
Enhanced transplantability for smart agriculture drone
by an FPGA with SD standards

Ryo Nakagawa1,a) Yoshiki Yamaguchi2,b)

Abstract: Currently, people face food shortages because of the population and demand increase. Therefore, efficient
and sustainable agriculture are required. Agriculture is gradually putting the Internet of Things (IoT) technology into
practical use to respond to this new demand. For example, some companies have started to introduce agricultural
drones into practical use and raise product awareness. However, after the verification stage, they found out some prob-
lems under the practical use. One is the transplantability of the IoT agriculture system, and the other is the energy
performance. Here, we propose an FPGA-based drone system for agriculture applications to address their solutions.
The main task in agricultural drones is image acquisition and processing, so enabling onboard processing will save
time to retrieve images and improve usability. However, image processing requires higher performance, and available
electric capacity is limited on the drone system. Therefore, FPGA is a good candidate which implements only neces-
sary functions to enhance power performance, compared to a general-purpose CPU or GPU. In addition, considering
various farms and for multiple crops, the flexibility of the processing with FPGA is necessary. Moreover, a general-
purpose digital still camera is selected as its image sensor to archive high-cost performance and transplantability. Since
most consumer digital cameras don’t have an interface dedicated to image transmission, the SD card interface is used.
This paper describes how to emulate an SD card on FPGA to acquire image data from a digital camera. Firstly, from
the SD specification, the processing required to emulate the SD card is described. Then, the implementation of the
FAT file system is discussed so that the system behaves as storage. To demonstrate the proposed data acquisition
mechanism, we combined a module that emulates an SD card, provides virtual FAT file system access, and a DRAM
that stores the received data. These were implemented on a Xilinx ZYNQ SoC. Finally, we input the extended signal
from the SD card slot of the digital camera and confirmed that the implemented system was recognized as an SD card
by the camera.

Keywords: agricultural drone, FPGA, SD standards

1. Introduction
Smart farming, which utilizes IoT technology in agriculture

to improve productivity, can play an essential role in addressing
the issue of the future food shortage in the world. For example,
as readily available technology compared to satellites or aircraft,
drones are becoming an essential device because of grasping the
situation of a targeted farm field [1]. There are several attempts to
utilize drones in agriculture. Drones equipped with a single-view
camera are used to reconstruct the 3D shape of crop field from
multiple images by SfM (Structure from Motion) and estimate
the crop height (e.g., [1], [2]).

Dedicated designs lead drones to success (e.g., [1] targets on
the rice). However, it sometimes reduces the usability instead
of enhancing the accuracy and capturing additional information.
For example, sophisticated and complicated image processing re-
quires enormous efforts and is challenging to do on a drone. The
offline processing will require an additional flight when the qual-
ity of photos is insufficient for the analysis. In addition, Japanese
agriculture tends to grow various crops on a small farm, com-

1 Graduate School of Science and Technology, University of Tsukuba, 1-
1-1 Tennodai, Tsukuba, Ibaraki 305-8577 Japan

2 Faculty of Engineering, Information and Systems, University of
Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577 Japan

a) nakagawa.ryo.ni@lila.cs.tsukuba.ac.jp
b) yoshiki@cs.tsukuba.ac.jp

pared to Europe or the U.S, so adaptability to a wide variety of
produce is required.

In this paper, we discuss the utilization of drones as the means
of intelligent farming in Japan. FPGA is a good candidate for di-
rect hardware computing and circuit-level reconfigurability to en-
hance the adaptability to a wide range of harvests. The user flies
drones to get images while watching the simplified and real-time
measurement results, so real-time processing and transmission
are required. After recovering the drone, a detailed post-flight
analysis of the acquired images is conducted. Consequently, there
is a demand for image data storage. In addition, there is a lim-
itation on an available battery capacity due to the drone’s size;
fast computation with less power consumption is a better solu-
tion. Therefore we defined the requirements for our drone system
as follows:
• Real-time processing (usability)
• Communication equipment to download the result data (us-

ability)
• Image data storage for post-flight analysis (usability)
• Reconfigurable processing (adaptability)
• Low computational power consumption (drone)
This article proposes an agricultural drone equipped with

