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Abstract: Autonomous robot systems have been appearing rapidly to meet the increasing demands. The Robot Oper-

ating System (ROS) has been used widely in connection with such systems. ROS has been upgraded to ROS 2 using the

Data Distribution Service (DDS) to accommodate high communication latency. ROS 2 contains an Executor module

to support execution management in real-time performance. However, improving real-time performance is difficult in

ROS 2. This paper proposes ThreadedCallback which enables to run callback as a thread with a specific central pro-

cessing unit (CPU) core and scheduling policy. We use a ping-pong test to examine and evaluate the performance of

the proposed approach. Experimental results show that our approach can achieve significant performance improvement

over the standard Executor in ROS 2.
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1. Introduction

In recent years, autonomous robotic systems have been a pop-

ular topic. These systems create and maintain a map of its sur-

rounding environment based on various sensors situated in differ-

ent parts of the vehicle. They process the sensory input, plot a

path, and send instructions to the vehicle’s actuators, which con-

trol acceleration, braking, and steering. A principal feature of

these systems is their sensitivity to communication delays. More-

over, Robot Operating System (ROS [30]) has been useful in the

development of many such systems (e.g., Autoware [2,13]). ROS

provides hardware abstraction, device drivers, libraries, visualiz-

ers, message-passing, package management, and other functions.

These can be helpful to software developers creating robot appli-

cations.

ROS is not suitable for real-time embedded systems, because it

can only run on a few operating systems and does not meet real-

time runtime requirements. ROS 2 has been proposed to satisfy

the requirements of the expanding ROS community [19]. ROS 2

supports different programming languages. Each programming

language has a separate programming language interface, and all

programming languages share a common layer, ROS Client Li-

brary (RCL) layer. Consequently, if general optimizations are

made in RCL layer, all applications can be optimized regard-

less of which language is used. In ROS 2, the ROS transport

system is replaced by the Data Distribution Service (DDS) [21],

an industry-standard real-time communication system and end-

to-end middleware.

ROS 2 has other features in addition to the DDS. Developers

can bundle multiple nodes in one OS process using ROS 2. An
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Executor has been introduced in rclcpp and rclpy to coordinate

the execution of process callbacks. However, the standard ROS 2

Executor has several limitations in the C++ application program-

ming interface (API: rclcpp), such as the precedence of timers

and non-preemptive round-robin (RR) scheduling for non-timer

handles [4].

Real-time Executor can be used to solve these problems. Real-

time Executor not only ensures deterministic execution, but also

guarantees real-time performance. In previous research [32], we

reported that thread priority could affect the jitter of sleep or

timing of callback. However, if threads are in different central

processing unit (CPU) cores, they have no effect on each other.

Hence, it would appear to be natural to run callback as a thread

with a specific CPU core and scheduling policy. Moreover, we

attempt to detect deadline misses. The existing timer mechanism

can be applied to an overrun handler (the timer can be triggered

even if callback is running by splitting the callback thread).

The contributions of this work are as follows:

• This paper proposes ThreadedCallback which enables to run

callback as a thread with a specific CPU core and scheduling

policy.

• This paper explores the real-time performance of Threaded-

Callback.

• This paper clarifies the real-time Executor and explains the

difference between the proposed approach and the existing

real-time Executor.

Organization: The remainder of this paper is organized as fol-

lows. Section 2 describes ROS 2 and the ROS 2 standard Execu-

tor. Section 3 presents our proposed approach. Section 4 evalu-

ates real-time performance of the proposed approach on ROS 2

and shows a use case of it. Section 5 discusses related work. Sec-

tion 6 concludes the paper and offers suggestions.
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Fig. 1 The difference in architecture between Robot Operating System

(ROS) and Robot Operating System 2 (ROS 2)
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Fig. 2 The architecture of Robot Operating System 2 (ROS 2)

2. System Model

In this section, we provide background knowledge and the sys-

tem model. First, this section discusses the ROS 2 system model,

focusing on the communication system, and we compare it to

ROS. Secondly, we describe and analyze the ROS 2 standard

Executor. In addition, we provide a detailed description of the

ROS 2 scheduling.

2.1 ROS 2

The difference between ROS and ROS 2 is shown in Fig. 1.

ROS 2 is better adapted than ROS to newer requirements of robot

system development, such as real-time control [14] and increas-

ing distributed processing. Moreover, ROS 2 can create multiple

nodes in a single process.

