
 

 Improving the Accuracy of Estimating the Probability of 

Test Case Generation for Simulink Models Using Machine Learning 
 

TIANCHENG JIN†1  TAKUYA OGATA†1     

  YUGE LIU†1  KENJI HISAZUMI†2 

 

Abstract: Model-Based Development (MBD) is gaining popularity in a range of fields. In automatic test case generation, a 

Simulink model is utilized as an input, and test cases that meet decision criteria such as model coverage are output. As a result, test 

cases can't be generated for models that don't meet the decision criteria. Furthermore, the test case creation success or failure is 

frequently unknown until the test case generation is run. Suppose the test case generation success or failure is known before the 

test case generation. In that case, it is possible to encourage the rewriting of the model differently while keeping the functions being 

same. Some methods estimate whether a test case can be generated using machine learning, but do not achieve sufficient accuracy. 

This study proposes a new approach to improve accuracy by adopting a graph neural network. The accuracy for LightGBM and 

Random Forest is about 75%, and the accuracy of GCN and GAT is 81%. The result shows that there are still possibilities for 

optimization of the method. 
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1. Introduction     

  The development standards for control embedded systems 

were formerly specified in natural language. Model-based devel-

opment (MBD)[1] is a software development method based on 

algorithmic modeling. As a method of growth, it is becoming in-

creasingly popular. 

A model generation system that can generate Simulink models 

at random is built into this work. The model generation mecha-

nism has also been enhanced to enable the production of more 

complex models. In addition, a machine learning technique is 

proposed that uses a deep learning architecture such as a graph-

ical neural network to estimate Simulink test case production time 

using machine learning more accurately. 

 

2. Methodology 

2.1 Overview 

  This section describes a method for estimating whether a test 

case can be generated that employs machine learning. Model gen-

eration is the first step, divided into two parts: graph generation 

and model transformation. The generated model will then be used 

to train a test case generated usability estimation method using 

the generated model. We'll go over the procedure in detail in this 

section. 

2.2 Model Generation 

As Figure 1 shows, Graph creation and model transformation 

are the two aspects of the procedure. Block selection, port match-

ing, and loop elimination are all part of the graph generation pro-

cess. Parameterization, model creation, and model export are all 

part of the model conversion process[2].  
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Figure 1: Model Generation Process 

 

2.2.1 Block Selection 

In Block Selection, all blocks should be supported by SLDV 

for the resulting model to be correctly authenticated. 

2.2.2 Graph Generating 

After block selection, the names of the blocks and the signal 

kinds for each input and output port must be kept in a list. It con-

tains the block names, the signal types supported by each input 

port and output port, and the weight of each block. 

2.2.3 Avoid Algebraic Loops  

An algebraic loop arises when the input signal affects the out-

put signal, and the output signal likewise determines the input 

signal, resulting in a compilation error. Add a unit delay block to 

the cycle to eliminate algebraic loops as Figure 2 shows. 

 

Figure 2: Loop Elimination 
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2.2.4 Graph to Model  

Create a list containing the block name and output port number 

to keep track of line information during the graph production pro-

cess. The MATLAB engine transfers this data to the MATLAB 

script, and the Simulink model is generated programmatically.  

2.3 Test Case Generation Availability Estimation Method 

We present a system that employs supervised machine learning 

to estimate whether or not to construct test cases with two classes 

of output using features collected from graphing Simulink models 

as input in this method, as shown in Figure 3.  

 

Figure 3: Creation of Inferential Models 

 

2.3.1 Feature Extraction 

To do feature extraction, a Simulink model is turned into a di-

rected graph in the feature extraction block. Internally stored var-

iables are used to conduct this modification at the nodes. The fol-

lowing operations are then carried out. 

2.3.2 Bag of Nodes 

Bag of nodes is a method that counts the number of nodes in a 

graph and characterizes their frequency. It turns the node infor-

mation of the longest path into frequency information by taking 

all the shortest paths from input to output.  

Get the Simulink model's list of import blocks, Constant blocks, 

and Outport blocks. Find the shortest path between all Import and 

Constant blocks and Outport blocks. On the route, replace the 

block names with the properties of each block. Replace the Con-

stant block with "Constant + M" for the rewritten blocks on the 

route, using the number of digits M of the constant value N that 

the block possesses. If the block L has a Constant block as its 

input, the blocks are replaced with "L+constant+M" for the re-

placement blocks on the pathway. 

Features that can be derived from an effective graph are ex-

tracted. Include the following four characteristics: the average 

cluster coefficient c in the graph G, the number of nodes in the 

graph G, n, the number of edges, m, the graph density 𝑑 = 𝑚/(𝑛 

∗ (𝑛 − 1)). 

2.3.3 Supervised Learning 

We utilize a supervised machine learning approach to tackle 

the two-class classification problem because the test generation 

possibility is represented by two classes in this method: test case 

generation possibility and test case generation impossibility. 

There are a variety of these approaches, however we employed 

Random Forest [3] and LightGBM [4] in our tests. We use Graph 

Convolutional Network [5] (GCN) and Graph Attention Network 

[6] (GAT) as learning models in experiments 

 

3. EVALUATION 

  This section discusses the tests that were carried out to eval-

uate and debate the proposed method's performance.  

3.1 Model Generation 

The model generator size is between 10 and 60 and we com-

pared with existing models from GitHub. The size of generated 

models is mainly larger than existing models. 

3.2 Evaluation Results of Estimation Method 

Using the feature extraction method, we compared the recog-

nition accuracy of the trained models. A suitable evaluation met-

ric is employed to assess the suggested approach. The proposed 

technique uses supervised machine learning to evaluate the pos-

sibility of test case creation for two classes of classification prob-

lems. The Table 1 shows the outcomes of the evaluation. 

 

Table 1: System evaluation results 

 

 

4. CONCLUSIONS 

The purpose of this study is to determine how to complete the 

development of an automatic Simulink model generator in order 

to address the issue of a shortage of training data. A method for 

determining test case generation time and MBD of Simulink 

model test case generating availability is also described. Internal 

information from Simulink is used as a feature in a machine learn-

ing approach to see if a test case can be generated. 
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