FPGA and a commodity digital camera to fulfill the above re-
quirements. As described in section 2 below, the SD standard in-
terface is used in our proposed system. Although some micropro-

Asia Pacific Conference on Robot IoT System Development and Platform 2021 (APRIS2021)

ⓒ 2022 Information Processing Society of Japan 50

Camera

FPGA

ResultsReconfigurable
Image

Processing

Images

ImagesInterface
Module SD Card

Images

User

Fig. 1 Block diagram of proposed system

cessors have an SD host interface, there are no microprocessors
or ASICs on the market which have an SD client (card) interface.
Since the SD standard interface is a low-level serial interface, a
dedicated logic circuit is required. Therefore, the FPGA is cho-
sen to implement the SD card functionality. Moreover, we use
the FPGA with new architecture because its power efficiency is
superior to conventional SRAM architecture [3]. However, in this
paper, off-the-shelf FPGA is used to evaluate the functionality of
our design. Furthermore, the commodity camera is adopted to
utilize its availability in the market and transplantability.

The remaining part of the paper proceeds as follows. The data
acquisition architecture with SD interface and FAT file system is
described in section 3. Section 4 presents the implementation of
the system. Evaluation of the system and results are presented in
section 5. Finally, conclusions are described in section 6.

2. The brief overview of a proposed system
Fig. 1 shows the relations of the main functions of the proposed

system below.
• Acquire images from the commodity digital camera in real-

time
• Save the acquired data to the SD card
• Real-time image processing
• Send the result to the ground by a communication equipment
• Processing is reconfigurable offline, and the camera is trans-

plantable
In this paper, we addressed the two functions: “Acquire im-

ages from the commodity digital camera in real-time” and “Save
the acquired data to the SD card”. These two are the key func-
tions to proceed with the drone system because it is a frontend of
an image processing circuit. To implement them, we focused on
the SD interface, which most commodity digital cameras have.
However, it is not designed specifically for image transferring, so
we designed a circuit that acts as an SD card from the camera’s
viewpoint.

3. Data Acquisition Architecture Design
3.1 Overview

In this section, the data acquisition system design is described.
Three functions are required in this system. The first is the SD
interface between the camera and FPGA. The second one is the
availability to transfer acquired image data to the onboard image
processing modules. The third one is the SD host function to save
image data to the attached SD card.

Fig. 2 shows the block diagram of the discussing system. The

Camera

SD Card

ROM
Front
End

RAM

SD Host

Image
Processing

Bus

SD

signals

Filter

SoC FPGA

Fig. 2 The detailed block diagram of the discussing system

front-end module in the diagram works as the SD card and in-
terface between the camera and FPGA. Image processing is not
discussed in this paper, so image data transferring is verified by
writing acquired photos to the RAM. The filter, ROM, and RAM
in the figure are used to realize the file system.

3.2 SD Front-end
The utilization of the SD standard interface and protocol is the

key topic in this paper. Table 1 shows the functions and di-
rection of the SD card signals. It consists of six signals: one
clock line (CLK), one command line (CMD), and four data lines
(DAT0-3). The command and data lines are serial communication
lines, which are synchronized with the clock. The communica-
tion direction of bi-directional signals is switched by the tri-state
buffers.

Table 1 The function and direction of SD signals

Signal Name Function Direction (at card)
CLK supply clock to the card Input
CMD command and response Input/Output

DAT0-3 data communication Input/Output

CRC (Cyclic Redundancy Check) is required to check the in-
tegrity of command, response and data. The length of the CRC
code in command and response is 7-bit, and in data packet, it is
16-bit. When a CRC error is detected, the card sets a flag in its
status register. FSM (Finite State Machine) defines card opera-
tions. Some commands are used to change the card state. The
command and data shifter is a long shift register to serialize and
deserialize the received packets. The received command and data
are stored in the command shifter and the data shifter respectively
to deserialize the data. The shifter is also used when generating a
response packet or read data packet as the serializer. Parameters
of the card (e.g. speed class) and the card status (e.g. current
FSM state, CRC error flag) are stored in the card register. Finally,
This interface is connected to the internal AXI bus of the FPGA
to store the received data.

