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Abstract: This paper studies the discontinuity preservation problem in the task of surface recovery by integrating
a single-view surface normal map. Although various sophisticated strategies have been proposed, this challenging
problem has not been well solved due to unknown discontinuity positions in the normal map. The key of our method
is to model the existence of discontinuity between every two adjacent pixels by the depth differences between that
two pixels. At each pixel, we approximate the left and right (resp., upper and lower) partial derivatives and relatively
weight the two approximations by comparing the depth differences at the left and right (resp., upper and lower) sides.
Therefore we term our method as “bilateral” normal integration. By iteratively solving for the depths and updating
the discontinuity maps, we can recover the surface with discontinuities. Experiments on various challenging surfaces
demonstrate our method’s effectiveness. In addition, we show that discontinuities can be preserved in perspective
normal maps by our method.
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1. Introduction
Photometric surface recovery aims at high-fidelity three-

dimensional (3D) surface reconstruction by exploiting the shad-
ing information from single-view images. Representative meth-
ods include shape from shading [8], photometric stereo [20], and
shape from polarization [10]. These methods typically estimate a
surface normal map as direct output; Fig. 1(a) shows an example.
To recover the surface, we need to further integrate these surface
normals, the problem called normal integration [15]. Therefore,
the accuracy of photometric surface recovery depends on the ac-
curacy of normal estimation and normal integration.

Despite the necessity, the existing normal integration methods
are still unsatisfactory in recovering surfaces containing disconti-
nuities. Most normal integration methods assume a smooth sur-
face, i.e., the surface is continuous and differentiable everywhere.
In practice, as the normal maps are estimated from single-view
images, the occlusion may occur, causing abrupt changes of depth
values at occlusion boundary, as shown in Fig. 1(b) and (c). Ap-
plying the methods based on smooth surface assumption leads
to heavily distorted surfaces because the surface is wrongly con-
nected at discontinuities, as shown in Figure 1(d).

Unfortunately, preserving the discontinuity in a surface is chal-
lenging due to the unknown discontinuity positions. Many works
have put efforts in detecting the discontinuities from the normal
map, using curl [14], least squares residual [1], [11], or hand-
crafted features [22]. Given the detection results, they then use
weights to indicate the discontinuities in the optimization. The
detection can be one-time [14], [22] or repeated [1]; the weights
can be binary [1], [19] or the possibility [16]. Such detection,
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Fig. 1 Left to right: (a) The RGB color-coded normal map rendered from
The Thinker with a perspective camera model*2. (b) and (c) The
corresponding rendered surface’s front view and side view. Depths
abruptly change at occlusion boundary. (d) Integration result by [3],
which assumes a smooth surface. The surface is wrongly connected
at occlusion boundary. (e) Our integration result. Depth gaps at oc-
clusion boundary are preserved.

however, can be fragile due to weak correlation between depth
discontinuities and surface normals.

Recently, Mumford-Shah integrator [16] has shown promising
results on surfaces with simple discontinuities. The success relies
on the short discontinuity assumption and the joint optimization
for the weights and depths to bypass the discontinuity detection.
However, it breaks down on surfaces with complex discontinu-
ities, and the optimized weights may indicate wrong discontinuity
positions.

This paper proposes bilateral normal integration to preserve the
discontinuities in the surfaces when integrating the surface nor-
mals. Figure 1(e) shows our integration result; the large depth
gaps at occlusion boundary are faithfully preserved. Our key idea
is to use the depth differences between two adjacent pixels to in-
dicate the existence of discontinuities. We observe that depth is
a more straightforward clue for depth discontinuities than those

*2 “The Thinker by Auguste Rodin” CC BY 4.0. https:
//sketchfab.com/3d-models/the-thinker-by-
auguste-rodin-08a1e693c9674a3292dec2298b09e0ae,
last accessed on Dec. 20, 2021.
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Fig. 2 Our designs on weights. (Left) The large depth difference between
adjacent pixels is a straightforward indicator for discontinuity. Our
weights have an inverse relation to depth differences. (Right) Bilat-
eral weighting: the weights at two sides of a pixel are normalized to
1.

computed from normal maps, e.g., curl [14]. If two adjacent pix-
els have a large depth difference, then discontinuity is likely to
exist between that two pixels, as shown in Fig. 2 left. There-
fore, our weights has an inverse relation to the depth differences.
However, the depth difference between adjacent pixels can also
be large at steep regions. To avoid mis-segmenting the surfaces at
steep regions, we further introduce bilateral weighting. In partic-
ular, we approximate the surface gradient twice from two sides of
each pixel and relatively weight the two approximations. We nor-
malize the weights at two sides of a pixel such that they sum up
to 1, as shown in Fig. 2 right. Intuitively, bilateral weighting indi-
cates which side of each pixel is more likely to be discontinuous.
By iteratively solving for the depth and updating the weights, we
can then gradually preserve the discontinuities.

