V7 hU oY T 136—25

(zoo02. 3. 8)

Towards A Metrics Suite for Aspect-Oriented Software

Jianjun Zhao
Department of Computer Science and Engineering
Fukuoka Iustitute of Technology
3-10-1 Wajiro-Higashi, Higashi-ku, Fukuoka 811-0295, Japan
zhao@es. fit.ac.jp

Abstract

Although a large body of research in software metrics
has been focused on procedural or object-oriented soft-
ware, there is no software metric for aspect-oriented
software until now. In this paper, we propose some
metrics for aspect-oriented software, which are specif-
ically designed to quantify the wnformation flows in
an aspect-oriented program. We define these metrics
based on a dependence model for aspect-oriented soft-
ware which consists of a group of dependence graphs
each can be used to explicitly represent various depen-
dence relations at different levels of an aspect-oriented
program. The proposed metrics can be used to mea-
sure the complexity of an aspect-oriented program from.
various different viewpoints:

1 Introduction

Software metrics aim to measure the inherent com-
plexity of software systems with a view toward predict-
ing the overall project cost and evaluating the quality
and effectiveness of the design. Software metrics have
many applications in software engineering tasks such
as program understanding, testing, refactoring, main-
tenance, and project management.

Research for software measurement must adapt to
the emergence of new software development methods,
and metrics for new languages and design paradigms
must be defined based on models that are relevant to
these new paradigms [3].

Recently. aspect-oriented programming has heen
proposed as a technique for improving separation of
concerns in software design and implementation [8].
Aspect-oriented programming works by providing ex-
plicit mechanisms for capturing the structure of cross-
cutting concerns in software systems. Aspect-oriented
programming languages can be used to cleanly mod-
ularize the crosscutting structure of concerns such as
exception handling. synchronization, performance op-
timizations, and resource sharing, that are usually diffi-
cult to express cleanly in source code using existing pro-
gramming techniques. - Aspect-oriented programming
languages can control such code tangling and make
the underlying concerns more apparent, making pro-

—187—

grams easier to develop and maintain. As research in
aspect-oriented programming is reaching maturity with
a number of active research products, software metrics
researchers need to focus on this new paradigm in order
to efficiently evaluate it in a rigorous and quantitative
fashion. Moreover, in“an aspect-oriented system, the
basic program unit is an aspect rather. than a proce-
dure or a class. An aspect with its encapsulation of
state with associated advice (operations) is a signifi-
cantly different and richer abstraction than the proce-
dure units within procedural programs or class units
within object-oriented programs. The inclusion of join
points in an aspect further complicates the static rela-
tions among aspects and classes. Therefore, in oreder
to define some metrics for estimating the complexity of
aspect-oriented software, models that are appropriate
to represent aspect-oriented systems are needed.

However, although a large body of research in soft-
ware metrics has been focused on procedural or object-
oriented software [3, 4, 5, 6, 7, 10, 11, 13], until now
there is no software metric for aspect-oriented software.
Further, due to the specific features of aspect-oriented
software, existing models and abstractions for proce-
dural or object-oriented software can not be applied to
aspect-oriented software straightforwardly.

In this paper, we propose some metrics for assessing
the complexity of aspect-oriented software, which are
specifically designed to quantify the information flows
in an aspect-oriented program. These metrics are de-
fined based on a dependence model for aspect-oriented
software which consists of a group dependence graphs
defined at three levels of an aspect-oriented program to
explicitly represent various dependence relations in the
program. The proposed metrics can be used to mea-
sure the complexity of aspect-oriented software from
various different viewpoints.

