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Difficulty of detecting overstated dataset size in Federated
Learning
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Abstract: Federated learning is a distributed learning method in which multiple clients cooperate to train a model.
Each client sends the gradient of its locally trained model to the server, and the server aggregates the received gradients
to build a global model. Since federated learning requires many clients to train a high-performance model, researchers
have designed incentive mechanisms that distribute rewards to clients to motivate their participation. While most in-
centive mechanisms distribute rewards according to the contribution of each client often defined by the number of data,
little research has been done on the risk that clients try to claim more rewards by overstating the number of data. This
paper proposes three possible methods to exaggerate the size of a local dataset: simple exaggeration of the reported
number, modification of the batch size during training, and exaggeration of the dataset by Data Augmentation. Using
a variety of models and datasets, we show the inadequacy of current anomaly detection methods in identifying such

exaggerations.
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Fig.1 Clients who overstate their local dataset size

1. Introduction

Federated learning allows multiple data owners to collabora-
tively train a global model without sharing their data. It has at-
tracted much attention in recent years from the perspective of pri-
vacy protection and scalability. In typical federated learning, a
central server first sends an initial model to the clients, and each
client trains a local model with its data. Next, each client sends
its calculated gradient to the central server, and the server updates
the global model by aggregating the received gradients. By re-
peating this process, each client can train a highly accurate model
without sharing its data with the central server or other clients [1].

One of the possible ways to motivate more clients to partic-
ipate in federated learning is to distribute rewards according to
the contribution of each client, i.e., how much they contribute to
improving the performance of the global model [2], [3]. How-
ever, there is an information asymmetry in federated learning,
where clients have more information about their computational
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resources and data quality than the server, making it difficult for
the server to estimate the contribution of each client correctly [1].
For example, many incentive mechanisms use dataset size to cal-
culate contribution, but the server cannot know the actual sample
size of each client.

Given the large number of clients cheating in distributed
systems and crowdsourcing systems that are already in opera-
tion [4], [5], it is easy to imagine that some clients will try to trick
the server and get paid without effort. For example, [6] showed
that free-riders can participate in federated learning sessions and
steal rewards and global models even though they have no data.

On the other hand, little research has been done on the risk that
clients with a small amount of data may overreport the number of
data to claim more rewards (Fig. 1). Suppose some clients over-
state the dataset size. In that case, the server may suffer from
problems such as the inability to distribute rewards appropriately
and degradation of the accuracy of the global model.

In summary, we make the following contributions:

o To the best of our knowledge, this paper is the first study to
demonstrate the dangers of clients overstating the number of
data they report in federated learning.

e We propose Simple Overstatement, Overstatement with
modified batch size, and Overstatement with Data Augmen-
tation as possible strategies for attackers.

e We experimentally show that current anomaly detection
methods for federated learning fail to detect overreported lo-
cal dataset size.

The rest of this paper is organized as follows. In section 2,
we first review the current status of Incentive Mechanisms and
anomaly detection methods in federated learning. Next, in Sec-
tion 3, we propose three methods for overstating the number of
data: Simple Overstatement, Overstatement with modified batch



IPSJ SIG Technical Report

size, Overstatement with Data Augmentation. We also describe
the existing anomaly detection methods used in this study. In
Section 4, we evaluate the performance of existing anomaly de-
tection methods against these overstatement methods on various
datasets. In Section 5, based on the evaluation results of each
technique, we show that the existing defense methods struggle
with the overstatement of the dataset size.

2. Related work

Since data owners may not voluntarily participate in federated
learning due to privacy concerns or computational costs, research
on incentive mechanisms that reward data owners based on their
contribution is in progress [2], [3]. Many incentive mechanisms
often use the amount of data held by each client to calculate the
contribution, as the accuracy of the model generally increases
with the amount of data [7], [8], [9], [10]. On the other hand,
many of these mechanisms do not validate the number of data re-
ported by the client, suggesting that a malicious client may report
a value that is larger than the amount of data it has and claim more
rewards.

Malicious clients have been a well-known problem in dis-
tributed systems and crowdsourcing. For example, [4] reported
that as many as 70% of users in Gnutella, a protocol for dis-
tributed file sharing, are free-riders. An empirical study of crowd-
sourcing for online surveys showed that 70% of users are untrust-
worthy clients [5]. Therefore, countermeasures against malicious
clients are also essential in federated learning.