The most important contribution of this paper is the simple
but effective strategy for discontinuity preservation in the normal
integration problem. The second contribution is that we unify
the normal integration problem for orthographic and perspective
cases such that the proposed method applies to both without spe-
cial treatment. As a result, we first realize discontinuity preserva-
tion for perspective normal maps.

We structure the remaining of the paper as follows: Section 2
prepares the basic equations for the normal integration problem.
Section 3 discusses existing strategies to preserve discontinuities.
Sections 4 and 5 then describe and evaluate our bilateral normal
integration method, respectively. Finally, Section 6 concludes the
paper.

2. Basic Normal Integration Equations
This section establishes the relation between surface normals

and surface gradients as a pair of linear partial differential equa-
tions (PDEs). The normal integration problem can then be for-
mulated based on the PDEs.

Let n(u, v) = [nx(u, v), ny(u, v), nz(u, v)]
� ∈ S2 ⊂ R

3 be
a unit surface normal map and z(u, v) ∈ R be a surface, both
defined on a closed, bounded, and connected subset Ω on the im-
age plane (u, v) ∈ Ω ⊂ R

2. Consider the vector-valued function
p(u, v) ∈ R

3 mapping a 2D point (u, v) on the image plane to
the 3D point in camera coordinates, whose depth is z(u, v). By
definition, the normal vector n(u, v) is perpendicular to the tan-
gent plane attached to the point p(u, v), or equivalently, n(u, v)
is perpendicular to the two tangent vectors at p(u, v):

n�∂up = 0 and n�∂vp = 0. (1)

Here, ∂u and ∂v are partial differential operators with respect
to u and v respectively, and we omit the dependence on (u, v)

for brevity. Because p(u, v) depends on the camera projection
models, we now discuss two common cases: Orthographic and
perspective pinhole camera models.
Orthographic case. Under orthographic projection, p(u, v) =

[u, v, z(u, v)]�. Plugging

∂up =
[

1
0

∂uz

]
and ∂vp =

[
0
1

∂vz

]
(2)

into Eq. (1) results in a pair of PDEs

nz∂uz + nx = 0 and nz∂vz + ny = 0. (3)

Perspective case. Under perspective projection, p(u, v) =

z(u, v) [(u− cu)/f, (v − cv)/f, 1]
�, where f is the camera’s

focal length, and (cu, cv) is the principal point on the image
plane. Computing the partial derivatives yields

∂up =

[
1
f
((u−cu)∂uz+z)
1
f
(v−cv)∂uz

∂uz

]
and ∂vp =

[
1
f
(u−cu)∂vz

1
f
((v−cv)∂vz+z)

∂vz

]
.

(4)

Similar to [15], we introduce an auxiliary variable z̃ satisfying
z = exp(z̃). By chain rule, we have

∂uz = z∂uz̃ and ∂vz = z∂v z̃. (5)

Plugging Eq. (5) into Eq. (4) leads to

∂up = z

[
1
f
((u−cu)∂uz̃+1)
1
f
(v−cv)∂uz̃

∂uz̃

]
and ∂vp = z

[
1
f
(u−cu)∂v z̃

1
f
((v−cv)∂v z̃+1)

∂v z̃

]
.

(6)

Further plugging Eq. (6) into Eq. (1) cancels out z. Rearranging
the remaining terms yields{

(nx(u− cu) + ny(v − cv) + nzf)∂uz̃ + nx = 0

(nx(u− cu) + ny(v − cv) + nzf)∂v z̃ + nx = 0
. (7)

Denoting

ñz = nx(u− cu) + ny(v − cv) + nzf, (8)

Eq. (7) can be simplified as

ñz∂uz̃ + nx = 0 and ñz∂v z̃ + ny = 0, (9)

which is in the same form as Eq. (3). We can pre-compute ñz

given the normal map and camera parameters. Once z̃ is known,
we can exponentiate it to obtain z.

