Electronic Preprint for Journal of Information Processing Vol.29

Regular Paper

IoT-oriented Secure Data Sharing Using Public Cloud

1,42,b)

Kenta Yokoar @ Naova Kiragawa NartyosHr Yamar!-©

Received: March 8, 2021, Accepted: September 9, 2021

Abstract: The number of IoT devices is continuously increasing. Secure data sharing governed by appropriate ac-
cess control is required to safely utilize data generated by IoT devices. Storing data in a public cloud is suitable for
deploying services with distributed data sharing on a large scale. However, this raises security concerns since even
when the data are encrypted, an adverse third party may access them if a decryption key is stored within the same
environment (key escrow problem). Conventional methods are not supposed to be used in the IoT environment or
have issues with security, key distribution, and changing access authority. We propose a novel approach to securely
share the data generated by IoT devices within a public cloud. Our method enables 1) addressing the key escrow prob-
lem; 2) providing forward secrecy; 3) ensuring indistinguishability under Adaptive Chosen Ciphertext Attack (safety
equivalent to IND-CCA?2); 4) changing access authority easily; and 5) saving computational resources of IoT devices.
We implemented this method and evaluated its performance. The experimental results show that it has comparable or
better performance compared with conventional methods. Furthermore, we confirm that resource consumption in our
method is more practical even in the large-scale IoT environment.

Keywords: access control, cloud computing, internet of things, secure data sharing

1. Introduction

In recent years, the number of IoT devices has been grow-
ing and is currently expected to reach 40 billion worldwide by
2020[1]. The areas of highest IoT growth are smart factories
and smart cities. Since [oT devices continuously generate large
volumes of data, managing the authority for accessing data gen-
erated by IoT is becoming ever more important. Sharing all of
this data across multiple organizations, distributing it graphically
and achieving the required access scale flexibility make utilizing
public clouds provided by third parties unavoidable for a host of
different reasons including convenience and cost [2], [3].

However, storing the data in a public cloud gives rise to secu-
rity concerns. Even when the data are encrypted to restrict access
targets, if the key required for decrypting the data is stored in the
same public cloud, there is a concern that an unexpected third
party may get access to the data due to a cloud system vulnera-
bility, misconfiguration, or malicious employee. This problem is
referred to as the key escrow problem.

Many secure data sharing methods using a public cloud have
been proposed to mitigate the key escrow problem. However,
these methods are not intended to be applied to the resource lim-
ited IoT environments and are associated with a number of prob-
lems such as key distribution, recipient addition, and limited com-

Tokyo University of Agriculture and Technology, Koganei, Tokyo 184—
8588, Japan

1 Presently with CRI Middleware Co., Ltd., Shibuya, Tokyo 150-0002,
Japan

Presently with National Institute of Informatics, Chiyoda, Tokyo 101-
8430, Japan

¥ yokogi.kenta@cri-mw.co.jp

Y kitagawa@nii.ac jp

© nyamai@cc.tuat.ac.jp

© 2021 Information Processing Society of Japan

putational resources for cryptographic operations.

In the present paper, while considering this background includ-
ing the key escrow problem and limitations on existing secure
data sharing solutions in the IoT environment, we propose a novel
IoT-oriented secure data sharing scheme.

The main contributions of the present study can be summarized
as follows:

(1) We propose a novel approach to securely share data gener-
ated by IoT devices with a public cloud. We discuss the
issues of using the existing access control and data sharing
schemes in the 10T environment, such as key management,
distribution, and recipient addition methods and consider the
key escrow problem. In the proposed approach, full trust in
the public cloud is not needed and only a single semi-trusted
entity is requested. We design this scheme to address the
key escrow problem, to enable forward secrecy, and to fa-
cilitate easily changing the access authority. Moreover, the
proposed scheme is assumed to be applied to the IoT envi-
ronment and therefore, the required computational resources
for users need to be minimized. In other words, a data owner
does not perform any data encryption operations, and a data
recipient performs the decryption operation only for the data
encryption key (DEK).

(2) We confirm that the proposed scheme provides IND-CCA2
equivalent safety in the standard model by an attack-based
formulation.

(3) We consider the public clouds such as Amazon S3 com-
patible, as a commonly used object storage, and therefore,
the proposed method can be easily applied to existing cloud
providers.

(4) We implement the proposed scheme to evaluate its perfor-

Electronic Preprint for Journal of Information Processing Vol.29

mance. The experimental results show that it has equal or
better performance compared with the existing data sharing
schemes. In addition, as a result of estimations made under
realistic conditions, we confirm that the resource consump-
tion of the proposed method is sufficiently more practical
even in the large-scale IoT environment.

The rest of the paper is organized as follows. In Section 2, we
provide an overview on the related work dedicated to access con-
trol, data encryption and secure data sharing. The details about
the proposed IoT-oriented secure data sharing scheme are pro-
vided in Section 3. We then analyze the security and evaluate the
performance in Sections 4 and 5. Finally, we conclude this paper
in Section 6.

2. Related Work

2.1 Access Control

In this section we describe two types of popular and
widely used access control methods: role-based access control
(RBAC) [4] and attribute-based access control (ABAC) [5].

In the RBAC model, an authority is assigned to a role, and the
role is granted to an access control entity as one attribute infor-
mation. The authority and access control entity are connected
with the many-to-many relationship, and the role can be regarded
as the naming of that relationship. It is possible to group multi-
ple authorities or reuse the pre-defined ones by using roles, rather
than granting authorities directly to the access control entities.

In its turn, in the ABAC model, attribute information of the
access control entity, such as age or job post, is evaluated and it
is then determined whether to grant authority to that entity. A
corresponding policy is defined as a set of conditions and results.
Dynamic parameters such as date or time, are used to define pol-
icy conditions.

If the attribute information is correctly granted, the ABAC
model can handle the increasing number of access control enti-
ties and changes in the attribute information. By performing the
automated configuration of the IoT devices based on the ABAC
model, it is possible to efficiently manage access control in large-
scale IoT environments [6].

2.2 Data Encryption

There are two types of data encryption methods: symmetric
key encryption and public (asymmetric) key encryption. Sym-
metric key encryption implies using the same common key to en-
crypt and decrypt operations. Public key encryption on the other
hand implies defining different keys to perform encryption and
decryption. Generally, symmetric key encryption requires less
computational resources than the public key encryption.