In the following, we discuss the current research on abnormal
client behavior detection in federated learning and summarize
the techniques for verifying the number of data reported by each
client and more general anomaly detection methods in federated
learning.
2.0.0.1 Estimating and guaranteeing the number of data

[11] suggested checking if the training time of each client is
too fast to verify the number of data reported by each client. How-
ever, attackers can easily falsify the time taken for training by
leaving an interval between the end of training and the submission
of the model. In addition, [12] proposed a method to prevent ma-
licious clients from altering the client software using Intel SGX.
Still, it does not address the case where an attacker inflates the
dataset in advance using techniques such as Data Augmentation.
2.0.0.2 Popular anomaly detection methods in federated

learning

While the amount of research dedicated to overstating the lo-
cal dataset size is still limited, many studies proposed more gen-
eral methods for anomaly detection and contribution calculation
in federated learning. This paper classifies them into the follow-
ing four types by reference to [13].

o Test/Self-Reported Based Detection: The most naive way
to calculate client contribution is to have each client report
metrics related to the performance of the model, such as the
number of data and local loss [7], [8], [9], [10], [14], [15].
However, these methods, by their very definition, do not as-
sume a malicious client.

e Marginal Loss Based Detection: [16] and [17] measured
the contribution of a client by the difference in performance
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and output of the global model with and without a client.

o Similarity-Based Detection: [18] and [19] exposed anoma-
lous clients by measuring their similarity, such as the cosine
similarity between the gradients submitted by each client.

e ML-Based Detection: [6] and [20] applied machine learn-
ing algorithms to gradients and other data received from
clients to detect abnormal clients.

3. Method

To reveal the danger of local dataset size overstatement in fed-
erated learning, we propose a simple overstatement of declared
local sample size and more sophisticated local dataset size over-
statement methods. Then, we evaluate whether the proposed local
dataset size overstatement methods can be detected by existing
anomaly detection methods in federated learning and demonstrate
the characteristics of each technique.

Section 3.1 describes the Simple Overstatement and the pro-
posed more sophisticated methods of overstating the number of
data. Section 3.2 describes the evaluation method of the existing
anomaly detection methods in federated learning.

3.1 Proposed data overstatement methods

We propose three methods to overstate the number of data
shown in Fig. 2: Simple Overstatement, Overstatement with mod-
ified batch size, and Overstatement with Data Augmentation.
3.1.0.1 Simple Overstatement

The simplest way to overstate the local dataset size is to de-
clare a value to the server larger than the actual sample size while
the attackers perform training as an honest client does. However,
our preliminary experiments with FedAvg indicated that the stan-
dard deviation of the gradient is proportional to the actual number
of data used for training (Appendix Fig. A-1). Thus, we believe
that monitoring the standard deviation of the gradient allows the
server to distinguish between honest and malicious clients eas-
ily. Also, if the attacker possesses only a tiny amount of data, the
calculated gradient is expected to be biased.
3.1.0.2 Overstatement with modified batch size

Even if the server attempts to find abnormal clients based on
the linear relationship between the actual train dataset size and the
standard deviation of the gradient, [18] showed that clients could
increase the standard deviation of the gradients of the model by
reducing the batch size during training. Thus, attackers can make
anomaly detection difficult by reducing the batch size to a value
smaller than requested by the server.
3.1.0.3 Opverstatement with Data Augmentation

Since Simple Overstatement and Overstatement with modified
batch size require modification of the client program distributed
by the server, Trusted Execution Environments such as Intel SGX
might completely prevent these attacks [12], [13]. However, a
client can still overreport its local dataset size without using a
tampered program by inflating its local dataset in advance using
Data Augmentation. This may also mitigate the bias caused by
the overly small size of the local dataset and further hinder detec-
tion.
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Fig. 2 Proposed data overstatement methods

3.2 Anomaly detection methods and evaluation metric

In this section, we discuss the evaluation metric and anomaly
detection methods used in this study. We use Area Under the
ROC Curve (AUC), a typical metric used in anomaly detec-
tion [21], to measure the performance of existing anomaly de-
tection methods. For the anomaly detection method, we use the
three existing methods shown in Fig. 3. We implement each al-
gorithm with FedML [22], a framework for federated learning.
3.2.0.1 STD-NUM-DAGMM