ROS 2 is designed as a three-layer stack. The upper layer

is equivalent to a user application. There are several language-

specific wrappers, to extend ROS 2 to multiple programming lan-

guages, such as Python with rclpy [25] or C++ with rclcpp [24].

The implementation of the upper layer must wrap a C interface,

ROS Client Library (RCL). The middle layer consists of a library

connecting RCL and the ROS Middleware Interface (RMW). The

ROS 2 architecture is shown in Fig. 2. The lower layer is the im-

plementation of ROS middleware, which provides communica-

tion between ROS nodes [9].

In Fig. 3, we show the communication-related components of

ROS 2 as follows [5]:

• Node: a process that promotes computation independently;

• Topic: a communication channel used to transmit messages

between publishers and subscribers;

Fig. 3 Robot Operating System 2 (ROS 2) publish/subscribe model

• Message: a simple data structure which is defined by .msg

files.

The basic communication model in ROS 2 is called pub-

lish/subscribe model. This model can be understood through the

example in Fig. 3. The “Camera Driver” node publishes messages

to the “Images” topic. The “Car Detection” node and the “Pedes-

trian Detection” node subscribe to the “Images” topic and utilize

the messages. The publish/subscribe model can be suitable for

most distributed systems.

ROS 2 is based on the DDS, which is used to discover nodes, to

serialize, and to transmit information. The DDS provides some

functions required by the ROS system, such as distributed dis-

covery nodes (not as centralized as ROS 1). New nodes can be

discovered by other nodes in the same DDS network by using

the DDS publishing and subscription/reading mechanism. Using

a third-party mature DDS (such as RTI [31] and eProsima [6])

as a framework for ROS underlying communication and related

core functions can substantially reduce the workload of ROS 2

development.

The Data-Centric Publish/Subscribe (DCPS) model is an im-

portant component of DDS. This model can perform data transfer

between processes more efficiently even on distributed heteroge-

neous platforms. The pub/sub method of distributed communica-

tion is a common mechanism that can be used in many types of

applications. The DDS standard defines a language-independent

model for pub/sub communications and standardizes mappings to

various implementation languages. The “data-centric” part of the

term DCPS refers to the basic concepts supported in API design.

In object-centric communication, in contrast, the focus is on the

interface between applications. Data and object-centric commu-

nication provide a complementary paradigm for distributed sys-

tems. Applications can require both at the same time. However,

real-time communication typically works more effectively with

data-centric models. A data-centric system consists of a data pub-

lisher and a data subscriber. Communication is based on a known

type of data passed from the publisher to the subscriber in named

streams. Each data transfer between processes is performed ac-

cording to the Quality of Service policy, which represents the data

transport behavior [26].
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2.2 ROS 2 Standard Executor

The Executor module is used to coordinate the order and timing

of available communication tasks. The Executor module is imple-

mented in rclcpp and rclpy. ROS 2 standard Execution model of

ROS 2 is shown in Fig. 4.

ROS 2 typically defines one Executor for each process in the

custom main function or the function created by the launch sys-

tem. The Executor coordinates the execution of all callbacks

by checking for available work (timers, services, and messages)

from the DDS queue and dispatching to one or more threads,

using SingleThreadedExecutor [28] and MultiThreadedExecutor

[23].

The Executor has two spin functions: spin node once and

spin some. According to the thread or concurrency scheme pro-

vided by the subclass implementation, it coordinates the nodes

and callback groups by finding available work and completing

the work.

The Executor is responsible for scheduling callbacks. How-

ever, the Executor does not provide methods for prioritizing or

classifying incoming callbacks. Moreover, it does not fully uti-

lize the real-time characteristics of the underlying operating sys-

tem scheduler. Its first-in first-out (FIFO) mechanism also limits

the range of worst-case latencies that can be caused by the execu-

tion of each callback.

The ROS 2 scheduling mechanism is not complicated and ex-

hibits a behavior similar to the ROS spin thread: the Executor

looks up the wait sets, which notifies it of any pending callback

in the DDS queue. If multiple pending callbacks are in the DDS

queue, the ROS 2 Executor executes them in the order in which

they are registered with the Executor.