As of 2019, the advanced encryption standard (AES) is one
of the most commonly used symmetric key encryption methods.
AES was specified by the National Institute of Standards and
Technology of the United States as a part of Federal Information
Processing Standards 197 [7] in 2001.

In its turn, the RSA method proposed by Rivest, Shamir, and
Adleman (RSA) in 1977 [8] is one of the first practical public key
ciphers and is still widely used at present. RSA is a cipher based
on the difficulty corresponding to factorization of the product of

© 2021 Information Processing Society of Japan

two large prime numbers.

In addition, a cryptography scheme based on the difficulty cor-
responding to the discrete logarithm problem on elliptic curves
(elliptic-curve cryptography (ECC)) has been drawing attention
as a method to replace RSA. ECC is considered as capable of
achieving equivalent security with a shorter key length and less
processing time compared with RSA. One example of ECC is
an elliptic-curve system called the ElGamal encryption system
proposed by ElGamal in 1984 [9]. In public key encryption, the
public key of the recipient is used. If the recipient’s public key is
replaced, decryption by an unintended third party becomes possi-
ble.

The public key infrastructure (PKI) is used to prevent these
adverse decryptions. Moreover, there is a kind of public key en-
cryption called ID-based encryption [10] in which encryption is
performed using public information such as the recipient’s e-mail
address or username as a part of the public key. Since the pub-
lic information is directly linked to the recipient, replacing these
keys is difficult. Therefore, by using ID-based encryption, it is
possible to construct a public key cryptosystem that prevents pub-
lic key replacement at a lower computational and financial cost
compared with PKI.

However, even if ID-based encryption is applied, it will not
prove successful unless a private key can be generated freely
based on the public information, and therefore, it is necessary to
deploy a reliable key center to manage the public key and private
key generation.

2.3 Secure Data Sharing

Xu et al. proposed a certificateless proxy re-encryption scheme
for secure data sharing using a public cloud (CL-PRE) [11]. The
proxy re-encryption is a method of data re-encryption that enables
decrypting the data with another key and does not need to per-
form decryption during the re-encryption process. To re-encrypt
the data encrypted by the data owner, the data recipient uses a re-
encryption key generated from the data owner’s private key and
the data recipient’s public key. The authors outlined that a rea-
son for using re-encryption is that if the number of users becomes
large in the data sharing scheme, the PKI-based method may have
a problem with public key management, and ID-based encryption
is associated with the key escrow problem. In CL-PRE, when the
data owner uploads the data, it is encrypted by using the common
key encryption with the generated DEK. Then, the data owner en-
crypts DEK with its own public key and generates a re-encryption
key, which is able to re-encrypt the encrypted DEK for the data
recipient and upload these data to the cloud. When the data recip-
ient requests the data, the proxy re-encrypts the encrypted DEK
using the re-encryption key and provides it to the data recipient
along with the encrypted data. The data recipient decrypts the
encrypted DEK with the private key and decrypts the encrypted
data using the decrypted DEK. In the cloud with a proxy, only
the encrypted data, encrypted DEK, and re-encryption key are
stored, and the data remain encrypted (not decrypted) during the
re-encryption process. Therefore, it is impossible to decrypt the
data with only the information available in the cloud. Conse-
quently, there is no key escrow problem in the CL-PRE scheme.

Electronic Preprint for Journal of Information Processing Vol.29

However, the CL-PRE scheme requires data owners and recipi-
ents to encrypt and decrypt the data, which is an unsuitable re-
quirement concerning the IoT environments. In addition, when
adding new data recipients, the data owner needs to generate an
additional re-encryption key based on DEK. In the IoT environ-
ment, it is difficult for IoT devices to continuously manage and
maintain DEK of the generated data.

Khan et al. proposed an incremental version of aproxy re-
encryption scheme [26] called I-PReS. I-PReS allows data own-
ers to perform incremental proxy re-encryption when editing an
encrypted file, instead of re-encrypting the entire file. While I-
PReS allows for efficient partial editing of encrypted data when
the data owner is a mobile device, it suffers from the same issue
as CL-PRE when an IoT environment is assumed. Specifically,
this method is not suitable for use in an IoT environment because
the data sender and receiver must encrypt and decrypt the data,
and additional data recipients cannot be added without the coop-
eration of the data owner.

Seo et al. proposed efficient certificateless encryption for se-
cure data sharing in public clouds [12], which allowed improving
CL-PRE. They noted that a method called certificateless public
key cryptography and used by CL-PRE was based on pairing op-
eration and is computationally expensive. They also stated that
CL-PRE only achieved the chosen-plaintext attack (CPA) safety,
whereas having stronger chosen-ciphertext attack (CCA) safety
was required in a practical system. Their method was rather simi-
lar to CL-PRE, except that DEK was encrypted directly using the
recipient’s public key. As a result, no re-encryption operation was
performed so that the pairing operation was not required. They
also stated that their method achieved IND-CCA safety that was
better than the CPA safety of CL-PRE. However, considering
that CL-PRE, encryption, and decryption operations have to be
performed by the data owner and recipient, it is evident that when
a new recipient is added, the data owner needs to additionally
encrypt DEK with the public key of the added recipient. These
requirements are not suitable due to limitations on the [oT envi-
ronment as described above in CL-PRE.

There is a fast and secure data sharing method proposed by
Ali et al. [13], which uses a public cloud and called SeDaSC. In
SeDaSC, a random key Ki, which has the same length as DEK,
is generated for all recipients, and Ki" = DEK @ Ki is calculated.
Here, @ represents the XOR operation for each bit. Then, it is
necessary to store Ki in the proxy, send Ki’ to each recipient, and
discard DEK. When the recipient requests the data, Ki’ is sent to
the proxy, and the proxy calculates DEK = Ki’ & Ki, restores the
DEK, and decrypts the data. As random bit generation and XOR
operation can be processed efficiently, SeDaSC can generate keys
for recipients much faster than other methods using public key
encryption. In addition, there is an advantage that data can be
encrypted and decrypted in a proxy. However, since the key for
the recipient is generated for each DEK, there arises the issue of
defining a way to distribute the key to the recipient. Normally, the
key can be distributed to recipients via e-mail, instant messenger,
and SNS, etc. However, in the IoT environment, continuously
maintaining a real-time communication channel with recipients
is difficult.

