
Electronic Preprint for Journal of Information Processing Vol.29

Regular Paper

An Efficient and Scalable Distributed Hypergraph
Processing System

Shugo Fujimura1,a) Shigeyuki Sato1,b) Kenjiro Taura1

Received: April 8, 2021, Accepted: July 27, 2021

Abstract: The recent increase in the amount of graph data has drawn our attention to distributed graph processing
systems scalable to large-scale inputs. Although distributed-memory processing is generally less efficient than shared-
memory processing because of the communication costs and program complexity, state-of-the-art distributed graph
processing systems, such as Gemini, have achieved a comparable efficiency by using lightweight graph partitioning
and load balancing. However, the achievement of both scalability and efficiency in hypergraph processing remains
an open issue because distributed hypergraph processing systems have not been extensively studied. In this paper,
we propose a distributed hypergraph processing system based on Gemini that achieves both scalability and efficiency.
Our system outperformed the state-of-the-art shared-memory hypergraph processing system Hygra from several folds
to tens of folds on a single-node computer. In addition, it showed speedup in processing a large-scale dataset on a
multi-node computer.

Keywords: hypergraph, bipartite graph, distributed graph processing

1. Introduction

With the rapid growth of real-world graph data, particularly
on the Web, the demand for analyzing large-scale graph data has
been increasing in various fields. In response to this demand,
graph processing systems, which are easily capable of graph pro-
cessing, such as web graph analytics, have been actively stud-
ied for more than a decade [8], [18], [19] since the emergence of
Google’s Pregel [17].

Although many graph processing systems are well-equipped
to deal with typical graph analytics, such systems have yet to be
developed for advanced graph analytics. A typical instance of
advanced analytics is community-level analyses of web graphs.
The relationships among communities (e.g., people of the same
affiliation and consumers purchasing the same products) in real-
world graph data can be naturally modeled as hyperedges, and
thus, hypergraph algorithms can solve community-level analyses
efficiently. However, for such hypergraph processing, only a few
hypergraph processing systems [9], [10], [11], [20] have been de-
veloped.

A state-of-the-art hypergraph processing system is Hygra [20],
which is an extension of Ligra [22] with a well-designed API for
hypergraphs. It has been designed to benefit from Ligra’s opti-
mization technique based on the vertex activity and is thus sim-
ple yet so efficient to be able to achieve hypergraph processing
orders of magnitudes faster than the prior hypergraph processing
systems [9], [10], [11]. However, Ligra, the underlying system
of Hygra, is a shared-memory (or centralized) graph processing

1 Graduate School of Information Science and Technology, The University
of Tokyo, Bunkyo, Tokyo 113–8656, Japan

a) shugo256@eidos.ic.i.u-tokyo.ac.jp
b) sato.shigeyuki@mi.u-tokyo.ac.jp

system, and therefore, the input data size is bounded by the mem-
ory of a single computer. To handle large-scale input data, we
need distributed-memory (or distributed) graph processing sys-
tems, which distribute the input data among computing nodes and
process the distributed data in parallel.

Distributed graph processing systems are generally less ef-
ficient than their centralized counterparts because of the com-
munication costs. However, Gemini [25], a state-of-the-art dis-
tributed graph processing system, offers lightweight graph parti-
tioning and communication optimization based on the vertex ac-
tivity, which brought performance gain sufficient to go beyond the
communication overhead and outperformed Ligra even on single
computers. We therefore consider the design and implementation
of Gemini to be extremely promising for hypergraph processing
dealt with by Hygra.

In this paper, we develop a distributed hypergraph processing
system by extending Gemini and adding a hypergraph API based
on Hygra. The proposed system is implemented by following
the design of Gemini to benefit directly from its implementation
techniques. The system thus inherits from Gemini the high ef-
ficiency and the scalability in terms of the input size. Our ex-
perimental evaluation shows that the system significantly outper-
formed Hygra for all the seven applications used in Ref. [20] on a
single-node computer and achieved speedup for a large dataset on
a multi-node computer. The proposed system is simple yet capa-
ble of efficient distributed hypergraph processing, and therefore,
it deserves a new baseline for distributed hypergraph processing
systems.

Our main contributions are summarized as follows.
• We have developed a highly efficient distributed hyper-

graph processing system by extending the state-of-the-art

c© 2021 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.29

distributed graph processing system Gemini [25] with a hy-
pergraph API based on Hygra [20] (Section 4). The proposed
system is designed to benefit from the implementation tech-
niques of Gemini.

• We have experimentally evaluated the proposed system on
both single- and multi-node computers with all the seven ap-
plications used in Ref. [20] (Section 5). The proposed sys-
tem achieved several to tens of times higher performance
than that of the state-of-the-art centralized hypergraph pro-
cessing system Hygra for all the applications in a single-
node setting and achieved speedup for a large dataset in a
multi-node setting.

2. Graphs and Hypergraphs

A graph G = (V, E) consists of a vertex set V and an edge set
E ⊆ V × V . In this paper, we assume that V ⊂ N and identify
vertices with vertex numbers. Unless otherwise noted, graphs re-
fer to directed graphs. For a vertex v ∈ V , deg+(v) denotes the
outdegree of v.

Hypergraphs are a generalization of graphs from one-to-one
edges to many-to-many ones. Formally, a hypergraph H = (V,E)

Fig. 1 Example of bipartite graph representation of a hypergraph. Hyper-
edge εi corresponds to vertex ui, i.e., η(εi) = ui.

Fig. 2 Overview of Gemini.

consists of a vertex set V and a hyperedge set E ⊆ P(V) × P(V),
where P(V) denotes the power set of V .

Although hypergraphs are a generalization of graphs, we can
represent them with bipartite graphs by interpreting each hyper-
edge as a vertex. Formally, a bipartite graph Gb = (V,U, E f , Eb)
is a graph consisting of vertex sets U and V , and edge sets
E f ⊆ V × U and Eb ⊆ U × V such that U ∩ V = ∅. Now, for
a given hypergraph H = (V,E), assuming a one-to-one mapping
η : E → U, letting E f = {(v, η(ε)) | (S ,T) = ε ∈ E ∧ v ∈ S } and
Eb = {(η(ε), v) | (S ,T) = ε ∈ E ∧ v ∈ T }, the hypergraph H =

(V,E) is isomorphic to the bipartite graph Gb = (V,U, E f , Eb), i.e.,
H ≡ Gb. This Gb is called the bipartite graph representation of
H. Figure 1 illustrates a concrete example.

