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Abstract

The quantum approximate optimization algorithm
(QAOA) has numerous promising applications on
solving the combinatorial optimization problems on
the near-term Noisy Intermediate Scalable Quantum
(NISQ) devices. QAOA has a quantum-classical hy-
brid structure, with the quantum part consisting the
parameterized alternating operator ansatz, and the
classical part consist of an optimization algorithm op-
timizing the parameters to maximize the expectation
value. This value depends highly on the parameters.
This implies that a set of good parameters leads to
an accurate solution of the given problem. However,
at large circuit depth, it is difficult to achieve global
optimization due to the multiple occurrence of local
maxima. Therefore, we study the so-called leapfrog-
ging strategy on solving the Max-cut problem for 3-
regular graphs, which reuses the optimized parame-
ters in larger graphs.

1 Introduction

Since the introduction of QAOA by Farhi et al. [1], it
is widely known for its efficiency in solving combina-
torial optimization problem on quantum computers.
Among the problems, the Max-cut problem is heavily
studied for its simple formulation and its deep
relation to the Ising model. Since the Max-cut
problem is an NP-complete problem, it is known that
we are unable to solve it efficiently using classical
computers, unless P=NP. Although QAOA does
not give the exact solution to the Max-cut problem,
the algorithm provides a heuristic approach for the
problem. However, several hurdles continue to exist
in obtaining a “good” solution for QAOA Max-cut.
Solving large problems (graphs with large number
of nodes) requires the deep circuit, but QAOA has
difficulty at deep circuit due to the existence of many
local maxima on the hypersurface of the expectation
function.

In this paper, we use the leapfrogging strategy in-
troduced [2] on regular graphs to tackle the problem,

and verify our results using the Qiskit Aer QASM
simulator.

2 QAOA Max-cut on regular
graphs

QAOA is inspired by the Quantum Adiabatic Algo-
rithm [3], which focuses on evolving the initial Hamil-
tonian HB to the problem Hamiltonian HC , satisfying

H̃(s) = (1− s)HB + sHC (1)

where s(t) → 1 as t → ∞. The evolution in (1) is
then discretized, which results in the idea of QAOA.
In QAOA, the alternating unitary operators involving
HB and HC are applied to the initial state to simulate
the evolution of the system in (1):

|ψp(γ, β)〉 = e−iβpBe−iγpC . . . e−iβ1Be−iγ1C |+〉
⊗
n

(2)
where B = HB and C = HC . For the Max-cut prob-
lem of a graph G = (V,E), they are given as

C =
1

2

∑
(j,k)∈E

(I − ZjZk) (3)

B =
∑
j∈V

Xj (4)

Xj and Zj are the Pauli operators acting on the j-th
qubit. After applying the operators as in (2), we cal-
culate the expectation of the operator C with respect
to the ansatz state |ψp(γ, β)〉:

Fp(γ, β) = 〈ψp(γ, β)|C|ψp(γ, β)〉 (5)

Since (5) is parameterized by the angles γ and β, we
can use a classical optimization algorithm to search
for the maximum Mp.

Mp = max
γ,β

Fp(γ, β) (6)

The approximation ratio α is defined as

α =
Mp

Ctrue
(7)
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where Ctrue is the true Max-cut value for the graph
to be solved.

The positive integer p is known as the circuit
depth, and it is shown theoretically that as p → ∞,
Mp → Ctrue. However, for example, previous
report [4] states that at large p, it is difficult to
maximize Fp due to: 1. The point to be optimized is
more likely to be trapped inside a local maxima; 2.
The optimizer takes longer as it has more parameters
to consider. These drawbacks discourage us to
increase the circuit depth.

Farhi et al. [1] observe that at p = 1, for regular
graphs, for each local term in (5), the operators which
are not involved in the edge (j, k) will be canceled out
and does not contribute to F1. This further simplifies
F1 to the linear combination of the expectation value
of the 3 types of subgraphs in 3-regular graphs.

F1(γ1, β1) =wIFI(γ1, β1) + wIIFII(γ1, β1)

+ wIIIFIII(γ1, β1)
(8)

I, II and III represent the 3 types of subgraphs, w is
their respective total weights and F is their local ex-
pectations. Brandao et al. [2] then propose a leapfrog-
ging strategy to inherit optimized angles from typical
graph instance with smaller number of nodes to that
with larger number of nodes. As the number of nodes
gets larger, the instance will have higher proportion
of type III (tree-like) subgraphs compared to I and II.
This causes F1 to concentrate towards FIII. There-
fore, the leapfrogging works better for larger number
of nodes and larger p as the graphs and subgraphs will
be more tree-like.

3 Results and discussions

We solve the Max-cut on unweighted 3-regular
instances with 6, 8, 12 and 16 nodes using QAOA.
We choose the graphs such that they have higher pro-
portion of the type III subgraph. We then compare
the approximation ratio α between random initial
angles and the leapfrogging method. In the random
initialization method, we use 20 random angles as
the starting point to the QAOA and optimize them
using the Nelder-Mead optimizer. In the leapfrogging
method, we first use the random method on solving
the 6-node graph. Then, we pass the angles that
output the highest α in the 6-node graph to the
8-node graph. We optimize those sets of angles and
pass them to the 12-node graph, and then repeat the
same for 16.

Figure 1 shows the result for the QAOA simulation.
The value of α for the leapfrogging method is higher
than the α averaged out of 20 times for the random

Figure 1: Comparison between the random and the
leapfrog method for a 12 node graph and a 16 node
graph.

initialization method. The advantage of the leapfrog-
ging method is that it does not require trying multiple
different angles each time a graph instance is solved
to obtain the global maxima.

4 Future works

We have applied the leapfrogging strategy to 3-regular
graphs and the result shows it is able to approximate
better than the random approach. In the future, we
will study whether there are other classes of graphs
that has potential to be improved by leapfrogging.
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