© 2021 Information Processing Society of Japan

There is a secure data sharing method for the IoT environment
using a public cloud proposed by Mollah et al. [14]. In their
method, the proxy encrypts DEK with the public key received
from the key generation server and stores it in the cloud along
with the recipient information. When the recipient requests the
data, the proxy decrypts the DEK with the private key received
from the key generation server, decrypts the data, and provides
it to the recipient. This method has important advantages such
as being able to search data without decryption and applicability
to the IoT environment. However, only a small part of a stor-
age, which contains the encrypted data and recipient information
is addressed to the key escrow problem. Therefore, if the proxy
is compromised for some reason, decrypting the information al-
ready stored with the private key that can be received from the key
generation server becomes possible, and consequently, there is no
forward secrecy. Furthermore, the information corresponding to
all recipients is stored in the relational database, and it may be a
bottleneck with regard to scaling the number of the IoT devices.

Our method solves the issues of the previous approaches dis-
cussed in this section as follows:

e The proxy mediates data encryption and decryption. This
keeps the data secure even if the data sender, e.g., IoT de-
vices, and receiver do not support data encryption and/or de-
cryption.

e Access privileges are managed by the proxy on a policy ba-
sis. This eliminates the need for key delivery between the
data sender and receiver. In addition, our method enables
the addition of data receivers without any action by the data
sender.

e The information necessary for decryption is not left on the
storage managed by the proxy. Even if the control of the
proxy is taken over by an attacker, the data processed be-
fore that happened is kept secure. Therefore, our method
provides forward secrecy.

3. IoT-oriented Secure Data Sharing Using
Public Cloud

In this section, we provide a detailed description about the pro-
posed IoT oriented secure data sharing method based on the pub-
lic cloud scheme.

3.1 Components
As shown in Fig. 1, the proposed scheme consists of the four
entities: client, service, cloud storage, and proxy. A detailed de-
scription of each entity is provided as follows.
(1) Client
The client is an entity that generates the data to be shared.

Client Proxy

« Generate Data [—* + Provide

« Can be resource limited device « Service/Client management

« Access control based on the access policy

« Key generation and management

« Data encryption/decryption

« Data upload/download to/from the Cloud Storage

H

Cloud Storage
« Store encrypted data/key
« Assuming object storage

Fig. 1 Components of our IoT-oriented secure data sharing scheme.

Service
« Request Data [
« Can be resource limited device

Electronic Preprint for Journal of Information Processing Vol.29

We assume that the main type of client is an IoT sensor de-
vice. Therefore, the proxy manages the data encryption pro-
cessing, and the client can be considered as a resource lim-
ited device.

(2) Service
The service is an entity that consumes the data produced by
the client. The service can be either an IoT device or a hosted
service. Similarly as in the case of the client, the proxy man-
ages the processing tasks such as data decryption, and the
service can be considered as a resource limited device. The
service however must be a device that holds a small size of
private key and has minimum resources to be able to decrypt
a small size of DEK with its private key.

(3) Cloud Storage
The cloud storage is an entity that stores the encrypted data
generated by the client and keys for the service. We can
use any object storage service as the cloud storage. More-
over, the stored data are encrypted, and therefore, these ob-
ject storage services do not require being fully trusted by
the user. In the proposed scheme, when the client or service
needs to access the cloud storage, the proxy always mediates
these accesses. Therefore, the cloud storage only needs to be
accessible by the proxy, and there is no need to implement
functions such as issuing a signed URL with an embedded
access authority.

(4) Proxy
The proxy is a semi-trusted entity that mediates access be-
tween the client, the service, and the cloud storage. The
proxy manages the following processes: access control
based on the access policy, data encryption and decryption,
and data download and upload. When sharing the data be-
tween different organizations, connecting multiple proxies to
a single public cloud is possible.

3.2 Basic Scheme
3.2.1 Client/Service Registration and Key Distribution
First, the client and service must be registered in the proxy and

then the attribute information and keys exchanged. Figure 2 il-

lustrates the client and service registration, and key distribution

process. The client registration and key distribution process is
defined, as follows:

(1) The client sends the attribute information to the proxy.

(2) When the proxy receives the attribute information from the
client, it generates ID and the access token as authentication
information.

(3) The proxy stores the generated authentication information in
association with the received attribute information.

(4) The proxy sends the generated authentication information to
the client in response to the client’s attribute information.

ID and the access token are used to uniquely identify and au-
thenticate the clients and services. These should be sufficiently
resistant to brute-force attacks. For example, a randomly gener-
ated 256 bits value can be used as an ID and access token.

Unlike the client, in the registration and key distribution pro-
cess corresponding to the service, the authentication information
generated by the proxy contains a public key and private key pair.

© 2021 Information Processing Society of Japan

Client/Service

: 1) Send attribute information 1

2) Generate ID and access token
(and key pair for services)

3) Store ID and access token (and public key)
along with received attribute information

=

4) Send ID and access token
(and private key)

1 5) (Securely delete generated private key)

Client/Service

Fig. 2 Client/Service registration and key distribution.

Then, the proxy sends the private key to the service and stores the
public key and thereafter securely deletes the private key. This
key pair can be used to encrypt and decrypt the DEK which cor-
responds to the service. It is possible to use any public key cryp-
tographic algorithm such as RSA or ECC. The key should have
a sufficiently secure length as recommended by the public key
cryptographic scheme used. A detailed description about data
encryption is provided in Section 3.2.4.

Under a premise that the cloud storage is not fully trusted, the
proxy must store the access token and public key locally since
there is a possibility that information stored in the cloud storage
can be modified by a malicious third party.

3.2.2 Authentication

The authentication between the client or service and the proxy
is based on ID and the access token received as a result of the key
distribution process as described in Section 3.2.1.