Equations (3) and (9) are rearrangements of the classical PDEs
used by existing methods [15]

∂uz − p = 0 and ∂vz − q = 0, (10)

where p = −nx

nz
and q = −ny

nz
. The rearrangements, however,

are critical to our methods. We empirically find that our bilateral
normal integration works well with both Eqs. (3) and (9), but not
with the traditional PDEs (10).

From now on, we will not distinguish between orthographic
and perspective cases. Without loss of generality, we will use
the notations in Eq. (3) to describe bilateral normal integration in
Section 4.
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3. Related Work
There have been many works on recovering smooth surfaces

from single-view normal maps since the existence of the prob-
lem [6], [12]. These works are based on minimizing the func-
tional

min
z

∫∫
Ω

(∂uz − p)2 + (∂vz − q)2 du dv. (11)

We refer the interested reader to the survey paper [15] on more
discussions about solving Eq. (11). This section will mainly dis-
cuss two types of strategies for discontinuity preservation.
Robust estimators. As the existence of discontinuities will cause
large residuals of the PDEs (10), robust estimator-based methods
apply robust functions to the PDEs as

min
z

∫∫
Ω

ρ(|∂uz − p|) + ρ(|∂vz − q|) du dv. (12)

By properly designing the ρ-function that can suppress the influ-
ence of large residuals, robust estimator-based methods may be
able to preserve the discontinuities.

Durou et al. [5] propose to use Lorentzian function as the ρ-
function, inspired by that the Lorentzian function can keep the
sharp edges in the image restoration tasks. Badri et al. [2] intro-
duce an intermediate surface, and use four terms in the objective
function: one for the data term, and the other three regularizations
for robust recovery. They assume the residual of the three regular-
izations are sparse, therefore their objective can handle the noise
and outliers. Quéau and Durou [14] discuss the usage of isotropic
total variation and L1 functionals for discontinuity preservation.
Robust estimator-based approaches are however, difficult to jus-
tify whether the residuals do follow the assumed distributions.
Weighted approaches. Instead of applying robust functions,
weighed approaches assign the weights to quadratic residuals of
PDEs to eliminates the effects of discontinuities:

min
z

∫∫
Ω

wu(∂uz − p)2 + wv(∂vz − q)2 du dv. (13)

If the quadratic residuals at discontinuity positions are correctly
assigned small weights, then the discontinuities are expected to
be preserved. In other words, the weights wu and wv indicate the
discontinuity positions; we will also call the weights discontinu-
ity maps hereafter.

One type of weighted approaches detect the discontinuity posi-
tions before optimizing Eq. (13) as a preprocessing step. The ma-
jor differences among these works are the clues used for discon-
tinuity detection. Saracchini et al. [17] requires a user-provided
discontinuity map as input. Karacali and Snyder [11] detect the
discontinuity based on the residuals of the PDEs (10). Wu and
Tang [21] use expectation–maximization algorithm to estimate a
discontinuity map from the normal map. Wang et al. [19] detect
a binary discontinuity map using both photometric stereo images
and the normal map. Xie et al. [22] handcraft features from the
normal map to judge the discontinuity position. These one-time
detection-based methods can be fragile as there is no scheme to
correct the wrong detection in the optimization afterwards.

A more robust type of weighted approach thus iteratively up-
dates the weights. Alpha-surface method [1] first creates a min-
imal spanning tree from the integration domain, then iteratively
add to the spanning tree the edges that are treated continuous. A
threshold alpha is used at each iteration to judge whether an edge
can be treated as continuous. Instead of weighting each edge,
anisotropic diffusion [1], [16] applies a diffusion tensor to the
gradient field to account for the noise and outliers. In [1], the
diffusion tensor is computed beforehand by convolving the gra-
dient field. Quéau et al. [16] instead model the diffusion tensors
as functions of depths. During optimization, the diffusion tensors
are iteratively updated based on the currently estimated depths.

Iteratively updating the weights still requires detecting the dis-
continuity positions. To bypass the detection, Mumford-Shah
integrator integrator [16] jointly optimizes for the weights and
depths. It assumes discontinuity positions are short curves on the
image domain and penalizes the length of curves using regular-
ization on weights. However, we will show that the short disconti-
nuity assumption is difficult in handling complex discontinuities,
and the optimized weights can indicate wrong discontinuity posi-
tions.