3.3 File System
When there is no file system on the SD card memory, the cam-

era fails to initialize the card. Therefore in most cases, the file
system such as FAT16, FAT32, and exFAT is implemented on the
SD memory. In this paper, FAT16 was selected for its simplic-
ity. Fig. 3 shows the structure of the FAT16 file system. There
are four major areas in that file system. These are reserved area,
FAT area, root directory area, and data area. The reserved area

Asia Pacific Conference on Robot IoT System Development and Platform 2021 (APRIS2021)

ⓒ 2022 Information Processing Society of Japan 51

Starting Addr.
0x0000_0000

0x0000_0200
0x0001_0000

0x0002_0000

0x0003_0000

0x0004_0000

BPB

FAT

FAT

Cluster #2

Cluster #3

Cluster #32768

Root Directory

reserved

Reserved

FAT Region

Directory
Region

Data Region

Fig. 3 Structure of FAT16 file system [4]

includes BPB (BIOS Parameter Block) and stores the basic pa-
rameter of the volume, such as size. The FAT area manages the
relation between multiple clusters in the data area in the form of
a linked list. The root directory area stores the metadata of files
and directories on the root directory on the SD card volume. The
data area consists of multiple clusters, and stores files or subdi-
rectories itself.

However, as we are assuming the FPGA with less size RAM,
we can not use the large area of memory to implement the whole
file system. So we use a minimum size RAM by separating one
file system into two memory areas: ROM area and RAM area,
and filtering the access. The reserved, FAT, and root directory
area is stored on the ROM area.

The detailed behavior of the file system depends on the plat-
form, so it is described in the implementation section (sec-
tion 4.1.2)

4. Implementation
We used Zynq-7020 SoC (System on Chip) FPGA (Xilinx) and

ZYBO Z7-20 board (Digilent). This FPGA consists of a recon-
figurable part, PL (Programmable Logic), and a dual-core ARM
Cortex-A CPU and its peripheral, PS (Processing System). The
SD front-end, the filter, and ROM are implemented on PL, and
the SD host module in PS is used to write the image data to the
separately connected SD card. As the FPGA board has 512MB
DDR3 DRAM, the RAM on Fig. 1 is implemented on that. In ad-
dition, CPU in PS is used to control the system’s behavior. Vivado
2019.2 (Xilinx) and Vitis 2019.2 (Xilinx) are used for hardware
and software development respectively.

4.1 Hardware Implementation
4.1.1 SD Front-end Implementation

The SD front-end module in this paper is based on the SDHC
module used in Google’s open-source project named “Vault”[5].

Fig. 4 shows the interface circuit of the SD interface around

CMD

DAT0

DAT1

DAT2

DAT3

VDD

OE: Output Enable

I_CMD

O_CMD

CMD_OE

I_DAT0

O_DAT0

DAT0_OE

I_DAT1

O_DAT1

DAT1_OE

I_DAT2

O_DAT2

DAT2_OE

I_DAT3

O_DAT3

DAT3_OE

CLK I_CLK

Buffers &

Tri-state Buffers SD Front-end Module

FPGA

VSS

GND of the circuit board

SD interface

Fig. 4 The interface circuit of the SD interface

the FPGA board. As described in section 3.2, SD standard inter-
face has bi-directional signals, so tri-state buffers on FPGA are
used to toggle the signal direction. The VSS line of the SD in-
terface is connected to the FPGA board’s ground (GND), and the
clock from the camera is supplied to the FPGA. However, since
the camera supplies power to the card, the VDD line of the SD
interface was cut to avoid interference of the power.

The detailed structure of the SD front-end module is shown in
Fig. 5. There are two clock regions. One is driven by an onboard
clock source, and the other is driven by an SD clock supplied
from a host (camera). To transfer data between two regions, CDC
(Clock Domain Crossing) architecture is implemented to avoid
the metastable state of the flip-flop.