Exposing the authentication information in a form of plain-
text during the communication between the client or service and
the proxy may lead to leakage of the authentication information
and spoofing of the client or service by a malicious third party.
Therefore, the communication between the client or service and
the proxy should be performed through a secure channel. To es-
tablish a secure channel to the proxy deployed on the local net-
work, the administrator can register the proxy’s certificate signa-
ture to the clients and services. To establish a secure channel to
the proxy deployed on the cloud or external network, the client
and service can check the certificate trust chain in the same way
as with standard TLS scheme. If the client or service cannot es-
tablish a secure channel for communication with the proxy due
to limitations of IoT devices, it is recommended to use appropri-
ate technology to prevent exposing the plaintext authentication
information. For example, using hash-based message authenti-
cation code (HMAC) [15] to protect data integrity is also recom-
mended if the communication is performed in the plaintext for-
mat. Furthermore, using the time-based one-time password [16]
or HMAC-based one-time password [17] or challenge response
authentication such as challenge handshake authentication proto-
col [18], can be used to prevent exposing the plaintext authentica-
tion information during communication.

3.2.3 Access Policy Configuration

To establish the policy-based access control in the secure data
sharing, the access policy configuration must be created in ad-
vance. Figure 3 illustrates the access policy employed in the

Electronic Preprint for Journal of Information Processing

Policy means the specified

Access Polic X
y services can access data

Target Services generated by the specified clients.
' ' 1

Condition Specify services . Service
~ | o

Target Clients

:I.|

Specify clients Client

Condition >

|

Fig. 3 Access policy.

Cloud Storage

‘ Client| | Proxy |
1

1) Send data_ 1

2) Generate DEK and encrypt data

3) Encrypt DEK based on the access policy

Upload encrypted data and

4) encrypted DEK

>
>

5) Securely delete original data and DEK

Cloud Storage

T
‘ Client| | Proxy |

Fig. 4 Data encryption and upload.

scheme. The access policy represents which services can access
the data produced by which client. To describe the access pol-
icy, we can use the attribute information of the client and service
exchanged during the registration process as discussed in Sec-
tion 3.2.1. A query language or policy description language such
as extensible access control markup language [19], can be used to
describe the access policy. The detailed approach of automated
registration of clients and services and the access control based
on the attribute information in the IoT environment have been
studied in our previous work [6].
3.2.4 Data Encryption and Upload
Figure 4 illustrates the data encryption and upload process.
The data encryption and upload process has the following steps:
(1) The client uploads the data to the proxy. The client can spec-
ify the name of the data.

(2) The proxy generates DEK and encrypts the received data.

(3) The proxy generates a list of services with access author-
ity to the data based on the access policy. Then, it encrypts
DEK for each service in the generated list using each ser-
vice’s public key.

(4) The proxy uploads the encrypted data and encrypted DEK
for each service to the cloud storage.

(5) The proxy securely deletes the original data and generated
DEK after uploading the data into the cloud storage.

The proxy can use a fast and secure symmetric key cryptosys-
tem such as AES to encrypt the received data. DEK should be
sufficiently resistant to brute-force attacks. For example, a ran-
domly generated 256 bits value can be used as DEK.

3.2.5 Data Download and Decryption
Figure 5 illustrates the data download and decryption process,

© 2021 Information Processing Society of Japan

Vol.29

1) Request data |

Cloud Storage

Y

Download encrypted data and
2) encrypted DEK for the requested
service

>
S

3) Send encrypted DEK

) Decrypt DEK

Y

6) Decrypt data using received DEK

Securely delete decrypted data

and DEK
Cloud Storage

Service

Fig. 5 Data download and decryption.

which includes the following steps:

(1) The service sends a request for the required data to the proxy.

(2) When the proxy receives the request from the service, it
downloads the corresponding encrypted data, and encrypted
DEK for the service which sent the request from the cloud
storage.

(3) The proxy sends the encrypted DEK to the service in re-
sponse to step 1.

(4) The service decrypts the received DEK using their own pri-
vate key.

(5) The service sends the decrypted DEK to the proxy.

(6) The proxy decrypts the encrypted data using the received
DEK.

(7) The proxy sends the decrypted data to the service as the DEK
response in step 5.

(8) The proxy securely deletes the original data and DEK after
sending the data to the service.

In step 2, if there is no DEK encrypted for the corresponding
service in the cloud storage, this means that the service that re-
quested the data does not have appropriate access authority to the
requested data. Therefore, the proxy needs to interrupt the pro-
cess.

If the service is a hosted service with sufficient computing re-
sources to decrypt the data, it is possible to send the encrypted
data at the same time as the encrypted DEK in step 3, and the
service can be responsible for the entire decryption process.
3.2.6 Search and Obtain The Accessible Data List for The

Service

In the data download and decryption phase described in Sec-
tion 3.2.5, the service needs to provide the client’s ID and the
name of the required data to the proxy. Except special cases,
such as when data name rules (for example, the name based on
the date) are defined in advance, providing the required data with
a name having no information is difficult for the services. There-
fore, the proxy may need to provide an accessible data list to the
service. This requirement can be easily achieved in a way such as
preparing a relational database and the proxy stores and managing
the uploaded data information when the client uploads the data.
Furthermore, in addition to the proxy managing the uploaded data

Electronic Preprint for Journal of Information Processing Vol.29

information directly, the same requirement can be achieved by
managing the indexes of objects that exist in the cloud storage.
As one example, there is a way to search in the cloud object stor-
age based on using a metadata model [20] proposed by Imran et
al. In this method, a server is installed between the object stor-
age and the system that accesses it, and the metadata related to
the stored object is simultaneously received and managed while
mediating the access.

3.3 Changing Access Authority

When the access policy is changed or a new client or service
is added, it is rnecessary to change the access authority of the
existing data. To revoke services’ access to the data that have
already been granted, the required action is to simply delete the
encrypted DEK in the cloud storage. However, when granting
access privileges for the existing data to new services, it is neces-
sary to generate a new encrypted DEK for these services and to
store it in the cloud storage. In methods without the key escrow
problem mentioned in Section 2, the operation by the data owner
is indispensable for granting new access authority to the existing
data. However, when assuming it in the loT environment, it is dif-
ficult to encourage the data owner to keep the original data or its
DEK. In the proposed scheme, the authority can be changed by
using the administrator who manages the client and service regis-
tration and access policy. Specifically, the administrator registers
its public key in the proxy, and when the data are uploaded, its
DEK is also encrypted for the administrator in the same way as
for other services. Service registration and access policy changes
are performed by the administrator’s operation. Currently, the
proxy decrypts DEK of the related data using the administrator’s
private key and encrypting again to satisfy the newly granted ac-
cess authority.