Our method belongs to the weighted approach. But unlike
previous methods, we model the discontinuity based on the def-
inition of discontinuity. In addition, we bilaterally weight the
quadratic residuals at two sides of each pixel when discretizing
the functional.

4. Bilateral Normal Integration
Our goal is to estimate the surface z(u, v) given the normal

map n(u, v) based on the PDEs (3) or (9) in the existence of dis-
continuity.

4.1 Discontinuity modeling
The PDEs (3) does not hold at discontinuities, as the partial

derivative ∂uz or ∂vz does not exist. Based on this observation,
we propose to minimize the functional

min
z

∫∫
Ω

bu(nz∂uz + nx)2 + bv(nz∂vz + ny)2 du dv,

(14)

with

bu =

{
1 if ∂uz exists,

0 o.w.,
bv =

{
1 if ∂vz exists,

0 o.w.
(15)

That is, we use two binary weight maps bu(u, v) and bv(u, v) to
indicate the existence of partial derivatives ∂uz and ∂vz, respec-
tively. The problem now is that how do we know where ∂uz or
∂vz does not exist, i.e., the discontinuity positions. To this end,
we directly design the binary weights based on the definition of
discontinuity.

Definition 1 (Discontinuity) A function with two variables
z(u, v) is discontinuous at a point (u, v) along u-axis if

lim
h→0

z(u+ h, v) 6= z(u, v), (16)

and is discontinuous along v-axis if
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lim
h→0

z(u, v + h) 6= z(u, v). (17)

That is, a 2D function is discontinuous at a point if the limit is
unequal to the function value. Therefore, the equality between
the limit and the function value at a point is a straightforward in-
dicator for discontinuity. Based on the discontinuity definition,
we design the weight functions as

bu = δ[z(u, v)− lim
h→0

z(u+ h, v)] and

bv = δ[z(u, v)− lim
h→0

z(u, v + h)],
(18)

where δ(·) is a unit impulse function

δ(x) =

{
1 if x = 0,

0 o.w.
(19)

We can verify that the weight functions Eq. (18) satisfy Eq. (15).
At discontinuities, the weights become 0 and the corresponding
data terms are ignored in the integral in Eq. (14).

4.2 Bilateral weighting
Based on the functional and the weight functions, we discretize

them as a bilaterally weigthed optimization. At each pixel (u, v),
data terms from its two sides are relatively weighted (i.e., left v.s.
right and upper v.s. lower). To this end, we first approximate
the partial derivatives ∂uz and ∂vz twice using both forward and
backward differences:

∂uz ≈ ∆+
u z = z(u+ 1, v)− z(u, v) (forward),

or ∂uz ≈ ∆−u z = z(u, v)− z(u− 1, v) (backward),

∂vz ≈ ∆+
v z = z(u, v + 1)− z(u, v) (forward),

or ∂vz ≈ ∆−v z = z(u, v)− z(u, v − 1) (backward).
(20)

The four approximations leads to four quadratic data terms (e.g.,
(nz∆+

u z + nx)2) at each pixel. We then weight each data term
by the Gaussian function, which approximates the unit impulse
function Eq. (19):

δ(x) ≈ g(x) = exp(−kx2), (21)

where k is a hyperparameter controlling the sharpness of Gaus-
sian. To approximate the differences between the function limit
and the function value Eq. (18), we again use the forward and
backward differences:

z(u, v)− lim
h→0

z(u+ h, v) ≈ nz∆+
u z (forward),

or ≈ nz∆−u z (backward),

z(u, v)− lim
h→0

z(u, v + h) ≈ nz∆+
v z (forward),

or ≈ nz∆−v z (backward),

(22)

which leads to Gaussian weights (e.g. g(nz∆+
u z)) at the corre-

sponding side of each pixel. With the discretizations, we can now
present the bilaterally weighted optimization as

min
z

∑
(u,v)∈Ω

1

wu
[g(nz∆+

u z)(nz∆+
u z + nx)2

+g(nz∆−u z)(nz∆−u z + nx)2]

+
1

wv
[g(nz∆+

v z)(nz∆+
v z + ny)2

+g(nz∆−v z)(nz∆−v z + ny)2].