The Executor has four available categories of callbacks: timers,

subscribers, services, and clients. Timers are triggered by system-

level timers and have the highest priority. The Executor always

processes timers first. However, the order of priority of the re-

maining three items is not obvious. Non-timer handles follow

non-preemptive RR scheduling. A snapshot called readySet is

updated when the Executor is idle, and in this step, it interacts

with the DDS layer updating the set of ready tasks. Messages

arriving during the processing of the readySet are not considered

until the next update, which depends on the execution time of all

remaining callbacks. This leads to priority inversion, as lower-

priority callbacks can implicitly block higher-priority callbacks

by prolonging the current processing of the readySet. Further-
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Fig. 6 The sample scenario of ThreadedCallback

more, the readySet contains only one task instance. For example,

even if multiple messages on the same topic are available, only

one instance is processed until the Executor is idle again and the

readySet is updated from the DDS layer. This intensifies priority

inversion, as a backlogged callback might have to wait for multi-

ple processing of readySets until it is considered for scheduling.

This can result in non-timer callback instances being blocked by

multiple instances of the same lower-priority callback.

3. Design and Implimentation

This section clarifies the basic principle of ThreadedCall-

back. Moreover, this section compares it with existing research

(Callback-group-level Executor) to point out differences and im-

provements.

3.1 ThreadedCallback

ThreadedCallback allows running callbacks in a specific thread

with its own settings. A DDS child process affects sleep jitter if

only one priority is used. Even if callbacks are performed in a

thread other than the main thread, the scheduler falls into RR or

FIFO if only one priority is used. Therefore, it fits the program-

mer to specify a priority or scheduling policy.

Because the thread priority could affect the jitter of ROS 2

callbacks timing, we propose to create threads per callback to

improve the real-time performance when configuring the threads

real-time settings. Nevertheless, only use ThreadedCallback can-

not guarantee the real-time performance, we need more mecha-

nisms to guarantee it. The basic principle of ThreadedCallback

is shown in Fig. 5. As shown in Fig. 5, the task thread is created

for each callback in nodes. Threads are created internally when
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calling rclcpp::init(), add node(). And we use pthread [17] to as-

sign priority and cpu to each callback thread. When the topic

receives the message from pubNode, the Executor will notify the

corresponding callback thread to execute.

A sample scenario as shown in Fig. 6 illustrates the effect of

priority setting. Only one CPU core is used in this scenario. The

scenario has three callbacks with different priorities, CallbackA,

CallbackB, and CallbackC. CallbackA has the highest priority

and the shortest task. CallbackB has the middle priority and a

middle-length task. CallbackC has the lowest priority and the

longest task. CallbackA must run even if CallbackB or CallbackC

is running. If the TopicB comes while CallbackC is executing,

CallbackC processing is interrupted and CallbackB processing is

started. Next, when the TopicB comes, the same processing is

performed. After the processing of CallbackA is completed, the

suspended processing of CallbackB is resumed. After the pro-

cessing of CallbackB is completed, the same processing is per-

formed for CallbackC.

Using such a thread, we could get the following.

• ROS 2 Executor thread interruption even if callbacks are run-

ning.

• Easily implemented preemption.

• Prevention of scheduling procedure duplication in the Ex-

ecutor and OS, making it easy to verify.

• Possible combination with a Logical Execution Time [15]

(LET) scheduler.

In addition, we want to detect deadline miss. Therefore, we add

an overrun handler function to ThreadedCallback. The realization

of this function is mainly through the existing timer mechanism.

The timer can be triggered at any time, even by splitting the call-

back thread to run the callback. The overrun handler function

mainly includes two parts, overrun detection and overrun handler.

The overrun handler is worth mentioning that in ThreadedCall-

back, this function corresponds to a non-DDS event. The QoS

policy in DDS can configure the deadline period, but this is only

for DDS events. Although ROS 2 uses DDS as its communica-

tion system, ROS 2 also includes intra-process communication,

and DDS will not be used in this process. Once the overtime

situation is detected, follow-up processing will be performed in

accordance with the set method. According to the specific needs,

you can set the overrun callback to be executed again from the

beginning or terminate the current callback directly.

3.2 Comparison with Callback-group-level Executor

Callback-group-level Executor (Cbg-Executor) [16] is an open

source rclcpp Executor API that was developed by micro-ROS

[20]. Callback-group-level Executor is derived from the default

rclcpp Executor. An Executor instance can be classified as par-

ticular callback groups, and the threads of the Executor can be

prioritized based on the real-time requirements of these groups.