The rest of the paper is organized as follows. Sec-
tion 2 gives some background information related. to
this research. Section 3 presents dependence graphs for
aspect-oriented software at the three levels of abstrac-
tion. Section 4 defines a set of complexity metrics for
aspect-oriented programs based on these dependence
graphs. Concluding remarks are given in Section 5.

ce0 public class Point
sl protected int x, y;
me2 public Point(int _x, int _y) {(
s3 x = _X;
84 y = yi
}
me5 public int getX() (
86 return x;
}
me7 public int get¥{) {

s8 return y;
}
me9 public void setX(int _x) {
810 X = _X;

}
mell public void setY(int _y) {

s12 y = _¥i
}
mel3 public void printPosition() {
514 System.out.println("Point at ("+x+","+y+")");
}
mels public static void main(String(] args) {
516 Point p = new Point(1,1);
517 p.setX(2);
818 p.setY(2);

cel9 class Shadow (
820 public static final int offset = 10;
s21 public int x, y;

me22 Shadow(int x, int y) {

823 this.x = x;
524 this.y = y;
me25 public void printPosition(} {
826 System.outprintln(*Shadow at
(M4xet, eyt) t) g
}
}

ase27 agpect PointShadowProtocol {
828 private int shadowCount = 0;
me29 public static int getShadowCount() {
830 return PointShadowProtocol.
aspectOf () .shadowCount;
¥
531 private Shadow Point.shadow;
me32 public static void associate(Point p, Shadow s){
533 p.shadow = s;
}
me34d public static Shadow getShadow(Point p) {
835 return p.shadow;

pe3é pointcut saetting(int x, int y, Point p):

args(%,y) && call (Point.new(int,int));
pe37 pointcut settingX({Point p):

target (p) && call(void Point.setX(int));
pe3s pointcut settingY(Point p):

target (p) && call(void Point.set¥(int));

ae3’ after(int x, int y, Point p) returning :
setting(x, y, ‘D) {

840 Shadow s = new Shadow(x,y);
841 associate(p,s);
842 shadowCount++;

}
aed3 after (Point p): settingX(p) {

sé4 Shadow 8 = new getShadow(p};
845 8.x = p.getX() + Shadow.offset;
846 p.printPosition();

847 s.printPosition();

}
as48 after (Point p): settingY(p) {

849 Shadow 8 = getShadow(p);

850 8.y = p.get¥() + Shadow.offset;
851 p.printPosition();

852 s.printPosition();

Figure 1: A sample AspectJ program.

2 Aspect-Oriented Programming with
Aspectd

We assume that readers are familiar with the basic
concepts of aspect-oriented programming, and in this
paper, we use Aspect] [1] as our target language to
show the basic idea of our metrics for aspect-oriented
software. The selection of Aspect] is based on that it
is one of most popular aspect-oriented language in the
community.

Below, we use a sample program taken from [1] to
briefly introduce the AspectJ. The program shown in
Figure 1 associates shadow points with every Point
object and contains one PointShadowProtocol aspect
that stores a shadow object in every Point and two
classes Point and Shadow.

AspectJ is a seamless aspect-oriented extension to
Java. Aspect] adds some new concepts and associated
constructs to Java. These concepts and associated con-
structs are called join points, pointcut, advice, intro-
duction, and aspect.

The join pointis an essential element in the design of
any aspect-oriented programming language since join
points are the common frame of reference that defines
the structure of crosscutting concerns. The join points
in AspectJ are well-defined points in the execution of
a program. The join points in Aspect] are method or
constructor call, method or constructor execution. class
or object wnitialization, field reference or assignment,
and handler ezecution [1].

A pointcut is a set of join points that option-
ally exposes some of the values in the execution of

—188—

those join points. Aspect] defines several primitive
pointeut designators that can identify all types of
join points. Pointcuts in AspectJ can be composed
and new pointcut designators can be defined accord-
ing to these combinations. For example, In aspect
PointShadowProtocol three pointcuts are declared
with the names of setting, settingX. and settingV.

Aduwice is used to define some code that is executed
when a pointcut is reached. Apsect] provides three
types of advice, that is. before, after, and around. In
addition, there are also two special cases of after advice,
called after returning and after throwing. For example,
In aspect PointShadowProtocol, there are three after
advice setting, settingX, and settingy.