3.4 Extension for Support Data Sharing Between Multiple
Organizations

The proxy can cooperate with other proxies to share the data
between different organizations by connecting multiple proxies to
a single public storage and sharing the stored data. When the data
are uploaded by the client, the proxy requests the public key of
the service (the final step of sharing) with the other cooperating
proxy and encrypts DEK using the obtained public key. To pre-
vent an MITM attack, communication between proxies should al-
ways be performed over an end-to-end encrypted secure channel.
By caching the obtained public key for a reasonable period, it is
possible to reduce the amount of communication between proxies
and the corresponding overhead. However, introducing a public
key cache may cause a delay in revocation of access authority
for services. To eliminate this delay, the proxy that receives the
data request from the service must check not only whether the en-
crypted DEK for the service is stored in the cloud storage but also
whether the access policy allows the requested service access-
ing the requested data. If there is no access authority anymore,
performing additional processing such as deleting the encrypted
DEK, is necessary for the service stored in the cloud storage.

© 2021 Information Processing Society of Japan

4. Security Analysis

4.1 Threats to the Cloud

The cloud is subject to various threats including insiders, vul-
nerabilities and miconfigurations. Due to these factors, we do not
consider the cloud to be a secure and trustful entity in the con-
text of our proposed method. Specifically, the proposed method
assumes that the cloud lacks confidentiality. In the following sec-
tions, we show that third parties cannot access the original data
even when both the proxy and storage are on the cloud which
lacks confidentiality.

However, we do not cover integrity and availability since these
depend on the specific system implementation. Specifically,
users’ requirements for integrity and availability can be satisfied
by making backups and making storage redundant.

4.2 Threats to the Proxy

The first threat to the proxy is the risk from the intercepting or
tampering with communications between the client, the service,
and the proxy. However, this threat can be addressed simply by
encrypting each communication.

The second threat is the risk of an attacker taking over control
of the proxy. As a countermeasure against this risk, our method
provides forward secrecy as described in Section 4.3.

However, when uploading and downloading data after an at-
tacker takes control of the proxy, the content of the data cannot
be protected from the attacker. The attacker can obtain the plain-
text of the data during uploads made by the client and downloads
made by the service after taking control of the proxy. On the other
hand, our method provides the proxy with the minimum informa-
tion needed to decrypt the data only when the service downloads
the data. As a result, since the data on the cloud storage is en-
crypted, our method does not allow access to data stored in cloud
storage, even if an attacker takes control of the proxy. In addition,
in order to mitigate damage when the control of the proxy is taken
away by an attacker, it is important to detect it as soon as possible
through monitoring.

4.3 Key Escrow and Forward Secrecy

The method proposed in the present paper is not associated
with the key escrow problem because the original data cannot be
decrypted by using just the information on the proxy or cloud
storage. The keys required to decrypt the data in the cloud stor-
age are encrypted, and decryption is possible only by using the
private key of the authoritative services or administrator.

In addition, since our scheme does not leave any information
necessary for decryption on the storage managed by the proxy, it
is impossible to use information about the proxy to decrypt pre-
viously encrypted data even if the proxy is compromised by an
attacker for some reason. Therefore, our proposed scheme pro-
vides forward secrecy.

4.4 Security Model

In this section, we evaluate the security of the proposed method
as the public key cryptosystem by considering an attack-based
formulation.

Electronic Preprint for Journal of Information Processing Vol.29

Among two similar length plaintexts mg and m;, if the adver-
sary cannot distinguish between the ciphertext of my and m, these
plaintext are said to be indistinguishably (IND) secure. In addi-
tion, when being IND secure for an adversary who can perform
a CPA, it becomes IND-CPA secure. Furthermore, even in the
cases when the adversary manages to access a decryption ora-
cle, if the adversary’s advantage (probability of distinguishing the
chosen ciphertext being greater than 1/2) is sufficiently small to
be ignored, it becomes IND-CCA secure. The decryption oracle
is an oracle that inputs the sent value to a decryption algorithm
and returns the result. If the adversary can access the decryption
oracle adaptively, it is considered to be IND-CCA2 secure. The
formulation of the IND-CCA game for the proposed method is
the following:

(1) An adversary is registered in the proxy as a client and a ser-
vice. In addition, the adversary has unlimited access to the
cloud storage:

e Being registered as a client implies obtaining the public key
in a public key cryptosystem.

e Accessing to the cloud storage is equivalent to obtaining a
challenge ciphertext in a public key cryptosystem.

e Being registered as a service and accessing the cloud stor-
age is equivalent to accessing the decryption oracle (How-
ever, because of restrictions on the IND-CCA game, the ad-
versary’s service does not have access to the data generated
by the adversary’s client).

(2) The adversary sends plaintext mg and m; of the same length
to the proxy as the client.

(3) The proxy randomly generates b from {0, 1} and determines
the plaintext m,, to be encrypted.

(4) The proxy encrypts plaintext m; for one or more services
excluding the adversary’s one and uploads ciphertext to the
cloud storage.

Let us consider the two scenarios as follows:

(1) Access the cyphertext by manipulating the data in the cloud
storage. Here, if the adversary’s advantage of discriminat-
ing b is sufficiently small to be ignored then the system is
IND-CPA secure.

(2) Let the proxy decrypt any ciphertext adaptively and repeat-
edly by manipulating the data in the cloud storage. Here,
when the system is IND-CPA secure and the adversary’s ad-
vantage of discriminating b is sufficiently small to be ignored
then system is IND-CCA2 secure.

First, in the case of 1, the adversary can obtain the encrypted
data, which are the result of encrypting either plaintext m or m;
with a random key obtained using AES. Since the adversary can-
not obtain the random key used for encryption assuming that AES
is sufficiently secure, the adversary cannot obtain any advantage
for discriminating the original plaintext. As of 2019, AES has not
shown vulnerabilities to any attack so the system is considered to
be IND-CPA secure.

Next, in the case of 2, the adversary can obtain the arbitrary
ciphertext and key to the proxy, perform AES decryption, and de-
rive the result. However, this would be the same as the adversary
performing AES decryption himself. In addition, as the random
key used for encryption is not stored in the proxy or cloud stor-

© 2021 Information Processing Society of Japan

ages, the adversary cannot obtain any advantage for discriminat-
ing the original plaintext. Therefore, the system is considered to
be IND-CCA2 secure.