We have analyzed the performance of Cbg-Executor in our previ-

ous study [32].

Real-time profiles, such as RT-CRITICAL and BEST-EFFORT

introduced in the callback-group API, take advantage of the call-

back group concept in rclcpp. Therefore, each callback that re-

quires specific real-time guarantees can be associated with a ded-

Table 1 Evaluation environment

CPU

Model number AMD Ryzen 5 3600

Frequency 3.59 GHz

Core 6

Thread 12

Memory 16 GB

ROS 2 Foxy

DDS implementation Fast DDS

OS
Distribution Ubuntu 20.04

Kernel Fully Preemptible Kernel (RT)

icated callback group when it is created. This allows a single

node to assign callbacks with different real-time profiles to differ-

ent Executor instances in one process. Cbg-Executor introduced

an enum that distinguishes up to three real-time classes per node,

and changed association with an Executor instance from nodes to

callback groups. Moreover, Cbg-Executor can add and remove

individual callback groups in addition to entire nodes.

The most obvious difference between ThreadedCallback and

Cbg-Executor is the number of Executors. In Cbg-Executor, each

thread has one corresponding Executor. However, in Threaded-

Callback, all threads correspond to only one Executor.

The proposal is better than Cbg-Executor at fixing priority in-

version issues. The Executor is not protected in Cbg-Executor.

The Executor overhead when many priorities are required is also

an unsolved problem. The task of callback groups is to parti-

tion relevant callbacks. An irrelevant or lower-priority callback

does not prevent higher-priority callbacks. In the same callback

group, callbacks are executed in FIFO like order. This is similar

to using multiple same-priority FIFO threads in terms of schedul-

ing. However, callback groups look to be more than that, because

it handles locks and Mutually-Executable. Hence, the callback

thread and the Executor are separated. In addition, ThreadedCall-

back uses one Executor to cause the Executor to focus on event

detections and event triggers, which can avoid priority inversion

due to Executor blocking.

4. Evaluation

In this section, we demonstrate the effectiveness of Threaded-

Callback through ping-pong experiments. Furthermore, we pro-

pose a use case to verify the practicality of ThreadedCallback.

4.1 Experimental Scenarios and Methods

The hardware and software environment is outlined in Table 1.

In this work, we used FastDDS [6], the default DDS for this eval-

uation. Furthermore, we used the Linux kernel with the PRE-

EMPT RT patch [7] in this experiment. PREEMPT RT patch by

using the interrupt threads, preemption of the critical area to im-

prove real-time performance. The interrupt thread technology is

to turn the interrupt service program into a thread that the op-

erating system can schedule, and assign priority to the interrupt

service program, thus reducing the operation of turning off the in-

terrupt. The standard Linux kernel does not support preemption

due to the use of spinlock. In the PREEMPT RT patch, spinlocks

are converted to RT Mutexes to achieve critical area preemption.

We demonstrated the effectiveness of our proposal by using
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Fig. 7 Ping-pong test

ping-pong experiments, as shown in Fig. 7. The ping-pong test

is implemented using two topics with the following publisher

and subscriber. The ping-publisher (ping-pub) sends ping peri-

odically using ping-topic. The ping-subscriber (ping-sub) and

pong-publisher(pong-pub) subscribes to ping-topic and option-

ally pong-pub sends a pong by pong-topic. The pong-subscriber

(pong-sub) subscribes to the pong-topic. We provide bash scripts

to test inter-process communication scenarios, where nodes are

located in one or more processes.

This test scenario has three callbacks: timer-callback, ping-

callback and pong-callback. Timer-callback includes ping-pub.

Ping-callback includes ping-sub and pong-pub. Pong-callback

includes pong-sub. There are some variations for the number of

Executors and Nodes, in this test, we chose one Executor and two

Nodes. The output of the experiment is the latency of the three

callbacks and the overall ping-pong.

To verify the improvement of real-time performance by

ThreadedCallback, we measured the overall delay of ping-pong,

and the latency of ping callback and timer callback with differ-

ent timer period. We then compared the measured value with the

real-time performance of SingleThreadedExecutor.