(23)

Here, we normalize the weights at two sides of each pixel such
that they sum to 1. That is,

wu = g(nz∆+
u z) + g(nz∆−u z),

wv = g(nz∆+
v z) + g(nz∆−v z).

(24)

The benefit of bilateral weighting is that the optimization per-
forms more robust at steep regions on the surface. For example,
at smooth but steep regions, ∆+

u z and ∆−u z can be both large
and yield small Gaussian values. Without bilateral weighting, the
steep surface can be treated as discontinuous. After the normal-
ization, the weights at two sides of each pixel are still close to
0.5 as long as there is no discontinuity besides the pixel. In other
words, the bilateral weighting judges which side of each pixel is
more likely to be discontinuous. In fact, the normalization by wu

and wv yields sigmoid weight functions. For example,

g(nz∆+
u z)

wu
= σ((nz∆−u z)2 − (nz∆+

u z)2),

g(nz∆−u z)

wu
= σ((nz∆+

u z)2 − (nz∆−u z)2),

(25)

where σ(x) = 1
1+exp(−kx) is the sigmoid function and k controls

its sharpness. It follows from Eq. (25) that when (nz∆+
u z)2 and

(nz∆−u z)2 are approximately same, the weights at the two sides
of a pixel are both close to 0.5. Only when one of (nz∆+

u z)2 and
(nz∆−u z)2 is significantly larger than the other, the weight at the
larger side becomes close to 0, and that side is treated discontin-
uous.

4.3 Numerical solution method
With the discretization, we now describe the optimization

problem in the matrix form and its solution method. For now,
let us ignore the weights in Eq. (23). We can form a sparse linear
system from Eq. (23) asNzD

+
u

NzD
−
u

NzD
+
v

NzD
−
v

 z =

[−nx
−nx
−ny

−ny

]
or Az = b (26)

for short. Here, z ∈ Rm is the vectorized depth map, nx, ny , and
nz are the stacking vector of nx(u, v), ny(u, v), and nz(u, v) at
all pixels, respectively; Nz = diag(nz) ∈ Rm×m. The four
square matrices D+

u , D−u , D+
v , and D−v are m×m discrete par-

tial derivative matrices. Each row either contains only two non-
zero entries: −1 and 1, or is a zero vector; see [16] for details.

The system matrix A is rank 1 deficient, implying an offset
ambiguity in the result. In the perspective case, the offset ambi-
guity becomes scale ambiguity after we exponentiating the result.

Now, we stack the weights in Eq. (23) into a diagonal ma-
trix. Let x◦2 be the elementwise square of a vector x, i.e.,
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x◦2 = (x)x, and σ[x; k] be an elementwise Sigmoid function
with a hyper-parameter k. We can stack the weights at all pixels
into two m×m diagonal matrices as

Wu(z) = diag(σ[(NzD
−
u z)◦2 − (NzD

+
u z)◦2]),

Wv(z) = diag(σ[(NzD
−
v z)◦2 − (NzD

+
v z)◦2]).

(27)

Further stacking all weights into a 4m × 4m diagonal matrix
yields

W(z) =

[
Wu(z)

I−Wu(z)
Wv(z)

I−Wv(z)

]
, (28)

where I is an m × m identity matrix. The matrix form of our
optimization problem Eq. (23) is then

min
z

(Az− b)>W(z)(Az− b). (29)

Solution method. Equation (29) is a non-convex problem, and
we use iteratively re-weighted least squares (IRLS) to solve it. At
each step, we fix the weight matrix W and solve for the depths z

z(t+1) = argmin
z

(Az− b)>W(z(t))(Az− b). (30)

When W is fixed, Eq. (30) boils down to a convex weighted least
squares problem. We can find z(t+1) by solving its normal equa-
tion

A>W(z(t))Az(t+1) = A>W(z(t))b. (31)

In our implementation, we use conjugate gradient method to solve
Eq. (31).

We initialize z(0) as a plane, or equivalently, initialize all
weights as 0.5. Then z(1) becomes the least squares approximate
solution to Eq. (26). We stop the iteration if either the maximum
iteration has been reached or the relative energy has been smaller
than the tolerance. In our experiments, we set the maximum iter-
ation around 100 and the stopping tolerance as 1× 10−5.