Advice declarations can change the behavior of
classes they crosscut, but can not change their static
type structure. For crosscutting concerns that can op-
erate over the static structure of type hierarchies, As-
pect] provides forms of introduction.

Introduction in AspectJ can be used by an aspect
to add new fields, constructors. or methods (even
with bodies) into given interfaces or classes. In-
troduction can be public or private, where a pri-
vate introduction means only code in the aspect
that declared it can refer or access the introduced
fields, constructors, or methods. For example, In as-
pect PointShadowProtocol, introduction declaration
private Shadow Point.shadow; privately introduces
a field named shadow of type Shadow in Point. This
means that only code in the aspect can refer to Point’s
shadow field.

Aspects are modular units of crosscutting implemen-
tation. Aspects are defined by aspect declarations,
which have a similar form of class declarations. Aspect
declarations may include advice, pointcut, and intro-
duction declarations as well as other declarations such
as method declarations, that are permitted in class dec-
larations. Forexample, the program in Figure 1 defines
one aspect named. PointShadowProtocol.

An AspectJ program can be divided into two parts:
non-aspect code which includes some classes, interfaces,
and other language constructs as in Java, and aspect
code which includes aspects for modeling crosscutting
concerns in the program. For example, the sample pro-
gram of Figure 1 can be divided into the non-aspect
code containing classes Point and Shadow, and the
aspect code which has aspect PointShadowProtocol.
Moreover, any implementation of Aspect] is to ensure
that the aspect and non-aspect code run together in a
properly coordinated fashion. Such a process is called
aspect weaving and involves making sure that appli-
cable advice runs at the appropriate join: points. For
detailed information about Aspect], one can refer to

.

3 A Dependence Model for Aspect-
Oriented Software

When we intend to measure some attributes of an
entity, we must build some model for the entity such

that the attributes can he explicitly described in the
model. Aspect-oriented programming languages differ
from procedural or object-oriented programming lan-
guages in many ways. Some of these differences, for ex-
ample, are the concepts of joint points, advice, aspects,
and their associated constructs. These aspect-oriented
features may impact on the development of model for
aspect-oriented software.

In this section, we present a dependence model for
aspect-oriented software to capture attributes concern-
ing about information flow in an aspect-oriented pro-
gram. The model consists of dependence graphs repre-
senting an aspect-oriented system at three levels, i.e.,
the module-level, aspect-level; and system-level. Each
level has its own dependence graph, and therefore sup-
port to develop dependence-based metrics at different.
levels.

3.1 Module-Level Dependence Graphs

In this subsection, we describe how to represent a
module, i.e., a single ;nethod, advice, or introduction
in an aspect using a dependence graph.

3.1.1 Method Dependence Graph

The method dependence graph (MDG) of a method is
a digraph whose vertices represent statements or pred-
icate expressions in the method and arcs represent. two
types of dependence relationships, i.e., control depen-
dence, and data dependence. Control dependence rep-
reseits control conditions on which the execution of a
statement or expression depends in the method. Data
dependence represents the data flows between state-
ments in the method. Each MDG has a unique vertex
called method start vertez to represent the entry of the
method.

3.1.2 Advice Dependence Graph

We use the advice dependence graph (ADG) to repre-
sent advice in an aspect. The ADG of advice is similar
to the MDG of a method such that its vertices repre-
sent statements or predicate expressions in the advice,
and its arcs represent control or data dependencies be-
tween vertices. Each advice has a unique vertex called
advice start vertex to represent the entry of the advice.

3.1.3 Introduction Dependence Graph

We use the introduction dependence graph (IDG) to
represent an introduction in an aspect. The IDG of
an introduction is similar to the MDG of a method
such that its vertices represent statement or predicate
expressions in the introduction and its arcs represent
control or data dependencies between these statements.
There is a unique vertex called introduction start vertes
in the IDG to represent the entry of the introduction.

