
Requirements on Model Transformation for Model
Refactoring in State Transition Model Description

Language stmc

Takumi ICHIDA1,a) Nobuhiko OGURA1,b)

Abstract: This article discusses the issues in the model transformation for a model refactoring supporting tool. As a
basis of this discussion, the article shows examples of the model transformation to a state machine model described
by state transition model description language stmc and provides a model-to-model transformation program for the
stmc model. In the field of model refactoring, numerous approaches to describe the model and model transformations
have been introduced. Although, the ambiguity of semantics in the modeling language makes it difficult to describe
software models and model transformations and to preserve model behaviors before and after model transformations.
In this article, to avoid such ambiguity, we focus on the state transition model description language stmc which can
define the state machine model using clear and informal semantics.

Keywords: Model Transformation, Model Refactoring, State Machine Diagram, stmc

1. Introduction
Software models help to represent the abstract structure of the

system as the concrete diagram in the development process of
embedded systems. Model refactoring techniques which is the
application of refactoring techniques [1] to software models can
improve readability and maintainability by changing the inter-
nal structure of models without changing their external behav-
ior. Numerous works such as a model refactoring for UML class
diagrams and a model transformation using graph transforma-
tion systems(GTS) have been developed to suggest approaches
describing a model and a model transformation [2]. However,
the ambiguity of semantics in the modeling language causes dif-
ficulties in describing the model and the model transformation
and preserving the model’s behaviors before and after the model
transformation. The refactoring of Executable UML [3] is one of
the cases which use the modeling language with clear semantics
in the model transformation. Since ambiguity should be avoided,
we focus on the state transition model description language stmc,
which can express the elements of a state transition model with
clear and informal semantics.

This article discusses issues in the stmc model transformation
for a model refactoring supporting tool. We specify two issues
that need to be overcome for users to use the model refactoring
tool: how to depict the area to be transformed, and how to input
prior information for the automated transformation process. In
addition, we show issues of the behavior preservation and diffi-
culties of the scope alteration derived from the language structure
of stmc. To discuss issues, we develop concrete examples of stmc
model modifications. We also develop a model-to-model trans-

1 Tokyo City University, Setagaya, Tokyo, 158–8557, Japan
a) g2083102@tcu.ac.jp
b) ogura@tcu.ac.jp

formation program for the stmc model to execute these example
modifications. This discussion clarifies several requirements on a
model transformation for creating a model refactoring supporting
tool. Future works are needed to classify effective model mod-
ification examples and to identify the input forms for a model
refactoring supporting tool. Furthermore, we plan to develop a
model refactoring supporting tool for stmc models.

This article starts with explaining the language and stmc model
modification examples. Then we describe the model transforma-
tion program to implement these examples. Based on these ex-
amples, we discuss issues on stmc model transformation. Lastly,
we introduce related works and future works.

2. Model Modification Example
This section introduces the model modification examples for

state machine models written in stmc. stmc is the programming
language that can describe state machine models using a syntax
resembling C programming language. This language can write
the state machine model in the C program.

We develop following four modification examples which focus
on the transition: (1) MoveCodeToTransitionAction (2) Separate-
GuardString (3) SeparateSourceState (4) GroupSourceState.

2.1 MoveCodeToTransitionAction
If the action that should be executed at the transition appears in

the execution program, the domains of the model and the model
execution program will be confused. This transformation inserts
a part of the execution program into the transition action. This
transformation moves actions written in the execution program
into actions in suitable transition.

Asia Pacific Conference on Robot IoT System Development and Platform 2021 (APRIS2021)

ⓒ 2022 Information Processing Society of Japan 90



2.2 SeparateGuardString
A composite condition is one of the factors that reduce the

maintainability of a source code. This example decomposes a
long transition condition and changes it into multiple transitions
with short conditional expressions. It becomes easy to add or
modify conditions in the future by subdividing the conditional
expression into multiple statements. Figure 1 shows the part of
this modification example.