In this paper, following the previous study [20], we always treat
hypergraphs in the bipartite graph representation: For a hyper-
graph H = (V,U, E f , Eb), we simply call v ∈ V vertices, u ∈ U

hyperedges, and e ∈ E f ∪ Eb edges.

3. Distributed Graph Processing System Gem-
ini

Figure 2 illustrates an overview of the distributed graph pro-
cessing system Gemini [25]. Gemini partitions a given graph
G = (V, E) by applying chunk-based partitioning (Section 3.2) to
the vertex set V . When the system accesses vertices not in local
partitions, communication among partitions occurs (Section 3.3).
Within a partition, a portion, i.e., a sub-partition, is assigned to
each NUMA node by recursively applying chunk-based partition-
ing. Within each NUMA node, the system divides a sub-partition
in terms of tasks rather than data, assigns resultant mini-chunks
to each thread, and employs fine-grained work stealing among the
threads (Section 3.4) for load balancing.

The following subsections describe the elements of the system.

c© 2021 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.29

Table 1 The primary graph API of Gemini. Type A is overloaded for the operator + and its identity
element 0.

Method Type
Graph::process vertices (VertexId → A) × VertexBitmap→ A

Graph::process edges
(VertexId → Void) × (VertexId ×Msg × OutEdges→ A)
×(VertexId × InEdges→ Void) × (VertexId ×Msg→ A) × VertexBitmap→ A

Graph::emit (VertexId ×Msg)→ Void

Fig. 3 Illustration of the master-mirror model.

3.1 Gemini API
Gemini provides the graph API through the Graph class, which

collects the graph structure and graph operations. Table 1 sum-
marizes the main graph operations provided through the Graph
class.

First, it is notable that the Graph class holds vertex numbers
VertexId, but not vertex data, i.e., the data associated with ver-
tices. Whereas graph processing systems generally provide a
graph data type to hold vertex data, Gemini is designed to man-
age vertex data outside of the Graph class. Instead, it provides an
API to allocate arrays of any type indexed by VertexId. By con-
trast, edge data, i.e., the data associated with edges, are managed
by the Graph class and are immutable (possibly void) in graph
operations.

There are two graph operations provided by the Graph class:
process vertices and process edges. Both are higher-order
functions that take functions expected to have side effects not ex-
pressed in types.
process vertices takes as the first parameter a function

(called a vertex function) that defines the computation on a ver-
tex, and as the second parameter a bitset VertexBitmap that selects
a subset of vertices; then it applies the vertex function to each
of the selected vertices. VertexBitmap is designed to be destruc-
tively updated by side effects. process vertices in itself does
not update the Graph object but simply returns the aggregation
with + of the return values of a given vertex. Side effects based
on VertexId to update the vertex data in the vertex function are
assumed.
process edges has five parameters. Functions of the first and

third parameters, called signal functions, are responsible for send-
ing messages. These messages have to be sent by using the emit
method of the Graph class. Functions of the second and fourth
parameters, called slot functions, define the computation for a re-
ceived message Msg. As in vertex functions, slot functions are
supposed to have side effects based on VertexId, and the aggrega-

tion with + of their return values is returned by process edges.
VertexBitmap of the fifth parameter is a bitset used to select ver-
tices to be the targets of the signal functions. The pair of he first
and second parameters are used in the sparse mode and that of
the third and fourth parameters are used in the dense mode. The
details of the sparse and dense modes will be described in Sec-
tion 3.3.

The Graph class does not provide operations for vertex or edge
deletion. Instead, it is designed to use logical deletion with a bit-
set used to select vertices. Graph objects are logically immutable
because the vertex data are managed outside the objects and the
edge data are immutable.

3.2 Graph Partitioning
Gemini divides a given graph into partitions and process them

in a distributed manner. It utilizes chunk-based partitioning in the
master-mirror model. In this model, the replicas (called mirrors)
of vertices outside a partition are logically placed in the partition
such that all the outgoing edges of the vertices (called masters)
actually inside the partition exist therein. We thus become free
from concern about partition boundaries in a vertex-centric view.

Figure 3 illustrates an example of partitioning based on
the master-mirror model. When an input graph, as shown in
Fig. 3 (a), is partitioned into two sets of master vertices, {1, 2, 3}
and {4, 5, 6}, it results in the two partitions shown in Fig. 3 (b).

Vertices 4 and 5 have masters in partition 2 and mirrors in par-
tition 1 because they are adjacent to vertices 1 and 3, which have
masters in partition 1. Conversely, vertices 1 and 3 have a mirror
in partition 2. The mirror is a dummy vertex in the model, not the
actual data stored in memory. Mirrors play the role of endpoints
in communication with their masters.

Chunk-based partitioning refers to the construction of the mas-
ter set of each partition by using a contiguous interval (called a
chunk) of vertex numbers. In Fig. 3 (b), each master set is a chunk
consisting of sequentially numbered vertices, and thus also an ex-

c© 2021 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.29

Fig. 4 Communication method of process edges. The red arrows show the data flow of the signal
function, and the blue arrows show the data flow of the slot function.

ample of chunk-based partitioning.
Although various criteria for chunking vertex sets are possible,

the balance between load balancing and locality is particularly
important. For example, if we divide an input into partitions that
have almost the same number of edges, the workloads of the parti-
tions would be nearly the same. However, if the number of mirror
nodes increases as a result, the locality would deteriorate, causing
more communication.

The chunking strategy of Gemini is to equalize α|Vi|+ |Ei|, tak-
ing account of both the number of vertices |Vi| and that of edges
|Ei| in the partition. Here, the coefficient α is a tuning param-
eter in essence but in Gemini, is empirically determined to be
α = 8(p − 1), where p denotes the number of partitions.

This chunk-based partitioning can be recursively applied;
Gemini also performs NUMA-aware data partitioning on a single
computer. Specifically, a partition assigned to a single NUMA
computer is divided into sub-partitions and assigned to each of its
NUMA nodes. It improves the locality of the computation within
the partition.

Chunk-based partitioning was reported by the authors of Gem-
ini to be simple yet surprisingly effective [25] and is a key design
choice of Gemini for efficiency.