—189—

control dependence arc

data dependence arc

aspect membership arc

parameter-out,

or call arc

£1_ in: x=x_in £2_in: y=y in £3_in: p=p_in

al_in: p _in=p a2_in: s_in=g

£3_out: p_out=p

£4_in: s=s_in £5_in: shadowCount=shadowCount. in

Figure 2: An AIDG for aspect PointShadowProtocol of the program in Figure 1.

3.2 Aspect-Level Dependence Graphs

We use the aspect interprocedural dependence graph
(AIDG) to represent a single aspect in an aspect-
oriented program.

The AIDG of an aspect is a digraph that consists of a
number of ADGs, IDGs, and MDGs each representing
advice, an introduction, or a method in the aspect,
and some special kinds of dependence arcs to represent
direct or indirect dependencies between a call and the
called advice, introduction, or method and transitive
interprocedural data dependencies in the aspect. Each
AIDG has-a unique vertex called aspect start vertez to
represent the entry into the aspect. The aspect start
vertex is connected to each start vertex of an ADG,
IDG, or MDG in the aspect by aspect membership arcs
to represet the membership relations.

In order to model parameter passing in an aspect.
Formal-in and formal-out vertices are associated with
each advice, introduction, or method start vertex, and
actual-in and actual-out vertices are associated with
each call vertex representing a call site in. the aspect.
Each formal parameter vertex is control-dependent on
the start vertex, and each actual parameter vertex is
control-dependent on the call vertex.

For the instance variables declared in an aspect,
since they are accessible to all- advice, introductions,
and methods in the aspect, we create formal-in and
formal-out vertices for all instance variables that are
referenced in the advice, introductions, and methods.

Finally, for each pointent,. we connect the aspect
start vertex to each pointcut start vertex through as-
pect membership arcs, and also connect each pointcut
start vertex to its corresponding advice start vertex by
call arcs to represent relationships hetween them.

Ezample. Figure 2 shows the AIDG of aspect
PointShadowProcotol. For example, in the figure,
ase27 is the aspect start vertex, and ae39, pe36,
ie3l and me32 are advice, pointeut, introduction,
and method start vertices respectively. (ase27,ae39).
(ase27, ped6), (ase2T,1e31), and (ase27, me32) are as-
pect membership arcs. " Moreover, each advice, intro-
duction, or method start vertex is the root of a sub-
graph which is itself an ADG, IDG, or MDG.

3.3 System-Lev\elr Dependence Graph

We present a system-level dependence graph called
the aspect-oriented system dependence graph (ASDG)
to represent a complete aspect-oriented program. An
ASDG of an aspect-oriented program is a collection of
dependence graphs each representing a method, advice,
or introduction in an aspect of the program, and some
additional arcs to represent direct or indirect depen-
dencies between acall and the called module and some
transitive interprocedural data dependencies. We first
introduce how to represent interactions among aspects
and classes, and then construct the complete ASDG.

—190—

paramster-in, parameter-out,
or call are
s P
coordination arc

£1_in: xex_in,

v
1
'
l

v

f1 out: x_out=x, f2_in: ysy_in,” £2_out: y out=y,
£5_0ut: p.outzp, £6_in: this.xxthis.x_in,

8 _out: = s outas, al_in: _x im=l,

£ _tar
£5_in: pep_in,

£0_in:

sxs_in,

*2_in: _y dnsl, ad_ims

26_out: this.x _outsthis.x,

x*_x_in, 3 out: _¥ out= x, f4_in: ys y in,
£7_in: this.ysthis.y_ iz,

#4_in: y_in=2,

f4_out: _y_outs_y,
£7_out: this.y_outxthis.y,

*_ins2, aS_in: p_in=p, a6_in: s_ins=s

Figure 3: An ASDG of the program in Figure 1.

3.3.1 Representing Interactive Aspects and

Classes

An aspect can interact with a class by four ways: (1)
creating an object of the class from the aspect, (2) there
is a call from a method or a advice in the aspect to a
method of the class, (3) declaring a public introduction
in the aspect to add a field, method, or constructor to
the class, and (4) weaving the code declared in advice
of the aspect to the class code at join points. Where the
first and the second ways are similar to class interac-
tions in an object-oriented program, the third and the
fourth ways are unique for aspect-oriented programs.
In the following, we describe how to preresent these
four interactions. .