The SD host must initialize the card before accessing the data.
The initialization sequence is described in the SD standard spec-
ification, and it consists of initialization and identification of the
card. During this sequence, the camera issues some commands
and gets responses from the card to read out card information, for
instance interface speed, card status register, CID (Card IDenti-
fication) register and card address. Fig. 6 shows the flowchart of
the actual initialization sequence of the camera we used. This
flowchart includes commands which are not defined in the SD
specification, such as CMD52 and CMD5. These commands are
for SDIO standards, therefore the card is not required to respond
to these commands.

The read and write operations of the SD are also
controlled by the commands. First, the host issues
CMD18 (READ MULTIPLE BLOCK) to read, and CMD25

Asia Pacific Conference on Robot IoT System Development and Platform 2021 (APRIS2021)

ⓒ 2022 Information Processing Society of Japan 52

SD Interface

Front-end Module

PHY

Command

Controller

Data
Controller

Internal BusInternal Bus (AXI)
Controller

Driven by

an SD clock

Driven by

an FPGA

board clock

Fig. 5 The detailed structure of the SD front-end module

CMD52

CMD0

start

2 times

CMD8

CMD5

ACMD41

CMD2

CMD3

stopReceive R7

multiple times

Receive R3

Receive R2

Receive R6

Initialization Read

start

CMD18

CMD12

stop

start

CMD25

CMD12

stop

Write

Fig. 6 Flowchart of initialization, read and write operations

(WRITE MULTIPLE BLOCK) to write the data. The memory
address is specified in the command as an argument. Then,
the card returns the response for the command, and simulta-
neously the data is transmitted using four data lines. When
the card receives those multiple-block operation commands, it
continuously performs read or write operations until CMD12
(STOP TRANSMISSION) is issued.

In the CSD register, which contains information on the perfor-
mance of the card, the speed class is set to 4, and the TAAC, a
parameter related to the data access time, is set to 2.0 ms. As a
result, the camera recognizes the card as a low-speed card. This
is because it was found that when the card was set as a high-speed
card, a CRC error occurred in the command and response when
the clock frequency was switched to 50 MHz during the initial-
ization phase. When a CRC error occurs, the camera recognizes
the card as abnormal, and subsequent communication becomes
impossible.
4.1.2 File System Implementation

The filter module has two states: “Standby” and “Image Writ-
ing”. The standby state is used to access the BPB, FAT, and root
directory area of the FAT16 file system. In this state, read ac-
cess gets values stored in ROM, and all write access is discarded.
The image writing state is used to write the acquired image data
to RAM. In this state, read access always gets zero and written

Standby Image
writing

Reserved (BPB), FAT, or
root directory area is addressed

"FF D8" pattern is detected in writing data

Fig. 7 State machine of filter module

Fig. 8 SD card adapter

data is transferred to DRAM. Fig. 7 shows the state machine of
the filter module. The transition condition is based on the actual
behavior of the SD card attached to the camera. To understand
this behavior, we used an SD card adapter (Fig. 8) and a logic an-
alyzer (Zeroplus LogicCube Pro) and got the following image to
write access sequence of the camera:
(1) Read the directory entry and identify the file name to be

saved
(2) Find the starting cluster for the directory ”101 01”
(3) Based on the information in the root directory area, write the

data in the appropriate data area cluster
(4) Write to the two FAT areas and label the cluster where the

image was written as in use
(5) Write the file name and other information to the directory

entry of the newly created image file to complete the file
creation

The filter module also includes the word size counter. This
counts the number of words written during the image writing state
and notifies its value to the CPU when the state changes to the
standby state by activating the interrupt line.

The resource utilization of our system is shown in Table 2.

Table 2 Resource utilization of FPGA
Resources Used Available (%)

LUT 6019 53200 11.31
LUTRAM 705 17400 4.05

FF 9204 106400 8.65
BRAM 32 140 22.86

IO 11 125 8.80
BUFG 4 32 12.50

4.2 Software Implementation
The software running on the CPU has three basic functions.

Firstly, it initializes the hardware at start-up time. Secondly, it
handles interrupt signals from the filter module. Thirdly, it calcu-
lates the image size. Fourthly, it writes the image file to the SD

Asia Pacific Conference on Robot IoT System Development and Platform 2021 (APRIS2021)

ⓒ 2022 Information Processing Society of Japan 53

FF D8

FF D9

Image Data

Scan

Fig. 9 Illustration of scanning to detect the end of image file

card.
Here, we describe the calculation of the image size in detail. As

mentioned above, the filter module counts the number of words
written. However, as the written data is aligned with the cluster
boundaries of the FAT file system, an additional process is re-
quired to get the precise size of the image file. Therefore, DRAM
is manipulated one byte at a time in the direction of decreasing
memory address as shown in the Fig. 9 to find the ”FF D9” pat-
tern, which indicates the end of JPEG and RAW images.