As a whole, we set the number of loops to 1,000. Firstly, we

measured the overall delay of ping-pong, and the latency of ping

callback and timer callback of the SingleThreadedExecutor and

MultiThreadedExecutor. Secondly, we set different priorities for

different threads. This experiment has two kinds of threads: main

thread, child thread. Their corresponding priorities are RR98 and

RR97. Thirdly, we tested the latency of ping-pong, ping callback,

and timer callback of ThreadedCallback in the same core. For

example, let the cpuid of all threads equal to one. In Threaded-

Callback, each callback corresponds to a thread, and the priority

setting of callback thread is added in this experiment. Moreover,

the priority of the callback thread is set to RR96. That means the

main thread has the highest priority and the callback thread has

the lowest priority. Finally, we put the threads in different cores.

We set the cpuid of the callback thread equal to three.

4.2 Comparison with the SingleThreadedExecutor

We discuss the real-time performance for timer callback period

of 500 µs to 100,000 µs.

The experimental results of single core are shown in

Figs. 8, 10, and 12. In the single core case, it can be seen over-

all that the performance of ThreadedCallback is worse than Sin-

gleThreadedExecutor. As can be seen in Figs.10 and 12, the la-
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tency of ping callback and timer callback of ThreadedCallback

is much higher than SingleThreadedExecutor. We discuss this

phenomenon for the following two reasons. Firstly, since Sin-

gleThreadedExecutor has no thread switching or interrupts, timer

callback and ping callback are executed promptly. Secondly, in

the single core case, the main thread, child threads, and callback

threads all run on the same CPU, and the callback thread has the

lowest priority, it is thus more likely to be preempted, especially

when the timer callback period is extremely small.

The experimental results of multiple cores are shown in
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Figs. 9, 11, and 13. As can be seen in Fig. 9, the performance of

ThreadedCallback significantly outperforms SingleThreadedEx-

ecutor. This is because in ThreadedCallback, even if the call-

back is running, the child thread can be interrupted (i.e., can read

topic), and SingleThreadedExecutor can only wait for the call-

back to complete because it cannot preempt. Moreover, as we

can see in Fig. 13, the latency of the timer callback of Threaded-

Callback is basically the same as the latency of the timer callback

of SingleThreadedExecutor.
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4.3 Comparison with the MultiThreadedExecutor

We also measure the real-time performance of ThreadedCall-

back and MultiThreadedExecutor in multiple cores. The experi-

mental results of multiple cores are shown in Figs. 14, 15, and 16.

In timer period from 500 µs to 100,000 µs, we can observe that the

overall latency of ThreadedCallback is better than MultiThread-

edExecutor from Fig.14. We discuss this phenomenon for the

following two reasons. Firstly, MultiThreadedExecutor only con-

sider one message per handle. This means that non-timer call-

back instances might be blocked by multiple instances of the
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Table 2 Comparison of ways to explore ROS

Many-Core LET Response Performance RTOS ROS 2 RCLCPP

Paradigm Time Test (C++)

Maruyama et al. [19] X X X

Processing Chains [4] X X X

ATSA [12] X X X

Gutiérrez et al. [8] X X X X X

ROS-lite [3] X X X

Pemmaiah et al. [1] X X X X

Park et al. [29] X X X

Igarashi et al. [11] X X

Yang et al. [32] X X X X

Ogawa et al. [22] X X X

Choi et al. [10] X X X X X

iRobot [27] X X X X

micro-ROS [20] X X X X X

This paper X X X X X

Camera

inspection 

procedure

inspection 

procedure

inspection 

procedure

ejector
OK/NG

Fig. 17 Visual inspection system example

same lower-priority callback. Secondly, non-timer handles are

using Non-preemptive RR scheduling in MultiThreadedExecutor.

This leads to priority inversion [18], as lower-priority callbacks

may implicitly block higher-priority callbacks. By analyzing the

results of this experiment, we can draw a conclusions that the

real-time performance of ThreadedCallback is better than Multi-

ThreadedExecutor in multiple cores.

4.4 Use Case

A simple visual inspection system is as shown in Fig. 17. The

work comes per 100 ms and the camera inspection procedure

takes 300 ms. There is an ejector that ejects NG work.

Because the work does not necessarily appear in a fixed pe-

riod, the system needs to be able to be processed aperiodically.

Under these circumstances, DDS deadline cannot meet the de-

mand because it is specified in the maximum period of the previ-

ous pub/sub. This function requires inspection program overrun

detection and precise ejector control. In addition, the require-

ments of the system include running multiple inspection proce-

dures and emergency stop simultaneously. ThreadedCallback can

fully meet the above requirements.