5. Experiments
We have presented bilateral normal integration to tackle the

discontinuity preservation problem in normal integration. In this
section, we will evaluate our method and compare it with existing
discontinuity preserving normal integration methods.
Evaluation metrics. To quantitatively evaluate the integrated
surfaces when GT surfaces are available, we show the abso-
lute depth error maps and report the mean absolute depth error
(MADE) between the integrated and GT surfaces. As there is an
offset ambiguity in surfaces integrated from orthographic normal
maps, we posterior shift the integrated surfaces such that the L1
norm between the shifted and the GT surfaces is minimal. We
find the optimal offset by computing the median difference be-
tween the estimated and the GT depth values.

In the perspective case, there is a scale ambiguity in the inte-
grated surfaces. Similarly, we scale the integrated surface such
that the L1 norm between the scaled and the GT surfaces is min-
imal. We find the optimal scale by computing the median scale
between the estimated and the GT depth values. As the objects
can have various sizes, we also report the range of the object, i.e.,
the difference between the maximum and the minimum depth val-
ues of the surface.

5.1 Method analysis
In this section, we analyze our method fr om different aspects.

We inspect the effects of the hyper-parameter, show the evolution
over the iteration, inspect the effect of bilateral weighting, and
discuss the limitation of our method.
Effects of the hyperparameter. We first inspect the effect of the
hyper-parameter k on the results. We test our method on two clas-
sical yet challenging toy surfaces [16] “Vase” and “Tent”, whose
normal maps can be analytically computed.

Figure 3 shows the integration results with different ks. It can
be seen that when k is small, like k = 0.1, the integrated surfaces
appear smooth; when k is very large, like k > 100, unwanted
discontinuities exist. This is because k controls the sensitivity
to depth differences between adjacent pixels. A smaller k gives
a smoother Gaussian function; even if the squared depth differ-
ences between adjacent pixels is relatively large, the Gaussian
function still takes a value close to 1. An extreme case is when
k = 0, the Gaussian function takes the constant value 1. In this
extreme case, our method degrades to Eq. (26), with which we
can only recover a smooth surface. In contrast, a larger k brings
a sharper Gaussian function; a tiny squared depth difference be-
tween adjacent pixels can be mapped to a value close to 0. This
may yield unwanted discontinuities. Therefore we can see when
k is large, the integrated surfaces appear over-segmented, espe-
cially around the discontinuities.

Figure 4 shows the surface evolution over the iteration. Our
method gradually recovers the discontinuities, and the energy
J(t) steadily decreases over the iteration.
Effects of bilateral weighting. We now inspect the effects of
bilateral weighting. On the positive side, bilateral weighting
avoids the mis-segmentation problem. As shown in Fig. 5 top,
the surfaces estimated without bilateral weighting are likely to be
wrongly segmented at steep regions. Because bilateral weighting
relatively judges the existence of discontinuities at two sides of a
pixel, mis-segmentation is not likely to occur at steep regions.

On the negative side, bilateral weighting cannot handle the case
where both sides of a pixel are discontinuous. As shown in Fig. 5
bottom, bilateral weighting cannot preserve the discontinuities
when they are one pixel away. This is because bilateral weighting
requires at least one side of each pixel to be smooth. Neverthe-
less, we still recommend bilateral weighting, as one-pixel wide
discontinuities are not likely to occur in practice. In the remain-
ing experiments, we will also use bilateral weighting.
Limitation. There is one case that our method cannot identify
the discontinuity positions correctly: the partial derivatives of the
surface happen to be continuous across depth discontinuities. As
shown in Fig. 6, our method fails at identifying the discontinu-
ity positions in the planar region of the surface. In such case,
additional information other than the normal map is required to
identify the discontinuity positions.

5.2 Comparison
To demonstrate the effectiveness of our method, this section

compares our method with existing methods on orthographic and
perspective normal maps. We compare our method with a smooth
surface recovery method [3], the Mumford-Shah integrator [16]
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Fig. 3 The effects of the hyperparameter k. The odd and even rows display integrated surfaces and depth
error maps, respectively. The hyper-parameter k controls the sharpness of the Gaussian function.
Small k yields smooth surfaces; large k causes over-segmentation of the surfaces.
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Fig. 4 Our method gradually preserves the discontinuities during the iteration. The energy of the objec-
tive function steadily decreases.
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Fig. 5 Bilateral weighting (BW) has both positive and negative effects.
(Top) Bilateral weighting avoids wrong segmentation at steep re-
gions. (Bottom) A surface with multiple one-pixel wide stripes. One
pixel wide discontinuities cannot be preserved as bilateral weighting
requires at least one side of each pixel to be continuous.