3.3 Sparse/Dense Mode
There are roughly two ways to send messages between masters

and mirrors: For one, masters send messages to their mirrors in
the destination partition, and then the data is aggregated in the
destination partition, and for the other, mirrors in the source par-
tition aggregate the data and send messages to their masters in an
accumulative manner.

In Gemini, the former is called sparse mode, and the latter is
called dense mode. Figure 4 shows a concrete example of each
mode.

It is difficult to state whether the sparse mode or dense mode
is generally more efficient. For example, if a mirror in the source
partition receives data from many different masters, running in the
sparse mode would increase the number of inter-partition mes-
sages and results in inefficiency. Meanwhile, when running in the
dense mode, each endpoint (of masters) has to be able to receive
multiple inter-partition messages. This message handling is less
efficient than that of the sparse mode, where each endpoint (of
mirrors) receives at most one message. It depends on the data

flow at runtime.
Gemini switches the communication method adaptively

to/from the dense mode and sparse mode. The dense mode is
used when the number of edges to be processed in a partition is
large, and the sparse mode is used when it is small. Considering
that the number of edges to be processed can approximate the
amount of data coming into the mirrors in a partition, it avoids
the aforementioned disadvantage of the sparse mode.

The number of edges to be processed in a partition can
be determined based on an argument VertexBitmap passed to
process edges and the graph structure. Specifically, letting
B ⊆ V be an argument of VertexBitmap, if |B| + ∑v∈B deg+(v)
is large, it will run in the dense mode, and if it is small, it will run
in the sparse mode.

The number of edges to be processed expresses the activ-
ity of the partition. Therefore, the adaptive switching of the
sparse/dense mode is an adaptation of the idea of the optimization
technique based on the vertex activity of Ligra [22] to distributed
graph processing.

3.4 Fine-grained Work Stealing
As described in Section 3.2, Gemini applies two-level chunk-

based partitioning to an input graph to distribute the data to
NUMA node units. However, within a NUMA node, for the sake
of load-balancing quality, Gemini does not further apply recursive
partitioning to distribute the data into cores but instead performs
work stealing of fine-grained tasks.

First, the vertex sequence (i.e., sub-partition) assigned to each
NUMA node is divided into small chunks of fixed length (64 by
default) called mini-chunks. The sequence of mini-chunks is then
divided into blocks and assigned to each thread. Each thread pro-
cesses tasks per mini-chunk. When a thread has finished the as-
signed mini-chunks, it steals and processes a mini-chunk from
another thread. The victim thread of this work stealing is selected
in a round-robin fashion.

4. The Proposed System

In this section, we describe the design and implementation of
our distributed hypergraph processing system.

The basic design aims to maintain a hypergraph H =

(V,U, E f , Eb) by using Gemini as the underlying implementation
and to provide a hypergraph API based on Hygra [20]. We aim to

c© 2021 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.29

Table 2 The primary hypergraph API of the proposed system. Let H = (V,U, E f , Eb) be an input hyper-
graph.

Method Description
Hypergraph::process vertices Applies Graph::process vertices to graph (V, E f ∪ Eb)
Hypergraph::process hyperedges Applies Graph::process vertices to graph (U, E f ∪ Eb)
Hypergraph::prop from vertices Applies Graph::process edges to graph (V ∪ U, E f)
Hypergraph::prop from hyperedges Applies Graph::process edges to graph (V ∪ U, Eb)
Hypergraph::filter vertices from hyperedges Given predicate p and U′ ⊆ U, returns {v | (u, v) ∈ Eb ∧ p(u) ∧ u ∈ U′}.
Hypergraph::filter hyperedges from vertices Given predicate p and V ′ ⊆ V , returns {u | (v, u) ∈ E f ∧ p(v) ∧ v ∈ V ′}.

preserve the high efficiency of Gemini by reusing its implemen-
tation.

4.1 API
The core of the extension to Gemini is the Hypergraph class,

which provides the hypergraph API for the bipartite graph rep-
resentation. The main hypergraph operations are summarized in
Table 2.

The four hypergraph operations, process vertices,
process hyperedges, prop from vertices, and prop from
hyperedges, are operations that focus on each component of a
given hypergraph (V,U, E f , Eb). As described in Table 2, each
operation is implemented by reusing the API implementation of
Gemini almost directly.

The filter operation Hypergraph::filter vertices from
hyperedges returns the vertex set V ′ adjacent to the hyperedge
set selected by a given predicate. It is an operation to logically
delete the vertex set V \ V ′. Since Hypergraph is an immutable
data structure like Graph, it returns a bitset representing V ′ with-
out changing the graph structure. The logical deletion is achieved
by feeding this bitset to the subsequent hypergraph operation.
This filter operation is a high-level wrapper for prop from
hyperedges that uses the built-in signal/slot functions. Thus,
as in the basic operations, it takes a bitset U′ of U that selects
the processing targets (in this case, the targets of the predicate).
In addition, as an optional parameter, it takes the array of logical
degrees of U, degU , and decreases the logical degree according
to the logical deletion. The hyperedge set {u ∈ U | degU [u] =
0}, whose logical degree is zero, can be logically deleted by
using Hypergraph::process hyperedges. Hypergraph::

filter vertices from hyperedges is a symmetric operation
to Hypergraph::filter vertices from hyperedges.

The Hypergraph class provides supplementary data on the hy-
pergraph (V,U, E f , Eb) as follows:
• The number of vertices |V |, that of hyperedges |U |, and that

of edges |E f | + |Eb|;
• The indegrees and outdegrees for every v ∈ V and u ∈ U.
As in Graph of Gemini, the data corresponding to vertices

v ∈ V and hyperedges u ∈ U are designed to be managed out-
side of the Hypergraph class. Hypergraph provides methods
alloc vertex array and alloc hyperedge array for allo-
cating arrays of any element type, respectively. The memory
allocation is designed to be NUMA-aware, following the array
allocation of Gemini. Hypergraph can also hold immutable data
corresponding to the edges e ∈ E f ∪ Eb.