[6] identified free-riders with STD-DAGMM, which used the
gradient and its standard deviation sent by the client as features
of the anomaly detection method named DAGMM. The original
STD-DAGMM algorithm used the compressed gradient Z., the
standard deviation of the gradient Z,, and the Euclidean and Co-
sine distance Z, between the input and output of the Auto Encoder
which generated Z, as features of the estimation network that fit-
ted the Gaussian mixture model. In addition to these features,
STD-NUM-DAGMM used in this paper also uses the reported
local dataset size as a feature.
3.2.0.2 FoolsGold

[18] proposed a Similarity-Based Detection Method called
FoolsGold, which assumes that model updates between mali-
cious clients are similar. Based on this assumption, FoolsGold
thinks that the angle 6 between the update vectors of the malicious
clients is smaller than the angle y between the malicious clients
and the honest clients. FoolsGold can prevent the Data Poisoning
Attack, an attack that degrades the accuracy of the global model
by mixing specially crafted data with the training data, by dis-
covering those clients whose gradients have an abnormally high
cosine similarity.
3.2.0.3 Quality Inference (QI)

Quality Inference (QI) [17] is a Marginal Loss Based Detection
Method that uses the change in the performance of a global model
between rounds where a client participates in training and rounds
where it does not. QI has achieved high performance in various
tasks such as data quality estimation and free-rider detection.

4. Experiment

This section examines the performance of existing anomaly
detection methods against the dataset size overstatement method
proposed in Section 3 on various datasets and models.

(© 2021 Information Processing Society of Japan

4.1 Datasets and models
4.1.0.1 CIFAR-10

First, we conduct experiments using CIFAR-10, one of the sig-
nificant datasets in the image field. This dataset consists of 32x32
pixel color images belonging to 10 labels, with 50,000 training
data and 10,000 test data. As a classification model, we use
ResNet-56, a popular Deep Learning model in the image domain
[23].
4.1.0.2 Shakespeare

We also experiment with a language model that predicts the
next letter in a sentence using The Complete Works of William
Shakespeare. The version used in this paper [22] consists of
16,068 training data and 2356 test data, with a vocabulary of 90.
We use the LSTM model used in [14] for prediction.

4.2 Experimental setup
4.2.0.1 Attack strategy

For all overstatement methods, we set the number of attackers
N, to 5% or 20% of the total clients, and the overstatement factor
M to either 2x or 10x. For Overstatement with modified batch
size, the batch size B, used by the attacker is 7;, where B is the
batch size determined by the server. For Overstatement with Data
Augmentation, we experiment only with CIFAR-10 and augment
the dataset with random cropping and random horizontal flipping,
which are basic Data Augmentation methods for images [24]. For
the sake of simplicity, we assume that the top N, clients with the
least number of data are attackers.
4.2.0.2 Data splits

We set the total number of clients N to 20 or 50 in both datasets.
We divide the CIFAR-10 dataset so that the sample size for each
client S; follows the power law, which is close to the distribution
of real-world datasets [14]. As in the previous study [14], [25],
we divide the Shakespeare dataset so that each client has lines of
one character in a script to satisfy the power law and uses the top
N people with the largest datasets. After this division, we mul-
tiply the sample sizes of attackers by ﬁ to ensure that the total
number of data recognized by the server is the same in all set-
tings.
4.2.0.3 Hyper-parameters

We train ResNet-56 with Adam Optimizer with a default batch
size of 20 and a learning rate of 0.001 and train LSTM with SGD
with a default batch size of 10 and a learning rate of 1.47. Each
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Fig. 3 Existing anomaly detection methods [6], [18]

client trains its model locally for five epochs and then sends the
gradient to the server. This procedure is repeated for 50 rounds.
STD-NUM-DAGMM is trained for five epochs each round with
Adam Optimizer with a learning rate of 0.01. We set the con-
fidence value k of FoolsGold to 0.005; QI samples half of the
clients for training.