5. Evaluation
To confirm our system’s functionality, an evaluation of the im-

age acquisition system is required. The evaluation is performed
by following two steps: Firstly, we confirm the SD standard ini-
tialization sequence. Secondly, we confirm the transport of shot
images to the SD card. Thirdly, we confirm image data integrity.

The FPGA board we used has an external expansion connec-
tor called Pmod, and in this study, we used it with an SD card
slot board attached. We used a flat cable called ”extension cable”
which has SD card-shaped terminals on both ends as shown in
Fig. 10 and inserted one end into the SD card slot of the FPGA
board and the other end into the SD card slot of the digital camera.

First, we programmed the design into the FPGA and the cam-
era started its initialization sequence when it was powered on.
The system was then confirmed to be recognized as a 1.9GB SD
card.

Next, after the initialization sequence was completed, we took
a picture with a digital camera set to JPEG shooting mode. The
LED on the FPGA board lit up to confirm that the DRAM was be-
ing written. In addition, the system was recognized as a normal
card by the camera even after taking a picture.

The acquired image was confirmed its integrity using the image
viewer software and binary editor.

6. Conclusions
This article proposed a transplantable agricultural drone sys-

tem with onboard image processing. In this system, image pro-
cessing is reconfigurable with FPGA, and the camera is replace-
able using a commodity digital camera and SD standard inter-
face. Besides, we designed a mechanism to acquire images from
the camera by emulating an SD card, and it worked well as an
image acquisition system. The new ASICs for the proposed sys-
tem are in production, and our design is embedded as a bridging
module between the physical interface and reconfigurable circuit
area. The power consumption of the system we implemented in
this paper will be evaluated in future works. The proposed drone

Fig. 10 A picture of SD extention cable

system will also be implemented on an SoC and work in an actual
field.

Acknowledgement
This work was supported in part by TIA collaborative research

program “KAKEHASHI” in FY2020 and FY2021. We also thank
the Xilinx University Program for the kind donation of software
tools.

References
[1] TANAKA, K. and KONDOH, A.: Mapping of Rice Growth using Low

Altitude Remote Sensing by Multicopter, The Journal of the Remote
Sensing Society of Japan, Vol. 39, No. Journal Article, pp. S1–S17 (on-
line), DOI: 10.11440/rssj.39.S1 (2019).

[2] Holman, F. H., Riche, A. B., Michalski, A., Castle, M., Wooster, M. J.
and Hawkesford, M. J.: High Throughput Field Phenotyping of Wheat
Plant Height and Growth Rate in Field Plot Trials Using UAV Based Re-
mote Sensing, Remote Sensing, Vol. 8, No. 12, p. 1031 (online), DOI:
10.3390/rs8121031 (2016).

[3] Nebashi, R., Banno, N., Miyamura, M., Bai, X., Funahashi, K.,
Okamoto, K., Iguchi, N., Numata, H., Sugibayashi, T., Sakamoto, T.
and Tada, M.: A 171k-LUT Nonvolatile FPGA using Cu Atom-Switch
Technology in 28nm CMOS, 2020 30th International Conference on
Field-Programmable Logic and Applications (FPL), pp. 323–327 (on-
line), DOI: 10.1109/FPL50879.2020.00060 (2020).

[4] ELM: FAT Filesystem, (online), available from 〈http://elm-chan.
org/docs/fat_e.html〉 (accessed 2021-10-15).

[5] ProjectVault: ORP, (online), available from 〈https://github.com/
ProjectVault/orp〉 (accessed 2021-10-15).

Asia Pacific Conference on Robot IoT System Development and Platform 2021 (APRIS2021)

ⓒ 2022 Information Processing Society of Japan 54