Bitsets for selecting the target of the signal/slot functions are of
the same data type as VertexBitmap of Gemini. Bitsets for V and
U can be constructed with the methods alloc vertex subset

Listing 1 Implementation of SSSP by the proposed system

1 void sssp(Hypergraph<Weight>& h,
2 VertexId src) {
3 // Initialize activity bitmaps
4 auto active_V = h.alloc_vertex_subset();
5 active.set_bit(src);
6 auto active_U =
7 h.alloc_hyperedge_subset();
8
9 // Initialize vertex/hyperedge distance

10 auto d_V = h.alloc_vertex_array();
11 d_V.fill(INFTY);
12 d_V[src] = 0;
13 auto d_U = h.alloc_hyperedge_array();
14 d_U.fill(INFTY);
15
16 // Frontier−based iteration
17 while (active_V.size > 0) {
18 active_U.clear();
19 h.prop_from_vertices(
20 sparse_signal_gen<VertexId>(h, d_V),
21 sparse_slot_gen<VertexId>(h, d_U,
22 active_U),
23 dense_signal_gen<HyperedgeId>(h, d_V),
24 dense_slot_gen<HyperedgeId>(h, d_U,
25 active_U),
26 active_V);
27
28 active_V.clear();
29 h.prop_from_hyperedges(
30 sparse_signal_gen<HyperedgeId>(h, d_U),
31 sparse_slot_gen<HyperedgeId>(h, d_V,
32 active_V),
33 dense_signal_gen<VertexId>(h, d_U),
34 dense_slot_gen<VertexId>(h, d_V,
35 active_V),
36 active_U);
37 }
38 }

and alloc hyperedge subset, respectively.

4.2 Example Use: Single Source Shortest Path Problem
Listings 1 and 2 show an example implementation of the sin-

gle source shortest path problem (SSSP) by using our system.
The input is a hypergraph in the bipartite graph representation,
and distances are assigned to edges.

The function sssp implements an algorithm equivalent to the
one used in the previous study [20]. It updates the shortest dis-
tance of each vertex in an iterative manner while managing a set
of vertices to be processed, called a frontier.

Initially, put only the source vertex, src, into the frontier (i.e.,
set the corresponding bit in active V) and initialize the distance
to 0. Initialize the other distances v ∈ V and u ∈ U to ∞
(i.e., INFTY). The distances of each vertex and hyperedge are
kept in the arrays d V and d U, respectively. Then, prop from
vertices and prop from hyperedge are alternately invoked to
propagate the shortest distance over the hyperedges until the fron-
tier becomes empty. The slot functions update the frontier by set-
ting bits of active V and active U for v ∈ V and u ∈ U of
which distances have been updated.

c© 2021 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.29

Listing 2 Signal/slot functions for SSSP

1 template <typename SrcId>
2 auto sparse_signal_gen(Hypergraph<Weight>& h,
3 Array<Weight>& d) {
4 return [&](SrcId v) { h.emit(v, d[v]); };
5 }
6
7 template <typename SrcId>
8 auto sparse_slot_gen(Hypergraph<Weight>& h,
9 Array<Weight>& d,

10 Bitmap& active) {
11 return [&](SrcId v,
12 Weight msg,
13 OutEdges<Weight> edges) {
14 for (auto e : edges) {
15 auto relax_dist = msg + e.data;
16 if (relax_dist < d[e.dst]) {
17 atomic_update(&d[e.dst], relax_dist);
18 active.set_bit(e.dst);
19 }
20 }
21 };
22 }
23
24 template <typename DstId>
25 auto dense_signal_gen(Hypergraph<Weight>& h,
26 Array<Weight>& d) {
27 return [&](DstId u,
28 InEdges<Weight> edges) {
29 auto msg = INFTY;
30 for (auto e in edges) {
31 msg = std::min(msg, d_V[e.src]+e.data);
32 }
33 if (msg < INFTY) h.emit(u, msg);
34 };
35 }
36
37 template <typename DstId>
38 auto dense_slot_gen(Hypergraph<Weight>& h,
39 Array<Weight>& d,
40 Bitmap& active) {
41 return [&](DstId dst, Weight msg) {
42 if (msg < d[dst]) {
43 atomic_update(&d[dst], msg);
44 active.set_bit(dst);
45 }
46 };
47 }

prop from vertices and prop from hyperedge, which
propagate the shortest distance, use signal/slot functions symmet-
ric with respect to vertex U and hyperedge V . To take advantage
of this symmetry, the functions in Listing 2, are defined such that
they parameterize a target type (VertexId or HyperedgeId),
take a bitset and distance array for V or U, and yield lambda
expressions of the signal/slot functions.

4.3 Advantages of the Hypergraph API
Since the bipartite graph representation of a hypergraph is

merely a graph, it is possible to obtain the same results only by
using the Gemini API (Table 1), without using the API of the pro-
posed system (Table 2). In fact, for the SSSP example above, the
results would be the same even if you interpret the bipartite graph
representation as a regular graph and use the Graph class to per-
form the SSSP. However, there are two advantages to providing
the hypergraph API.

One advantage is the clarity of the program description. For ex-
ample, to scan V and U alternately supposing the bipartite graph
representation, it is necessary to prepare bitsets representing V

and U and give them appropriately. Furthermore, when keeping
and updating different data for vertex V and hyperedge U, the
Gemini API necessitates manual management whether x ∈ V or

x ∈ U for the target vertex x of the vertex function or slot/sig-
nal function. For example, in the case of SSSP, the API can be
used by being aware of the even/odd number of invocations of
process edges, although doing so is clearly error-prone. Above
all, the hypergraph algorithm is clearer if it is written with an API
that explicitly, rather than implicitly, handles hypergraphs.

The other advantage is to provide room for optimization spe-
cific to hypergraph processing. In real-world data, vertices and
hyperedges model different types of data. For example, in e-
commerce data, we consider modeling the buyers as vertices V

and the purchased products as hyperedges U. The number of
buyers |V | and that of products |U | are naturally different. The
degree distributions of the relationships of purchasing and being
purchased, that is, (V, E f ∪ Eb) and (U, E f ∪ Eb), are also natu-
rally different. Consequently, there would be a natural difference
in locality and activity at runtime. If V and U are not distin-
guished at the system level, it is hard for the system to provide
data partitioning, communication, and scheduling that are aware
of the differences of the properties of V and U. Therefore, telling
the system that the data is a hypergraph through the API brings a
better synergy between the programmer and system.

4.4 Adaptation to Gemini
The proposed processing system is basically implemented by

adding the Hypergraph class to Gemini. The internal implemen-
tation of the Hypergraph class substantially manages (V, E f) and
(U, Eb) in Graph. In other words, the Gemini implementation, in-
cluding chunk-based partitioning, communication mode switch-
ing, and fine-grained work stealing, is reused as-is to construct
(V,U, E f , Eb).