5. Related Work

Table 2 briefly summarizes the characteristics of several re-

lated methods. Research on ROS concerns primarily the mes-

sage passing process. Maruyama et al. [19] conducted an exper-

imental study aiming to compare the performance of ROS 1 and

ROS 2 under different DDS implementations. Casini et al. [4]

proposed a scheduling model and a response-time analysis for

ROS 2. They provided a practical analysis to bind the worst-case

response times of their applications. Gutiérrez et al. [8] presented

an experimental setup to demonstrate the suitability of ROS 2 for

real-time robotic applications. They developed an evaluation of

ROS 2 communications in a hardware communication case on top

of Linux. The adaptive two-layer serialization algorithm [12], al-

lows some of the serialization to be adaptively moved to the pro-

gramming language interface layer instead of the ROS 2 middle-

ware layer to reduce complexity. Pemmaiah et al. [1] discussed

how an end-to-end performance testing system could effectively

provide a standardized, unbiased, and reproducible evaluation.

Park et al. [29] evaluated the real-time performance of ROS 2 in

both the system layer and the communication software layer. In

the experiments, the system load was increased to define the real-

time performance of the tasks. In addition, they implemented a

multi-agent service robot system to verify the suitability of ROS 2

for actual applications. From the results, they proved that the real-

time performance of ROS 2 is higher than that of ROS. Yang et

al. [32] explored the performance of Callback-group-level Execu-

tor. The evaluation results show that the real-time performance of

Cbg-Executor is better than that of the default ROS 2 Executor.

ROS-lite [3] is a lightweight ROS development framework for

the NoC-based embedded many-core platform. ROS-lite runs

with low memory consumption, allowing ROS nodes to run on

each core on many-core platforms and communicate with each

other.

Micro-ROS [20] places ROS 2 onto microcontrollers. The

overall goal is to provide ROS 2 concepts in a suitable imple-

mentation for microcontrollers. Micro-ROS and ROS 2 have two

principal differences between them. Micro-ROS uses an RTOS,

Nuttx, instead of Linux, as well as DDS for extremely Resource

Constrained Environments (DDS-XRCE).

Many studies have been conducted on scheduling. Ogawa et

al. [22] proposed an approach to realize LET that is suitable for a

powertrain application to which subscheduling is applied. Addi-
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tionally, they proposed approaches that distribute LET processes

into several CPUs to reduce the execution time of LET processes.

Igarashi et al. [11] improved the predictability of contentions by

dividing tasks into the memory access phase and the execution

phase using a Directed Acyclic Graph (DAG).

For ROS 2, Choi et al. [10] proposed a priority-based chain

aware scheduler for ROS 2 and its end-to-end latency analysis

framework. With this scheduler, callbacks are prioritized accord-

ing to the given timing requirements of the corresponding chains

to reduce the end-to-end latency. Furthermore, they analyze the

end-to-end latency of the proposed scheduler. It is shown that the

proposed scheduler outperforms the default ROS 2 scheduling in

a real scenario.

The iRobot team [27] proposed a change to how ROS 2 handles

incoming events. They believe that rather than using user level

waitsets, an Executor event queue design will allow events to

propagate faster. When the Executor thread is waiting on events

to arrive, it simply blocks the CPU from performing other work.

Each event contains a type enumeration and a unique handle for

processing the event.

6. Conclusion

In this paper, we conducted a proof of concept for Thread-

edCallback for ROS 2. ThreadedCallback allows running call-

backs in a specific thread with its own settings to avoid priority

inversion issues. We also compared ThreadedCallback with Cbg-

Executor and demonstrated the advantages of ThreadedCallback.

The results demonstrated that ThreadedCallback could improve

the real-time performance of ROS 2 and help developers under-

stand the ROS framework.

In future work, we plan to combine ThreadedCallback

with LET semantics. We can increase predictability by

using LET semantics. This is suitable for hard real-time

systems such as self-driving systems. We aim to com-

bine the advantages of ThreadedCallbadk and LET seman-

tics to further optimize our proposal. The code of the

ThreadedCallback and the evaluation tool can be down-

loaded from the GitHub repository [https://github.com/

bopeng-saitama/ROS2_ThreadedCallback] and [https:

//github.com/bopeng-saitama/TwoWaysMeasurement].
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