLAM was performed. The
vertical axis shows the execution time at that time in seconds.
Except for the first four runs, which have significantly shorter
execution times, the average execution time was 3.81 seconds,
the minimum value was 2.71 seconds, the maximum value was
4.86 seconds, and the variance was 0.25 seconds.

Figure 3 Measurement result

5. Conclusion

In this paper, we proposed the execution time measurement
method of the ROS Node callback function. Based on this, we
implemented a prototype of the measurement tool. We confirmed
that the execution time of SLAM gmapping node can be
measured using our designed tool.

References
[1]M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, et al.,

"Ros: an open-source robot operating system", ICRA workshop on
open source software, vol. 3, no. 3.2, pp. 5, 2009.

[2]“rosbag - ROS Wiki”. https://wiki.ros.org/rosbag, (accessed 2021-10-
18).

 Acknowledgments This research was supported by Japan
Science and Technology Agency (JST), CREST, JPMJCR19K1.
We would like to express our gratitude to all of them.

Topic1 Node Topic2

message

message

FIFO

0

2

4

6

1 12 23 34 45 56 67 78 89 10
0

11
1

12
2

13
3

14
4

15
5

E
xe

cu
tio

n
tim

e
(s

ec
)

Number of simulations

Asia Pacific Conference on Robot IoT System Development and Platform 2021 (APRIS2021)

ⓒ 2022 Information Processing Society of Japan 107