This approach is simple yet reasonable in terms of locality.
In the proposed system, the data for V and U are never ac-
cessed together because of the API design. Even in prop from
vertices, which can access both of them, the signal and slot
functions are called in different stages, and thus, the data access
of V in the signal function and the data access of U in the slot
function are separated in time. By symmetry, the same is true
for prop from hyperedges. Therefore, managing (V, E f) and
(U, Eb) independently in a single partition increases locality.

However, the partition obtained by pairing independent chunk-
based partitions of (V, E f) and (U, Eb) may not be advantageous
in terms of the locality of inter-partition access (i.e., communica-
tion). In chunk-based partitioning, a contiguous interval of ver-
tices (i.e., a chunk) is assigned to a partition, assuming that the
natural order of vertices represents the natural locality well. Even
if the hypergraph (V,E) has locality with respect to the natural or-
der of V , the relation between the i-th chunk Vi of V and the i-th
chunk Ui of U does not necessarily have locality. In other words,
it is not necessarily the case that their pair (Vi,Ui) constitutes a
better partition than the other combinations.

In this study, we assume that the locality of natural orderings
assumed in chunk-based partitioning is also valid for the bipar-
tite graph representations of hypergraphs, and adopt the policy
of constructing partitions with (Vi,Ui). For both V and U parti-
tions, we adopted the same α criterion as in Gemini. We leave the
investigation of the validity of this approach for future work.

c© 2021 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.29

Finally, we note some implementation details. The
Hypergraph class is implemented by reusing most of the
internal implementation of the Graph class, but does not actually
use an instance of Graph; instead, it is implemented by retaining
(V,U, E f , Eb) as data and using the code of the methods of Graph
according to the interpretation of the hypergraph API based on
Graph.

4.5 API Comparison to Hygra
The proposed system extends Gemini on the basis of the hyper-

graph API of Hygra [20]. The API correspondence is summarized
in Table 3. Because the API of the proposed system is designed
as an extension of Gemini, it is not fully compatible at the in-
terface level, but cover the primary hypergraph API of Hygra at
the functionality level. Here, we describe the differences between
them.

As for VertexMap and HyperedgeMap, the proposed API cor-
responds directly to the Hygra API. VertexProp and Hyperedge-
Prop are operations for selecting a portion of the hyperedge set U

and vertex set V along E f and Eb, respectively. The correspond-
ing prop from vertices and prop from hyperedges follow
process edges of Gemini and are designed to take signal/slot
functions and update data related to the selected object. This al-
lows prop from hyperedges to include the functionality of Hy-
peredgePropCount, which processes V along with the degrees on
(V, Eb). For HyperedgeFilterNgh, it supports the filter function
but differs in that it destructively updates the hypergraph. This
is due to the difference in the way the graph data are represented
between Ligra, upon which Hygra is based, and Gemini, upon
which the proposed system is based.

Although Hygra also provides a bucketing API based on Juli-
enne [5], the proposed processing system does not. It is a design
choice based on the technical scope of this study, and more con-
cretely, is due to the following three points.
• Bucketing is not a hypergraph-specific operation.
• Bucketing was only used to improve the efficiency of k-

core decomposition in the seven applications covered in Hy-
gra [20].

• All the existing systems that provide bucketing APIs [5],
[20], [24] are centralized, not distributed, graph processors.

In other words, bucketing is an auxiliary operation in hypergraph
processing, and whether it is useful to implement in distributed
graph processing remains unclear. Because our main focus is to
construct an efficient distributed hypergraph processing system
by extending Gemini for hypergraphs, we have judged that imple-
menting bucketing in Gemini is beyond the scope of the present
study.

Table 3 API correspondence between Hygra [20] and the proposed system.

Hygra Proposed System (Hypergraph::*)
VertexMap process vertices

HyperedgeMap process hyperedges

VertexProp prop from vertices

HyperedgeProp prop from hyperedges

HyperedgeFilterNgh filter vertices from hyperedges

HyperedgePropCount prop from hyperedges

5. Evaluation

We experimentally evaluate the proposed system for the fol-
lowing three points:
• Whether it achieves efficient hypergraph processing on the

basis of the implementation techniques of Gemini (Sec-
tion 5.2.1);

• Whether it achieves distributed hypergraph processing scal-
able for large-scale input (Section 5.2.2);

• Whether its specialized implementation to hypergraph pro-
cessing works effectively on top of Gemini (Section 5.2.3).

5.1 Experimental Settings
By using the proposed system, we implemented the follow-

ing seven applications that had been used as benchmarks in Hy-
gra [20].
• Betweenness Centrality (BC)
• HyperTree (BFS)
• Connected Components (CC)
• K-core Decomposition (KC)
• Maximum Independent Set (MIS)
• Page Rank (PR)
• Single Source Shortest Path (SSSP)

When comparing ours with Gemini, for BC, BFS, CC, and SSSP,
the benchmark applications bundled with Gemini were used as-
is; for KC, MIS, and PR, we implemented the counterparts that
performed equivalent computations on bipartite graphs only with
the Gemini API.

The proposed system and the benchmark applications are avail-
able online: https://github.com/shugo256/GeminiGraph/tree/
hypergraph.

For the input datasets, we selected four hypergraphs from the
benchmarks [21] provided with Hygra (Table 4).

Com-orkut and friendster are graphs with community data,
which were originally provided in the Stanford Large Network
Dataset Collection [15] and were converted into hypergraphs by
replacing communities with hyperedges. Web is a hypergraph
that was made by reinterpreting a bipartite graph in the Koblenz
Network Collection [13]. These three are real-world hypergraphs.
Note that web is a real-world hypergraph of the largest numbers
of vertices and edges in the bipartite graph representation among
the ones used in the previous studies [9], [20]. By contrast, rand1
was generated such that each hyperedge contained 10 randomly
chosen vertices [20], and is an artificial large-scale hypergraph for
demonstrating scalability.

Table 4 Datasets used in the experiments.

Dataset |V | |U | |E f | + |Eb |
com-orkut [15] 2.32 × 106 1.53 × 107 1.07 × 108

friendster [15] 7.94 × 106 1.62 × 106 2.35 × 107

web [13] 2.77 × 107 1.28 × 107 1.41 × 108

rand1 [20] 1.00 × 108 1.00 × 108 1.00 × 109

Table 5 Specifications of computing nodes.