5. Performance Evaluation

5.1 Experimental Setup

To evaluate the proposed scheme, we implemented its proxy
in ASP.NET Core Web application using .NET Core 2 frame-
work. The core part of encryption and decryption was realized
using the NETCore.Encrypt library [21]. The Amazon S3 com-
patible object storage MinlO [22] was employed as the cloud stor-
age. In addition, we implemented a console application acting as
the client and service and measured processing times using the
BenchmarkDotNet library [23]. We evaluated the performance
in emulab d430 node using the image of Docker container host
on Ubuntu. We used a d430 node for each client, proxy, and
cloud storage, and interconnected them with a 10 Gbps network.
In this implementation, the proxy employed the AES key with the
length of 256 bits for data encryption and the RSA key with the
length of 2,048 bits based on the optimal asymmetric encryption
padding [24] encryption standard using the secure hash algorithm
(SHA-512) [25] to encrypt DEK for the recipient services.

In the experimental results shown in the following subsections,
the values of the experimental results of previous studies are
listed for reference. However, please note that a simple compari-
son cannot be made for the experimental result values from each
method because the experiments were conducted under different
conditions.

5.2 Uploading and Downloading

Tables 1 and 2 represent the total time durations corresponding
to uploading and downloading operations and provide a compar-
ison with those observed in the alternative methods. The values
of the previous studies in Tables 1 and 2 are cited from Refs. [13]
and [14]. Additionally, Fig. 6 is a graph of the upload and down-
load times of the proposed method. As shown in the results,
our method does not show an exponential increase in data trans-
fer time as the size of the download/upload data increases, as in
Ref. [26], but the transfer time increases almost in proportion to
the data size. To measure the time durations of uploading and
downloading operations, we employed three nodes corresponding
to the client, proxy, and cloud storage. The size of the data to be

Table 1 Comparison of total uploading time in seconds.

Data Our
[MB] [11] [12] [13] [14] [26] Scheme
10 13.05 14.95 6.43 0.59 14.59 1.06
50 53.68 58.56 9.01 2.72 60.37 2.52
100 99.69 112.41 17.37 448 155.15 4.73

500 369.72 492.03 3324 17.43 872.09 19.03

Table 2 Comparison of total downloading time in seconds.

Data Our
[MB] [11] [12] [13] [14] [26] Scheme
10 9.91 9.90 6.48 0.81 10.45 0.44
50 3345 3557 10.24 2.52 35.90 0.90
100 57.14 59.14 20.68 2.79 61.59 1.57
500 2153 229.81 39.25 13.65 400.21 7.07

Electronic Preprint for Journal of Information Processing Vol.29

uploaded and downloaded was defined from 10 to 500 MB. The
results measuring the upload time durations included the time pe-
riod starting from the moment when the client initiated uploading
until the data were encrypted on the proxy and uploaded into the
cloud storage. Since data encryption was performed only once,
regardless of the number of services that could access the data, in
this measurement we set the number of services that could access
the data as equal to one. The total key generation time for each
service, which depended on the number of services that could ac-
cess the data, was evaluated in the following Section 5.3. The
results from measuring the download time included the time pe-
riod starting from the moment when the service initiated request-
ing the data and until the data and key were downloaded from the
cloud storage to the proxy, through decrypting the key by using
the service’s private key, decrypting the data by employing the
decrypted key, and then, sending to the service.

5.3 Key Generation

Table 3 represents the total key generation time duration for
each service, as well of those corresponding to the alternative
methods. The values of the previous studies in Table 3 are cited
from Refs. [13] and [14]. To measure duration of key generation,
we extracted the key generation process from the proxy and es-
timated the time it took to complete the process. The number
of services considered in key generation was from 10 to 100. In
Ref. [14], the secret key generation time for each portion of data
was 1.4 ms, and encryption of the secret key by using the public
key, hash value generation, and signing took 4.8 ms. These time

20
18 — ®upload
16 —{ ®mdownload

10 50 100 500
Data Size (MB)

Fig. 6 Total uploading and downloading time.

Table 3 Comparison of key generation time in seconds.

No. of Our
recipients [t [12] (13] (261 Scheme
10 1494 1.594 0.00400 1.534 0.00048
50 1.907 1952 0.00512 1.866 0.00119
100 2495 2.887 0.00697 2.545 0.00218

duration values were approximately constant and did not change
with an increase in the number of receivers, as the keys were cen-
trally managed by the key generation server. Moreover, there was
no need to generate a key for each recipient. Therefore, we did
not include [14] in Table 3. It should be noted that the key gener-
ation server in Ref. [14] did not manage to resolve the key escrow
problem.

5.4 Comparative Analysis

Table 4 shows the response status of each method to issues to
be solved by data sharing methods for IoT environments. Our
method covers all the functions required for IoT data sharing,
and can provide the security required for the system even if the
device of the data sender and/or receiver has limited computing
resources.

After analyzing the results from comparing the proposed
method with the alternative cloud-based secure data sharing
schemes [11], [12], [13], [14], [26], we can confirm that the for-
mer is sufficiently faster compared with other existing methods
since the main data encryption process uses AES, and the key
generation for receivers employs simple RSA that does not re-
quire the pairing operation. Moreover, almost all encryption pro-
cessing operations are executed within the proxy.

On the other hand, the values of the experimental results for
each method were performed under different conditions. There-
fore, note that these results are not intended to directly compare
these values, but rather to understand the trends of each method.

5.5 Workload
5.5.1 Data Size

The information required for each client and service includes
attribute information, ID, and access token. In addition, the pub-
lic key information is necessary for services. The data size can
be assumed to be at most approximately 3 KB, including the se-
rialization overhead in most cases. This value is large enough for
the data size of service information that the proxy needs to hold,
assuming a typical [oT environment. Figure 7 represents a graph
of the number of clients or services and the corresponding theo-
retical value of the required data size. The result indicates that
30 GB storage can be used to store the information on approxi-
mately 10,000,000 clients or services.
5.5.2 Network Bandwidth

Since the network bandwidth of the entire system depends on
use cases and scenarios, it is difficult to estimate it accurately.
Here, as an assumption to be discussed, we assume that all clients
generate 1 KB of data every 30s and send it to the proxy. This
value is large enough and frequent enough for data transmission
by common IoT devices such as sensor devices. Under this as-

Table 4 Response status of each method to issues to be solved by IoT data sharing.