A surface The surface’s
normal map

Our integrated
surface

Fig. 6 An example of failure case. Our method cannot correctly identify the
discontinuity positions when partial derivatives happen to be contin-
uous across the depth discontinuities.

and the anisotropic diffusion integrator [16]. The smooth recov-
ery method [3] does not preserve discontinuities and serves as a
baseline method. Both the Mumford-Shah and the anisotropic
diffusion integrator [16] aim at discontinuity preservation and
have two hyperparameters in their objective functions. We fol-
low the recommendation in [16] and set the hyperparameters in
Mumford-Shah integrator as µ = 45 and ε = 0.001, and the hy-
perparameters in anisotropic diffusion as µ = 0.2 and ν = 10.
For the hyperparameter of our method, we set k = 2.

Figure 7 shows quantitative comparisons on an analytically
computed and a rendered normal map, whose ground truth sur-
faces are available. We rendered the normal map and the cor-
responding surface from the object “Reading” in DiLiGenT-MV
dataset [13] by Mitsuba renderer [9] with an orthographic camera.
For both surfaces, the smooth recovery method [3] cannot recover
discontinuities. Mumford-Shah integrator [16] appears to be dif-
ficult at identifying the discontinuity positions correctly. More-
over, unwanted discontinuities exist. This is because Mumford-
Shah integrator [16] only put regularization on the discontinuity
maps but does not relate the discontinuity to the depth. Conse-
quently, Mumford-Shah integrator [16] can recover discontinu-
ities at wrong positions. The anisotropic diffusion integrator [16]
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Fig. 7 Quantitative comparison on an analytically computed and a Mitsuba-
rendered surface. The “Smooth” method [3] assumes a smooth sur-
face and does not preserve discontinuities; “MS” and “AD” are short
for Mumford-Shah and anisotropic diffusion integrator [16], respec-
tively. The odd and even rows display the recovered surfaces and
absolute depth error maps, respectively. Numbers underneath are
mean absolute depth errors.

recovers better surfaces than Mumford-Shah integrator. However,
it appears difficult at recovering large depth gaps even if the dis-
continuity positions are correctly identified, as shown in the sec-
ond object. Our method, on the other hand, can identify more
accurate discontinuity positions and recover depth gaps more ac-
curately. As a result, we achieve the smallest MADEs among all
compared methods.

Figure 8 shows a qualitative comparison on a real-world nor-
mal map. The normal map is estimated by the photometric stereo
method CNN-PS [7] on the real-world images from Light Stage
Data Gallery [4]. It can be clearly seen that Mumford-Shah in-
tegrator [16] wrongly identifies the discontinuity positions and
over-segments the surface. The anisotropic diffusion integra-
tor [16] identifies reasonable discontinuity positions but is not
good at preserving large depth gaps. On the other hand, our
method identifies the discontinuity positions and preserves large
depth gaps more reasonably.

Figure 9 shows integration results on the objects from DiLi-
GenT benchmark [18]. We use the ground truth perspective nor-
mal maps as inputs and set k = 2 for all objects. We find
that existing methods (e.g., Mumford-Shah and anisotropic diffu-
sion [16]) do not preserve discontinuities for perspective normal
maps. Therefore, we only compare our method with the smooth
recovery method [3]. All surfaces contain discontinuities; thus,
the smooth recovery method [3] yields heavily distorted surfaces,
as can be seen from the depth error maps. On the other hand, our
method preserves the discontinuities and thus reduces the distor-
tions in the integrated surfaces. The MADEs are generally within
1 mm; especially, we achieve 0.07 mm MADE for the object
“Cow”. To our knowledge, we are the first to show working re-
sults that preserve discontinuities for perspective normal maps.