CPU Intel R© Xeon R© Platinum 8280 (2.7 GHz)
#CPUs (#cores) 2 (28 + 28)
Memory 192 GiB
Interconnect Intel R© Omni-Path (100 Gbps)

c© 2021 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.29

When comparing ours with Hygra and Gemini, all the datasets
were used. By contrast, when evaluating the scalability of dis-
tributed processing, only rand1 was used. This is because we have
judged that datasets other than rand1 are too small for distributed

Fig. 5 Scalability in multi-node execution for rand1.

Table 6 Execution time [s] of each application on a single node. Speed ratio to Hygra in parentheses.

BC BFS CC KC MIS PR SSSP
com-orkut 0.184 (27.4) 8.96×10−2 (9.20) 0.259 (27.8) 1.30 (11.1) 0.853 (44.0) 1.51 (42.7) 0.169 (40.0)
friendster 0.126 (16.3) 5.97×10−2 (9.02) 0.179 (18.0) 0.135 (42.2) 0.547 (8.99) 0.703 (25.6) 0.128 (30.2)
web 0.352 (21.4) 0.139 (9.52) 0.326 (25.6) 38.3 (371) 3.63 (7.93) 2.68 (30.3) 0.178 (32.7)
rand1 2.17 (49.2) 1.13 (19.5) 5.17 (56.1) 20.4 (40.2) 9.76 (40.1) 28.6 (46.9) 5.23 (22.0)

Fig. 6 Relative speed to Gemini.

processing on multi-nodes and are unsuitable for the scalability
evaluation.

We used Oakbridge-CX, a supercomputing system operated by
the Information Technology Center of the University of Tokyo,
for the experimental environment. The specifications of its com-
puting nodes are summarized in Table 5.

For a fair comparison with Hygra, the number of threads was
set to 56, which is equal to the number of cores, with a single pro-
cess. For comparison with Gemini, to examine the performance
of distributed processing on small inputs other than rand1, we
set one process per computing node and one thread per process.
To evaluate the scalability of distributed processing, we allocated
one process per CPU (i.e., NUMA node) running with a single
thread.

The applications of the proposed system were compiled by us-
ing g++ 4.8.5 with the -O3 option. For the MPI communication
of Gemini, which is also the base of the proposed system, Intel R©
MPI Library 2019 Update 9 was used. Hygra applications were
compiled by using Intel R© C++ Compiler 19.1.3.304 with the -O3

c© 2021 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.29

option.
For the measurements of each application, we used the median

of the execution times of five runs after one warm-up run.

5.2 Experimental Results
5.2.1 Comparison with Hygra

Table 6 summarizes the execution time of each application of
the proposed system on a single node. For all the applications
used in the experiments, the proposed system outperformed Hy-
gra by several to several dozen times. Gemini, the base of the
proposed system, was comparable to Ligra, the base of Hygra, in
terms of single-node performance and had been reported to be at
most twice as fast as Ligra [25]. Although the proposed system
is a simple extension of Gemini, the speed ratio of the proposed
system to Hygra was much greater than that of Gemini to Ligra.

On Hygra, a more efficient algorithm for KC (KC-E) was im-
plemented with the bucketing API mentioned in Section 4.5. We
also measured the speed ratio of KC of the proposed system to
KC-E of Hygra, and the results were 4.80 for com-orkut, 13.6 for
friendster, 0.272 for web, and 4.95 for rand1; the proposed sys-
tem outperformed Hygra except for the web case even without a
bucketing API.

These results demonstrate that the proposed system achieves
highly efficient hypergraph processing that significantly outper-
forms Hygra by utilizing the implementation techniques of Gem-
ini.
5.2.2 Scalability

Figure 5 shows the effect of the proposed system on the num-
ber of computing nodes for each application. The proposed sys-
tem achieved multi-node executions by distributing the input data.
We observed the speedup up to 8 nodes for BFS, KC, and MIS,
and up to 16 nodes for the other four applications.

The results show that the proposed system can achieve dis-
tributed processing for large hypergraphs that cannot fit in single-
node memory without sacrificing the execution speed through a
multi-node execution.
5.2.3 Comparison with Gemini

Figure 6 shows the relative speed of the proposed system
with respect to Gemini. The number of processes (or comput-
ing nodes) is limited to the range of 1 to 4 because of the small
input size.

As seen from Fig. 6, the proposed system generally outper-
formed Gemini. This indicates that the implementation of the
proposed system, which manages and processes V and U sep-
arately, is an appropriate specialization for hypergraph process-
ing. The performance differences tended to decrease a little when
the number of processes increased. We attribute it to that the
performance gain from the specialization became relatively small
because of the communication-derived performance differences.
We therefore consider that the performance differences in the
single-process case are the most accurate explanation of the per-
formance gain of the specialization.

6. Related Work and Discussions

Only a few hypergraph processing systems have been studied.
To the best of our knowledge, except for Hygra [20], which were

compared in Section 5, only HyperX [10], [11] and MESH [9]
were developed. Both of these systems were built on top of
Apache Spark [23], a data processing framework for distributed
memory environments, and the distributed collections (called
RDDs) of Spark were used to represent distributed hypergraphs.
MESH was built upon the API of GraphX [7] and aimed at an
implementation more compact and simpler than HyperX. There
was no significant difference in efficiency between them [9].

HyperX and MESH implemented hypergraph partitioning by
using RDDs. However, RDDs themselves do not allow for de-
structive updates, and graph processing that requires iterative
graph updates incurs large overhead at the design level. Unlike
Ligra [22] and Gemini [25], the execution strategy based on ver-
tex activity is difficult to implement efficiently, and every iteration
ends up traversing all vertices and sending messages. As a result,
MESH was reported to fall far short of the performance of Hy-
gra [20]. Our system is technically different from those systems in
that it builds upon Gemini to take advantage of the efficiency and
scalability derived from the implementation techniques of Gem-
ini.

In this study, although we applied the chunk-based partition-
ing of Gemini to each of the vertex set and hyperedge set, this
partitioning is unaware of the structure (particularly, modularity)
of hypergraphs. A parallel partitioning algorithm for large-scale
hypergraphs has recently been proposed by Maleki et al. [16],
which is promising as a preprocessing method for distributed hy-
pergraph processing. However, the design choice is not obvi-
ous because the cost of partitioning itself is also important when
incorporated into processing systems, as chunk-based partition-
ing demonstrated. Hypergraph partitioning for distributed hyper-
graph processing systems is left for future work.