[11] [12] [13] [14] [26] Our Scheme
Capable of sending and receiving data on devices with limited computing resources. X X v v X v
New recipients can be added without the sender continuously maintain the DEK of encrypted data. X X X v X v
No need or easy to distribute data decryption keys to data recipients. v v X v v v
Addressing the key escrow problem. v v v X v v
Provide forward secrecy for processed data. v v v X v v
Easy to scale data store for storing keys. v v v X v v

© 2021 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.29

100G
10G P

1,000M /
100M /
10M ~
1,000K /
’100K /
X~

10K r T T)
10 1,000 100,000 10,000,000
Number of clients or services

Fig.7 The number of clients or services and required data size.

Data size (Bytes)

10G

’§1,000M /?
100M
o / / —_~
1,000K {//
100K & /ﬁ-ﬁ rox
10K x///j/ —:— proxy to c?oudystomge (10 services)

Network bandwidth (

—e— proxy to cloud storage (100 services)
—&—proxy to cloud storage (1000 services)|
T T 1

10,000 100,000

1K - T
10 100 1,000
Number of clients

Fig.8 The required network bandwidth.

sumption, 1 KB of data is required including overheads, such
as the HTTP transport layer and AES encryption padding. The
proxy uploads the AES encrypted data and additional DEKs en-
crypted using the public key for recipient services and initializa-
tion vector. Assuming the same conditions as in our implemen-
tation, the length of the DEK is considered equal to 256 bits and
becomes 2,048 bits after being encrypted by RSA, and the length
of the initialization vector is 128 bits. On the basis of these condi-
tions, the theoretical values for the estimated network bandwidth
required between the clients and proxy and between the proxy
and cloud storage are calculated as shown in Fig. 8.

The obtained result shows that the proposed scheme can be
used to perform secure data sharing between loT devices using
the 1 Gbps network bandwidth if the product of the number of
clients and the number of services is 10,000,000 or less.

5.5.3 Encryption Processing

As described in Section 3, processing with a large amount of
calculations such as data encryption and decryption is fully ex-
ecuted on the proxy side. Therefore, since the client does not
need to perform any encryption processing on the generated data,
even devices with limited processing resources can be employed
as clients. Concerning services, the only cryptographic process-
ing that needs to be executed is to decrypt DEK encrypted for
the service with its own private key. Since DEK is rather small
(256 bits in our implementation), this calculation amount is also
deemed insignificant.

5.5.4 Massive Concurrent Access

When many clients and services access the proxy at the same
time, the computational load, such as encryption and network
processing performed by the proxy, may become a bottleneck to

© 2021 Information Processing Society of Japan

overall system performance. How much processing the proxy can
handle in parallel depends on the performance of the server run-
ning the proxy. However, if the proxy has to serve a number of
clients or services that cannot be handled by a single server, it can
be handled by increasing the number of proxies. The number of
proxies can be increased by deploying multiple proxies and load
balancing access between proxies as appropriate for the commu-
nication protocol used in the proxy and client or service. To use
multiple proxies, the access token, public key, and access policy
must be replicated between each proxy and must use the same
cloud storage for the data store.

6. Conclusion

In the present paper, we describe a novel proposed loT-oriented
secure data sharing scheme which is aimed to address the key es-
crow problem and many other issues related to the IoT environ-
ment presented in the existing secure data sharing methods, such
as lack of computational resources, key management and distribu-
tion, and changing the access authority. In addition, the proposed
method uses the cloud object storage used to manage and store
the encrypted data and encrypted keys. Since the object storage is
widely used in various cloud infrastructures, the proposed method
can be easily applied to the existing cloud providers. The results
of security analysis indicate that the proposed scheme is safe in
terms of the key escrow problem and is capable of providing for-
ward secrecy and ensuring INC-CCA?2 equivalent safety. The per-
formance evaluation denotes that the proposed method has equal
or better performance compared with existing secure data shar-
ing methods and is sufficiently practical. Moreover, the estima-
tion based on realistic scenarios shows that the required compu-
tational resources are practical even in the case of the large-scale
IoT environment. Since all computationally intensive processes
such as data encryption and decryption are performed completely
on the proxy side, our method can also be used on IoT devices
with limited processing resources. One example of a practical
application where our method can be implemented is the secure
sharing of large-scale sensor data such as in agriculture or smart
cities with multiple users based on policy-based access control.

Because IoT devices are distributed in different locations, these
devices can be physically accessed by malicious third parties. As
a result, the authentication information stored on the IoT devices
might also leak out. As future work, we will try to apply our
method to address this problem by implementing key rotation or
statistical access analysis to prevent abuse of compromised keys
or access tokens from IoT devices.

References

[1] Ministry of Internal Affairs and Communications: The 2018 White
Paper on Information and Communications in Japan (2018).

2] Alhamazani, K., Ranjan, R., Mitra, K., Ullah, S., Adnene, K. and
Vasudha, G.: An overview of the commercial cloud monitoring tools:
Research dimensions, design issues, and state-of-the-art, pp.357-377
(2015).

[3] Khan, A.N., Kiah, M.L.M., Khan, S.U. and Madani, S.A.: Towards se-
cure mobile cloud computing: A survey, Future Generation Computer
Systems (2013).

[4] Sandhu, R.S., Coyne, E.J.E., Feinstein, H.L. and Youman, C.E.C.:
Role-based access control models, Computer, Vol.29, No.2, pp.38—47
(1996).

Electronic Preprint for Journal of Information Processing Vol.29

(3]

[10]

[11]

[12]

[13]

[14]

[15]
[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

Yuan., E. and Tong, J.: Attributed Based Access Control (ABAC) for
web services, Proc. 2005 IEEE International Conference on Web Ser-
vices, ICWS 2005, Vol.2005, pp.561-569 (2005).

Yokogi, K., Kitagawa, N. and Yamai, N.: Access Control Model
for IoT Environment Including Automated Configuration, Proc. In-
ternational Computer Software and Applications Conference, Vol.2,
pp.616-621 (2018).