Fig. 1 Example of SeparateGuardString

2.3 SeparateSourceState
When a transition has multiple source states, it is difficult to

handle the current state in the transition action, which leads to
more complicated transition actions. This transformation changes
a transition from multiple states to a single state into multiple
transitions with a one-to-one correspondence between the source
state and the destination state. Although this transformation in-
creases the overall number of transitions, it improves readability
and maintainability of each transition.

2.4 GroupSourceState
stmc can define a state group that combines multiple states like

one state. Another example of multiple source states is the use of
this state group. In this case, the transformation grouping transi-
tion source states as a group facilitates the handle of the current
state in the transition action.

3. stmc Model Transformation Program
We developed a program that receives the stmc model, edits

it, and outputs it to the stmc model. Figure 2 shows the process
of the stmc model transformation program. This transformation
program can modify the model by adding or deleting elements of
the syntax tree and model data.

Fig. 2 Process of the model transformation

4. Discussion
This section presents issues that can be discussed using trans-

formation examples in Section 2 and the transformation program.

4.1 Issues in Using Tool
4.1.1 How to Specify Area

It is necessary to make it clear how to specify the elements of
the model which need to be transformed by refactoring. For in-
stance, an intuitive method for users to indicate the source code
in the execution program should be considered in MoveCodeTo-
TransitionAction. Other than that, it is required to provide a

method to specify a target transition that doesn’t have an iden-
tifier in SeparateSourceState and GroupSourceState.
4.1.2 How to Input Prior Information

Before implementing model refactoring, the user should know
what kind of information is required as prior input forms. When
new transitions are created in the process of SeparateSourceS-
tate, users should be able to input the value of “action string” and
“guard string” arbitrarily. Moreover, although SeparateGuard-
String adds the state and GroupSourceState adds the state group,
it is better for the users to decide these names than to name them
automatically in the process.

4.2 Issues in Model Structure
4.2.1 Behavior Preservation

Sometimes the state machine model generated after a model
transformation has a different behavior than before the transfor-
mation. However, according to the definition of refactoring, the
behavior must be the same before and after the transformation.
The risk of changing the behavior is high in MoveCodeToTransi-
tionAction because the order of elements in the source code such
as the execution program and transition actions is changed. In
addition, the process of separating conditional statements in Sep-
arateGuardString may change the behavior, since an automatic
transformation may result in a change of branching.
4.2.2 Scope Alteration

stmc is an extension of the C language. Therefore, there are
problems with the scope alteration that exists in an ordinal pro-
gramming language. This problem occurs not only when mov-
ing source code without considering the scope structure between
the transition action and the execution program in MoveCodeTo-
TransitionAction, but also when moving a part of the source code
across packages or classes.

5. Related Works
Previous studies have proposed model refactoring tools for

UML models. Since we are targeting a language with explicit
semantics, we can utilize refactoring in ordinal programming lan-
guages.

6. Conclusion
We present four issues in the stmc model transformation: how

to specify the elements in the model, how to input prior infor-
mation, behavior preservation, and scope alteration. As future
works, we plan to classify effective model modification methods
as model refactoring and identify the sufficient input forms for the
implementation of a model refactoring. Furthermore, we shall de-
velop a program that enables model refactoring for stmc models
towards a model refactoring supporting tool.

References
[1] Martin, F. and Kent, B.: Refactoring: Improving the Design of Exist-

ing Code: Addison-Wesley (2019).
[2] Misbhauddin, M. and Alshayeb, M.: UML model refactoring: a sys-

tematic literature review, Empirical Software Engineering, Vol.20,
No.1, pp.206-251 (2015).

[3] Mellor, S.J. and Balcer, M.J.: Executable UML: A Foundation for
Model-Driven Architecture, Addison-Wesley (2002).

Asia Pacific Conference on Robot IoT System Development and Platform 2021 (APRIS2021)

ⓒ 2022 Information Processing Society of Japan 91