Creating Objects

—191—

In AspectJ, an aspect may create an object of a class
through a declaration or by using an operator such as
new similar to a Java class. When an aspect 4 creates
an object of class C', there is an implicit call to C’s
constructor. To represent this implicit constructor call,
we add a call vertex in A at the place of object creation.
A call arc connects this call vertex to the start vertex
of the C"s constructor MDG. In the meantime, actual-
in and actual-out vertices are added at the call vertex
to match the formal-in and formal-out vertices in- C''s
constructor MDG.

Making Calls

When there is a call site in method m, or advice ¢,
in aspect A to method my in the public interface of C,
we connect the call vertex of ni; in A4 to the method

start vertex of my to form a call are, and also connect
actual-in and formal-in vertices to form parameter-in
arcs and actual-out and formal-out vertices to form
parameter-out arcs.

Using Introductions

In Aspect]J, an aspect A can also interact with a class
C' by declaring a public introduction I in A for adding
an additional field, method. or constructor to C. To
represent such an interaction, we connect the class start
vertex of (s class dependence graph to the introduc-
tion start vertex of the I's IDG by a class membership
arc.

Using Join Points

In Aspect], join points are defined in each aspect
with the pointcut designator. DPointcuts are further
used in the definition of advice. By carefully examin-
ing join points declared in the pointcuts and their as-
sociated advice, one can determine the weaving points
statically in the non-aspect code to facilitate the con-
nection of the non-aspect code to the aspect code. In
this paper, we use weaving vertices in the SDG to rep-
resent the weaving points in the non-aspect code which
can be used to connect the SDG of non-aspect code to
the AIDGs of aspect code.

For example, in order to determine the weaving
point for weaving the code declared in advice setting¥
to a method in class Point. First, from pointcut
settingY declaration, we knew that the code in ad-
vice settingY should be inserted into method setY of
class Point. However, we still do not know the ex-
act place where we should insert the code. By exam-
ining advice settingY’s declaration we further know
that this advice is after advice. According to the As-
pect] programming guide [1}: “after advice runs after
the computation ‘under the join point’ finishes, i.e.. af-
ter the method body has run, and just before control is
returned to the caller (p.12),” we know that the code
declared in advice settingY should be inserted into the
place after the last statement of method setY, i.e., af-
ter y = _y. Similarly, we can determine other weaving
points in the non-aspect code.

3.3.2 Aspect-Oriented System Dependence
Graph

Generally, an Aspect] program consists of classes, in-
terfaces, and aspects. In order to execute the program,
the program must include a special class called main()
class. The program first starts the main() class, and
then transfers the execution to other classes.

To construct the ASDG for a complete Aspect]J pro-
gram, we first construct the SDG for the non-aspect
code using existing techniques proposed for object-
oriented programs [9, 12, 14] and then insert the weav-
ing vertices obtained from the third part of our algo-
rithm to the SDG. After that, we use a coordination
arc to connect each weaving vertex to the advice start
vertex of its corresponding ADG. A call arc is added
between a call vertex and the start vertex of the ADG,

IDG. or MDG of the called advice, introduction, or
method. Actual and formal parameter vertices are
connected by parameter arcs, We also add the sum-
mary arcs for advice, introduction. or methods in a
previously analyzed aspect between the actual-in and
actual-out vertices at call sites.

Ezample. Figure 3 shows the complete ASDG of
the sample AspectJ program in Figure 1.

4 Metrics for Aspect-Oriented Soft-
ware

Since program dependencies are dependence rela-
tionships holding hetween program elements in a pro-
gram that are determined by control flows and data
flows in the program, they can be regarded as one of
intrinsic attributes of programs. Therefore it is reason-
able to take program dependencies as one of objects for
measuring program complexity.