However, it can be seen from Fig. 9 that our method does not

A sample image in [4] Normal map by [7]

Smooth [3] Mumford-Shah [16]

Anisotropic diffusion [16] Ours

Fig. 8 Qualitative comparison of integrated surfaces from a real-world nor-
mal map. The normal map is estimated by the photometric stereo
method CNN-PS [7] on real-world image observations from Light
Stage Data Gallery [4]. The data gallery does not provide GT nor-
mals or surfaces.

achieve small MADEs on the objects “Goblet” and “Harvest”
compared to other objects. The large MADEs are caused by
the intrinsic difficulty of single-view normal integration. In the
two objects, the integration domain is separated by discontinuities
into multiple disjoint regions. Consequently, multiple scale am-
biguities arise between disjoint regions, which cannot be solved
given only single-view normal maps. Nevertheless, our method
is accurate up to scales between disjoint regions. The surface is
barely distorted near discontinuities thanks to that our method can
at least identify the discontinuity positions. This can be confirmed
from the piece-wise uniform depth error map of “Goblet”.

6. Conclusion
We have presented and evaluated bilateral normal integration

for discontinuity preserving surface recovery from normal maps.
The success of our method relies on the usage of depth differ-
ences between adjacent pixels to indicate the existence of dis-
continuities. Compared to the previous method, our method can
handle more challenging discontinuities on a surface. In addition,
we unify the problem formulation for orthographic and perspec-
tive normal maps in an appropriate way. As a result, we have
first shown discontinuity preserving results on perspective nor-
mal maps.
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Fig. 9 Quantitative comparison on DiLiGenT benchmark [18]. (1st & 2nd rows) The input perspective
normal maps and the ground truth surfaces. Viewpoints are adjusted to emphasize discontinuities.
(3rd & 4th rows) Surfaces integrated by the smooth recovery method [3] and corresponding depth
error maps. The colormap scale is the same for the first eight objects. Numbers underneath are
mean absolute depth errors / ranges of the objects [mm]. (5th & 6th rows) Surfaces integrated by
our method and corresponding depth error maps.

References
[1] Agrawal, A., Raskar, R. and Chellappa, R.: What is the range of sur-

face reconstructions from a gradient field?, Proc. of European Confer-
ence on Computer Vision (ECCV) (2006).

[2] Badri, H., Yahia, H. and Aboutajdine, D.: Robust surface reconstruc-
tion via triple sparsity, Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pp. 2283–2290 (2014).

[3] Cao, X., Shi, B., Okura, F. and Matsushita, Y.: Normal Integration via
Inverse Plane Fitting With Minimum Point-to-Plane Distance, Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pp. 2382–2391 (2021).

[4] Chabert, C.-F., Einarsson, P., Jones, A., Lamond, B., Ma, W.-C., Syl-
wan, S., Hawkins, T. and Debevec, P.: Relighting human locomotion
with flowed reflectance fields, ACM SIGGRAPH 2006 Sketches, pp.
76–es (2006).

[5] Durou, J.-D., Aujol, J.-F. and Courteille, F.: Integrating the normal
field of a surface in the presence of discontinuities, Workshops of the
Computer Vision and Pattern Recognition (CVPRW) (2009).

[6] Horn, B. K. and Brooks, M. J.: The variational approach to shape from
shading., Comput. Vis. Graph. Image Process. (1986).

[7] Ikehata, S.: CNN-PS: CNN-based photometric stereo for general non-
convex surfaces, Proceedings of the European conference on computer
vision (ECCV), pp. 3–18 (2018).

[8] Ikeuchi, K. and Horn, B. K.: Numerical shape from shading and oc-
cluding boundaries, Artificial intelligence (1981).

[9] Jakob, W.: Mitsuba renderer (2010).
[10] Kadambi, A., Taamazyan, V., Shi, B. and Raskar, R.: Polarized 3D:

High-quality depth sensing with polarization cues, Proc. of Interna-
tional Conference on Computer Vision (ICCV) (2015).

[11] Karacali, B. and Snyder, W.: Reconstructing discontinuous surfaces
from a given gradient field using partial integrability, Computer Vision
and Image Understanding (2003).

[12] Kovesi, P.: Shapelets correlated with surface normals produce sur-
faces, Proc. of International Conference on Computer Vision (ICCV)
(2005).

[13] Li, M., Zhou, Z., Wu, Z., Shi, B., Diao, C. and Tan, P.: Multi-view

photometric stereo: a robust solution and benchmark dataset for spa-
tially varying isotropic materials, IEEE Transactions on Image Pro-
cessing (2020).
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