NIST: Advanced encryption standard (AES), US Department of Com-
merce, National Institute of Standards and Technology, Vol.56, pp.57—
71 (2001).

Rivest, R.L., Shamir, A. and Adleman, L.M.: Cryptographic commu-
nications system and method, US Patent 4,405,829 (1983).

Elgamal, T.: A public key cryptosystem and a signature scheme based
on discrete logarithms, IEEE Trans. Information Theory, Vol.31, No.4,
pp.469-472 (1985).

Boneh, D. and Franklin, M.: Identity-Based Encryption from the
Weil Pairing, SIAM Journal on Computing, Vol.32, No.3, pp.586-615
(2003).

Xu, L. Wu, X. and Zhang, X.: CL-PRE: A Certificateless Proxy Re-
Encryption Scheme for Secure Data Sharing with Public Cloud, Proc.
7th ACM Symposium on Information, Computer and Communications
Security - ASIACCS 12, p.87 (2012).

Seo, S.H. Nabeel, M. Ding, X. and Bertino, E.: An Efficient Certifi-
cateless Encryption for Secure Data Sharing in Public Clouds, /EEE
Trans. Knowledge and Data Engineering, Vol.26, No.9, pp.2107—
2119 (2014).

Ali, M., Dhamotharan, R., Khan, E. Khan, S.U., Vasilakos, A.V., Li,
K. and Zomaya, A.Y.: SeDaSC: Secure Data Sharing in Clouds, I[EEE
Systems Journal, Vol.11, No.2, pp.395-404 (2017).

Mollah, M.B., Azad, A.K. and Vasilakos, A.: Secure data sharing and
searching at the edge of cloud-assisted internet of things, IEEE Cloud
Computing, Vol.4, No.1, pp.34-42 (2017).

Krawczyk, H., Bellare, M. and Canetti, R.: HMAC: Keyed-Hashing
for Message Authentication, RFC 2104 (1997).

M’Raihi, D., Machani, S., Pei, M. and Rydell, J.: TOTP: Time-Based
One-Time Password Algorithm, RFC 6238 (2011).

M’Raihi, D., Bellare, M., Hoornaert, F., Naccache, D. and Ranen, O.:
HOTP: An HMAC-Based One-Time Password Algorithm, RFC 4226
(2005).

Simpson, W.: PPP Challenge Handshake Authentication Protocol
(CHAP), RFC 1994 (1996).

Rissanen, E.: eXtensible Access Control Markup Language
(XACML) Version 3.0 Plus Errata 01 (2017) (online), available from
(http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-en.pdf)
(accessed 2018-01-08).

Imran, M. and Hlavacs, H.: Searching in cloud object storage by us-
ing a metadata model, Proc. 2013 9th International Conference on
Semantics, Knowledge and Grids, SKG 2013, pp.121-128 (2013).
MyloveCc: NETCore.Encrypt: NETCore encrypt and decrpty tool.
Include aes, des, rsa, md5, shal, sha256, sha384, sha512 (online),
available from (https://github.com/myloveCc/NETCore.Encrypt) (ac-
cessed 2019-11-28).

MinIO: minio: MinlO is a high performance object storage
server compatible with Amazon S3 APIs (online), available from
(https://github.com/minio/minio) (accessed 2019-11-28).

Dotnet: BenchmarkDotNet: Powerful .NET library for benchmark-
ing (online), available from (https://github.com/dotnet/BenchmarkDot
Net) (accessed 2019-11-28).

Bellare, M. and Rogaway, P.: Optimal Asymmetric Encryption - How
to Encrypt with RSA, Proc. International Conference on the Theory
and Application of Cryptographic Techniques: Advances in Cryptol-
0gy, EUROCRYPT 1994, Vol.950, pp.92-111 (1995).

Dworkin, M.J.: SHA-3 Standard: Permutation-Based Hash and
Extendable-Output Functions, Federal Information Processing Stan-
dards Publication, No0.202 (2015).

Khan, ANN., Kiah, M.L., Madani, S.A., Ali, M., Khan, A.UR.
and Shamshirband, S.: Incremental proxy re-encryption scheme for
mobile cloud computing environment, Journal of Supercomputing,
Vol.68, No.2, pp.624-651 (2014).

© 2021 Information Processing Society of Japan

Kenta Yokogi received his B.E. and M.E.
degrees in computer and information sci-
ence from Tokyo University of Agricul-
ture and Technology, in 2018 and 2020,
respectively. Since April 2020, he has
been with CRI Middleware Co., Ltd.,
Japan. His research interests include ac-
cess control and management, secure data
sharing, and Internet of Things (IoT).

Naoya Kitagawa received his B.Info.Sc.
and M.Info.Sc. degrees in information sci-
ence from Chukyo University, in 2009 and
2011, respectively, and his Ph.D. degree in
information science from Nagoya Univer-
sity, in 2014. In April 2014, he joined the
Information Technology Center, Nagoya
University, as a Postdoctoral Fellow. In
October 2014, he joined the Institute of Engineering, Tokyo Uni-
versity of Agriculture and Technology, as an Assistant Professor.
Since April 2020, he has been a Project Associate Professor with
the Research and Development Center for Academic Networks,
National Institute of Informatics. His research interests include
the Internet, network security, and distributed systems. He is a
member of IEEE and IPSJ.

Nariyoshi Yamai received his B.E. and
M.E. degrees in electronic engineering
and his Ph.D. degree in information and
computer science from Osaka University,
Osaka, Japan, in 1984, 1986, and 1993,
respectively. In April 1988, he joined the
Department of Information Engineering,
Nara National College of Technology, as
a Research Associate, where he was an Assistant Professor, from
April 1990 to March 1994. In April 1994, he joined the Edu-
cation Center for Information Processing, Osaka University, as
a Research Associate. In April 1995, he joined the Computa-
tion Center, Osaka University, as an Assistant Professor. From
November 1997 to March 2006, he joined the Computer Center,
Okayama University, as an Associate Professor. From April 2006
to March 2014, he was a Professor with the Information Tech-
nology Center (at present, the Center for Information Technol-
ogy and Management), Okayama University. Since April 2014,
he has been a Professor with the Institute of Engineering, Tokyo
University of Agriculture and Technology. His research interests
include distributed systems, network architecture, and Internet.
He is a member of IEEE, IEICE and IPSJ.