In this section, we define a set of complexity met-
rics in terms of program dependence relations to mea-
sure the complexity of‘an aspect-oriented program from
various viewpoints. Once the dependence graphs of
an aspect-oriented program is constructed, the metrics
can be easily computed in terms of dependence graphs.

4.1 Module-Level Metrics

We first define some metrics at the module level
based on the ADG, IDG. and MDG. These metrics can
be used to measure various complexities of a single ad-
vice, introduction, or method from a general viewpoint.
Let a be a module, i.e., a single advice, introduction, or
method in an aspect and G, be the dependence graph
of @, we have the following metrics.

e M;: the number of all control dependence arcs
in G,. It can be used to measure the complexity
of a module from a special viewpoint of control
structure.

o M;: the number of all data dependence arcs in
Go. It can be used to measure the complexity of
a module from a special viewpoint of information
flow.

o Ma: the number of all program dependence arcs in
G It can be used to measure the total complexity
of a module from a general viewpoint.

In maintenance phases, when we have to modify a
statement, we usually intend to know the information
about how the modified statement intersect with other
statements in the program. This kind of information is
very useful because it can tell us if the modified state-
ment is a special point that connects with its environ-
ment more closely than other statements. If so, that
means it is difficult to implement changes to the state-
ment due to a large number of potential effects on other
statements. We call such a statement the “most easily

—192—

affected statement™ of the program. To capture such
attribute, we can define the following metric:

e My: the maximal number of vertices that a ver-
text is somehow dependent on G,. It can be
used to determine the “most easily affected” state-
ment(s) in a module.

4.2 Aspect-Level Metrics

We can also define some aspect-level metrics for an
individual aspect based on its AIDG. These metrics can
be used to measure various complexities of an aspect
from different viewpoints. Let 3 be an aspect and G
be the AIDG of 3. we have the following metrics.

e Mj: the number of all control dependence arcs in
G 3. It can be used to measure the complexity of an
aspect from a special viewpoint of intraprocedural
control structure.

o Mg: the number of all data dependence arcs in
G 3. It can be used to measure the complexity of an
aspect from a special viewpoint of intraprocedural
information flow.

o M7: the number of all call dependence arcs in G 3.
It can be used to measure the complexity of an
aspect from a special viewpoint of interprocedural
control structure.

e Mg: the number of all parameter-in and
parameter-out dependence arcs in G 3. It can be
used to measure the complexity of an aspect from
a special viewpoint of interprocedural information
flow.

o Mg: the number of all call, parameter-in, and
parameter-out dependence arcs in G3. It can be
used to measure the complexity of an aspect from a
special viewpoint of interprocedural control struc-
ture and information flow.

e Mjo: the number of all dependence arcs in G3. It
can be used to measure the total complexity of an
aspect from a general viewpoint.

o M;;: the maximal number of vertices that a ver-
tex is somehow dependent on in Gg. It can be
used to determine the “most easily affected” state-
ment(s) in an aspect.

4.3 System-Level Metrics

Finally, we can define some metrics at the whole
system level based on the ASDG. These metrics can
be used to measure various total complexities of an
aspect-oriented. program from various viewpoints. Let
p be an aspect-oriented program and G, be the ASDG
of p, we have the following metrics:

o M2: the number of all control dependence arcs in
G,. It can be used to measure the total complex-
ity of an aspect-oriented program from-a special
viewpoint of control structure.

o Mj3: the number of all data dependence arcs in
G)p. Tt can be used to measure the total complex-
ity of an aspect-oriented program from a special
viewpoint of information flow.

o My4: the number of all program dependence arcs
in Gp. It can be used to measure the total com-
plexity of an aspect-oriented program from a gen-
eral viewpoint.

e Mys: the maximal number of vertices that a
vertex is somehow dependent on in G, It
can be used to determine the “most easily af-
fected”statement(s) in an aspect-oriented pro-
gram,

Since all the metrics defined above are absolute met-
rics, they have the following property:

e In general, the larger is the value of a metric of o,
3. or p, the more complez is «, 3, or p.