The reason why chunk-based partitioning works in favor of lo-
cality is based on the assumption that the natural order of vertices
is a good representation of the natural locality of the graph data.
In fact, it was shown on a typical dataset that it was more efficient
to preserve the natural order under chunk-based partitioning than
to destroy it with hash-based partitioning [25]. However, as noted
in Section 4.4, it is not clear that this assumption is directly appli-
cable to hypergraphs in bipartite graph representations. In actual
use cases, it is natural to assume that the graph data are modeled
as a hypergraph and then given a preprocessing step to convert it
into a bipartite graph representation. It is not obvious whether this
preprocessing can be implemented as efficiently as chunk-based
partitioning while preserving the natural locality.

Another possible direction is to improve the quality of the par-
titioning by reordering the vertices to better represent the natu-
ral locality of the data, without regard to the natural order of the
input. Although vertex reordering has been well studied in the
context of graph compression [1], [3], the cost of reordering for
compression is high, and it is questionable whether it is suitable
for preprocessing in graph processing systems. We believe that
lightweight graph reordering [2], [6] for shared-memory (central-
ized) graph processing systems, which has been well studied in
recent years, is more promising. Moreover, for pattern mining on
web graphs, a lightweight method to compress overlapping link
structures into a single virtual node was developed [4]. In a simi-

c© 2021 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.29

lar way, we believe that combining overlapping hyperedges into a
single virtual node is promising for constructing an efficient dis-
tributed hypergraph representation.

In addition to the bipartite graph representation, there is also
a representation called clique expansion [9], where each hyper-
edge is transformed into a clique of the vertices that it contains.
This clique representation loses the many-to-many relationship
of a hypergraph, and models the data as a simple graph. As a
result, it is not possible to recover the original hypergraph from
the clique representation without information to distinguish the
cliques derived from the hyperedges. Moreover, the number of
edges required to represent one hyperedge ε = (S , T) is |S | + |T |
in the bipartite graph representation, but is |S | · |T | in the clique
representation, which consumes more memory. In fact, the in-
vestigation on Hygra [20] showed a significant advantage of the
bipartite graph representation in terms of runtime performance.
However, dense substructures such as cliques bring high locality
and have an overall smaller diameter than bipartite graph repre-
sentations. There is still a possibility that partial clique represen-
tations have an advantage.

Finally, in our experiments, we used a randomly generated
dataset as the large-scale hypergraph, following the previous
study [20]. However, recent studies [12], [14] have revealed that
randomly generated hypergraphs do not necessarily represent
real-world datasets. Therefore, an experimental investigation
with large datasets based on the real-world hypergraph models
proposed therein is important for the design and implementation
of distributed hypergraph processing systems.

7. Conclusions

In this study, we have developed an efficient distributed hy-
pergraph processing system that inherits the advantages of Gem-
ini for efficient distributed graph processing. The proposed sys-
tem significantly outperformed Hygra, a state-of-the-art central-
ized hypergraph processing system, in single-node execution for
all seven applications examined, and also achieved speedup for
large-scale data in multi-node execution. The efficient distributed
processing by the proposed system provides scalability for large-
scale hypergraph processing hard to handle on a single node.

As discussed in Section 6, studies on hypergraph processing
systems are still underdeveloped and leave much room for further
investigation. In this context, this study provides a new base-
line for distributed hypergraph processing systems. We expect
that studies on distributed hypergraph processing systems will de-
velop further by incorporating new techniques into the proposed
system.

References

[1] Apostolico, A. and Drovandi, G.: Graph Compression by BFS, Algo-
rithms, Vol.2, No.3, pp.1031–1044 (online), DOI: 10.3390/a2031031
(2009).

[2] Balaji, V. and Lucia, B.: When is Graph Reordering an Optimization?
Studying the Effect of Lightweight Graph Reordering Across Applica-
tions and Input Graphs, 2018 IEEE International Symposium on Work-
load Characterization, IISWC ’18, pp.203–214, IEEE (online), DOI:
10.1109/IISWC.2018.8573478 (2018).

[3] Boldi, P., Rosa, M., Santini, M. and Vigna, S.: Layered Label Prop-
agation: A Multiresolution Coordinate-Free Ordering for Compress-
ing Social Networks, Proc. 20th International Conference on World

Wide Web, WWW ’11, pp.587–596, ACM (online), DOI: 10.1145/
1963405.1963488 (2011).

[4] Buehrer, G. and Chellapilla, K.: A Scalable Pattern Mining Approach
to Web Graph Compression with Communities, Proc. 2008 Inter-
national Conference on Web Search and Data Mining, WSDM ’08,
pp.95–106, ACM (online), DOI: 10.1145/1341531.1341547 (2008).

[5] Dhulipala, L., Blelloch, G. and Shun, J.: Julienne: A Frame-
work for Parallel Graph Algorithms using Work-efficient Bucketing,
Proc. 29th ACM Symposium on Parallelism in Algorithms and Ar-
chitectures, SPAA ’17, pp.293–304, ACM (online), DOI: 10.1145/
3087556.3087580 (2017).

[6] Faldu, P., Diamond, J. and Grot, B.: A Closer Look at Lightweight
Graph Reordering, 2019 IEEE International Symposium on Work-
load Characterization, IISWC ’19, pp.1–13, IEEE (online), DOI:
10.1109/IISWC47752.2019.9041948 (2019).

[7] Gonzalez, J.E., Xin, R.S., Dave, A., Crankshaw, D., Franklin, M.J.
and Stoica, I.: GraphX: Graph Processing in a Distributed Dataflow
Framework, 11th USENIX Symposium on Operating Systems Design
and Implementation, OSDI ’14, pp.599–613, USENIX Association
(2014) (online), available from 〈https://www.usenix.org/conference/
osdi14/technical-sessions/presentation/gonzalez〉.

[8] Heidari, S., Simmhan, Y., Calheiros, R.N. and Buyya, R.: Scal-
able Graph Processing Frameworks: A Taxonomy and Open Chal-
lenges, ACM Comput. Surv., Vol.51, No.3, pp.60:1–60:53 (online),
DOI: 10.1145/3199523 (2018).