4.3 Experimental results
4.3.0.1 Simple Overstatement

Figure 4 shows the performance of each anomaly detection
method against Simple Overstatement: the average AUC of the fi-
nal ten rounds in CIFAR-10 was 0.838 for STD-NUM-DAGMM,
0.678 for QI, and 0.010 for FoolsGold, with only STD-NUM-
DAGMM being above 0.7, which is the minimum AUC value
considered meaningful [26]. The trend was the same for Shake-
speare, where the average AUC for the final ten rounds was 0.843
for STD-NUM-DAGMM, 0.413 for QI, and 0.014 for FoolsGold.
4.3.0.2 Overstatement with modified batch size

Figure 5 shows the performance of STD-NUM-DAGMM when
the attacker reduces the batch size for learning its model. Com-
pared to Simple Overstatement, the number of rounds where
AUC is below 0.5 increased, and the performance became unsta-
ble. The average AUC of STD-NUM-DAGMM for the final ten
rounds significantly decreased to 0.684 for CIFAR-10 and 0.632
for Shakespeare. Compared to STD-NUM-DAGMM, the perfor-
mance change of other detection methods was relatively small,
where the score of QI was 0.723 for CIFAR-10 and 0.393 for
Shakespeare, and the score of FoolsGold was 0.005 for CIFAR-
10 and 0.016 for Shakespeare.
4.3.0.3 Overstatement with Data Augmentation

Figure 6 shows the performance of each method against Over-
statement with Data Augmentation. The average AUC for the
final ten rounds was 0.723 for STD-NUM-DAGMMM, 0.677 for
QI, and 0.164 for FoolsGold.

5. Discussion

This section discusses the limitation of each anomaly detection
method based on the results obtained in Section 4.

Only the AUC of STD-NUM-DAGMM showed high perfor-
mance against Simple Overstatement, exceeding 0.7. This re-
sult is probably because the model learns the linear relationship
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between the number of data and the standard deviation of gra-
dient and sees that the standard deviation of the gradients of
the attackers is abnormally tiny relative to the reported dataset
size. However, when the attacker reduces the batch size, the
standard deviation of the gradient becomes larger, and the de-
tection performance of STD-NUM-DAGMM deteriorates signif-
icantly, with the average AUC below 0.7. The Overstatement
with Data Augmentation also degraded the performance of STD-
NUM-DAGMM by more than 0.1. The possible reason is that
artificially expanding the dataset may raise the standard deviation
of the gradient and eliminate the gradient bias.

The AUC of FoolsGold eventually reaches almost zero in all
settings. This score means that FoolsGold classifies honest clients
as abnormal clients, and vice versa. The reason for this is that
although FoolsGold assumes that the gradient cosine similarity
between attackers is high, the tiny samples sizes of the attack-
ers cause the distributions of their datasets to deviate from those
of other clients. This deviation causes relatively low similarities
between attackers. If the server knows this fact, it may try to
identify the attacker by reversing the evaluation criteria of Fools-
Gold and judging those with low similarity with other clients as
malicious clients. However, suppose the attacker has sufficient
data, and there is no discrepancy between the data distribution of
attackers and the distribution of the entire dataset. In that case,
FoolsGold cannot correctly identify the attacker because the sim-
ilarity between the gradients of the attacker and other clients will
be high. When we conduct the experiment assuming that the at-
tacker has the median number of data across all clients, the AUC
of FoolsGold stays around 0.5, which is equal to the chance level,
as shown in Fig. 7.

The poor detection performance of QI is probably because the
model performance degradation due to overstatement of the num-
ber of data is slight, unlike attack methods such as free-riders
and Data Poisoning. Although QI worked better against Over-
statement with modified batch size than Simple Overstatement
on CIFAR-10, the result on Shakespeare was the opposite. The
possible reason is that the smaller batch size decreased the per-
formance of the local models of attackers on CIFAR-10 but im-
proved on Shakespeare.
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simple strategies that attackers can take: Simple Overstatement,
6. Conclusion and future work Overstatement with modified batch size, and Overstatement with

Federated Learning is a distributed learning method attract- Data Augmentation. Experiments on image and natural language
datasets showed that anomaly detection methods such as STD-
NUM-DAGMM, FoolsGold, and QI were unable to prevent so-

phisticated attacks based on Overstatement with modified batch

ing attention from the viewpoint of privacy protection and scal-
ability. In this paper, we raised the issue of clients overstat-
ing their sample size to gain more rewards and proposed three
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size and Overstatement with Data Augmentation.

Future research directions include theoretical clarification of

dataset size overstatement, development of effective anomaly de-

tection methods, and anomaly detection when the server cannot

observe the gradient of each client by secure-aggregation [27].
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