5 Concluding Remarks

In this paper, we proposed some metrics for aspect-
oriented software, which are specifically . designed to
quantify the information flows of aspect-oriented pro-
grams. These metrics are defined based on the de-
pendence model of aspect-oriented software which con-
sists of dependence graphs defined at three levels to
explicitly represent various dependencies in an aspect-
oriented program. The proposed metrics can be used
to measure the complexity of aspect-oriented software
from various different viewpoints.

While our initial exploration used Aspect] as our
target language, the concept and approach presented in
this paper are language independent. However, the im-
plementation of a dependence analysis tool may differ
from one language to another because each language
has its own structure and syntax that must he han-
dled appropriately. As one of our future researches, we
plan to develop a dependence analysis tool for Aspect]J
which includes a generator for automatically construct-
ing different levels of dependence graphs for Aspect]
programs and a metrics collection tool for collecting
metrics presented in this paper of an AspectJ program
based on these dependence graphs.

References

{1] The Aspect] Team, “The Aspect] Programming
Guide,” 2001.

[2] J. M. Bieman and L. M. Ott, “Measuring Func-
tional Cohesion,” IEFE Transaction on Softuware
Engineering, Vol.20, No.8, pp.644-657, 1994.

—193—

[3] J. M. Bieman. “Metrics' Development for Object-
Oriented Software.” In Software Measurement:
Understanding Software Engineering, A. Melton,
editor, International Thomson Publishing (ITP).
pp.75-93. 1996.

J. Cheng. “Complexity Metrics for Distributed
Programs.” Proc. the 4th IEEE International
‘Symposuim. on Software Reliability, pp.132-141,
Denver, U.S.A., November 1993.

[5] N.E.Fenton and S. L. Pfleeger, “Software Met-
rics: A Rigorous and Practical Approach,” Second
Edition, International Thomson Computer Press,
1997.

[6] M. Halstead, “Elements of Software Science,” El-
sevier, North Holland, 1977.

[4

[7]'S. Henry and D. Kafura, “Software Structure Mea-
sures Based on Information Flow,” IEEE Trans-
actions on Software Engineering, Vol.7, No.5,
pp.510-518, 1981.

[8] G. Kiczales, J. Lamping. - A. Mendhekar, C.
;\Iaedat C. Lopes, J. M. Loingtier, and J. Ir-
win, “Aspect-Oriented Programming.” proc. 11th
Eumpmn Conferenre on Object-Oriented Pro-
grammming, pp220-242. LNCS, Vol.1241, Springer-
Verlag. June 1997.

[9] L. D. Larsen and M. J. Harrold, “Slicing Object-
Oriented Software.” Proceeding of the 18th In-
ternational Conference on S()ff'uvare Eﬂ_/ln(’PTLTI_/
German, March, 1996.

[10] T. J. McCahe, “A Software Complexity Measure,”
IEEE Transaction on Software Engineering. Vol.2,
No.4, pp.308- 370 1976.

[11] B. H. Yin an(l JoWo W 111rhester “The Establish-
" ment and Use of Measures to Evaluate the Quality
of Software Designs,” Proceedings.of the Software
Quality and Assurance Workshop, pp.43-52, 1978.

[12) J. Zhao, “Applying” Plnglam Dependence Analy-
© sis to Java Software.” Proc. Workshop on Software
Engineering and Database Systems, 1998 Interna-
tional Computer Symposium, pp.162-169, Decem-

ber 1998.

{13] J. Zhao, “On Assessing the Cmnplexity of Soft-
ware Architectures,” Proc. 3rd International Soft-
ware Architecture Workshop, pp.163-166, ACM
SIGSOFT.; November 1998.

[14] J. Zhao, “Slicing Concurrent Java Programs,”
Proc. Seventh IEEE International Workshop on
Program Comprehension, pp.126-133. May 1999.

[15] H.Zuse, “Software Complexity: Measures and
Methods,” Walter de Gruyter, 1990.

—194—