[9] Heintz, B., Hong, R., Singh, S., Khandelwal, G., Tesdahl, C. and
Chandra, A.: MESH: A Flexible Distributed Hypergraph Processing
System, 2019 IEEE International Conference on Cloud Engineering,
IC2E ’19, pp.12–22, IEEE (online), DOI: 10.1109/IC2E.2019.00-11
(2019).

[10] Huang, J., Zhang, R. and Yu, J.X.: Scalable Hypergraph Learning
and Processing, 2015 IEEE International Conference on Data Mining,
ICDM ’15, pp.775–780, IEEE (online), DOI: 10.1109/ICDM.2015.33
(2015).

[11] Jiang, W., Qi, J., Yu, J.X., Huang, J. and Zhang, R.: HyperX:
A Scalable Hypergraph Framework, IEEE Trans. Knowl. and Data
Eng., Vol.31, No.5, pp.909–922 (online), DOI: 10.1109/TKDE.2018.
2848257 (2019).

[12] Kook, Y., Ko, J. and Shin, K.: Evolution of Real-world Hypergraphs:
Patterns and Models without Oracles, 2020 IEEE International Con-
ference on Data Mining, ICDM ’20, pp.272–281, IEEE (online), DOI:
10.1109/ICDM50108.2020.00036 (2020).

[13] Kunegis, J.: Handbook of Network Analysis – The KONECT
Project (2019), available from 〈https://github.com/kunegis/konect-
handbook/raw/master/konect-handbook.pdf〉.

[14] Lee, G., Choe, M. and Shin, K.: How Do Hyperedges Overlap in Real-
World Hypergraphs? – Patterns, Measures, and Generators, Proc. Web
Conference 2021, WWW ’21, arXiv:2101.07480 (2021).

[15] Leskovec, J. and Krevl, A.: SNAP Datasets: Stanford Large Net-
work Dataset Collection (2014), available from 〈http://snap.stanford.
edu/data〉.

[16] Maleki, S., Agarwal, U., Burtscher, M. and Pingali, K.: BiPart:
A Parallel and Deterministic Hypergraph Partitioner, Proc. 26th
ACM SIGPLAN Symposium on Principles and Practice of Paral-
lel Programming, PPoPP ’21, pp.161–174, ACM (online), DOI:
10.1145/3437801.3441611 (2021).

[17] Malewicz, G., Austern, M.H., Bik, A.J., Dehnert, J.C., Horn, I. and
Czajkowski, N.L.G.: Pregel: A System for Large-Scale Graph Pro-
cessing, Proc. 2010 ACM SIGMOD International Conference on Man-
agement of Data, SIGMOD ’10, pp.135–146, ACM (online), DOI:
10.1145/1807167.1807184 (2010).

[18] McCune, R.R., Weninger, T. and Madey, G.: Thinking Like a Vertex:
A Survey of Vertex-Centric Frameworks for Large-Scale Distributed
Graph Processing, ACM Comput. Surv., Vol.48, No.2, pp.25:1–25:39
(online), DOI: 10.1145/2818185 (2015).

[19] Shi, X., Zheng, Z., Zhou, Y., Jin, H., He, L., Liu, B. and Hua, Q.-S.:
Graph Processing on GPUs: A Survey, ACM Comput. Surv., Vol.50,
No.6, pp.81:1–81:35 (online), DOI: 10.1145/3128571 (2018).

[20] Shun, J.: Practical Parallel Hypergraph Algorithms, Proc. 25th
ACM SIGPLAN Symposium on Principles and Practice of Paral-
lel Programming, PPoPP ’20, pp.232–249, ACM (online), DOI:
10.1145/3332466.3374527 (2020).

[21] Shun, J.: Practical Parallel Hypergraph Algorithms (PPoPP 2020 Ar-
tifact Evaluation) (2020), available from 〈https://github.com/jshun/
ppopp20-ae/〉.

[22] Shun, J. and Blelloch, G.E.: Ligra: A Lightweight Graph Processing
Framework for Shared Memory, Proc. 18th ACM SIGPLAN Sympo-
sium on Principles and Practice of Parallel Programming, PPoPP ’13,
pp.135–146, ACM (online), DOI: 10.1145/2442516.2442530 (2013).

[23] Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauly,
M., Franklin, M.J., Shenker, S. and Stoica, I.: Resilient Dis-

c© 2021 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.29

tributed Datasets: A Fault-Tolerant Abstraction for In-Memory Clus-
ter Computing, 9th USENIX Symposium on Networked Systems De-
sign and Implementation, NSDI ’12, pp.15–28, USENIX Association
(2012) (online), available from 〈https://www.usenix.org/conference/
nsdi12/technical-sessions/presentation/zaharia〉.

[24] Zhang, Y., Brahmakshatriya, A., Chen, X., Dhulipala, L., Kamil,
S., Amarasinghe, S. and Shun, J.: Optimizing Ordered Graph Algo-
rithms with GraphIt, Proc. 18th ACM/IEEE International Symposium
on Code Generation and Optimization, CGO ’20, pp.158–170, ACM
(online), DOI: 10.1145/3368826.3377909 (2020).

[25] Zhu, X., Chen, W., Zheng, W. and Ma, X.: Gemini: A Computation-
Centric Distributed Graph Processing System, 12th USENIX
Symposium on Operating Systems Design and Implementation, OSDI
’16, pp.301–316, USENIX Association (2016) (online), available
from 〈https://www.usenix.org/conference/osdi16/technical-sessions/
presentation/zhu〉.

Shugo Fujimura is a graduate student in
the Graduate School of Information Sci-
ence and Technology at the University of
Tokyo. He received his B.E. from the Uni-
versity of Tokyo in 2021. He is currently
studying IoT and networks.

Shigeyuki Sato is an Assistant Professor in the Graduate School
of Information Science and Technology at the University of
Tokyo. He received his Ph.D. from the University of Electro-
Communications in 2015. His research interest is in compilers
and parallel programming, especially, automatic parallelization,
program synthesis, high-level optimizations, domain-specific lan-
guages, parallel patterns, and tree/graph processing. He is also a
member of ACM and JSSST.

Kenjiro Taura is a Professor in the De-
partment of Information and Communi-
cation Engineering at the University of
Tokyo. He received his B.S., M.S., and
Ph.D. from the University of Tokyo in
1992, 1994, and 1997, respectively. His
major research interests spread parallel
and distributed computing, system soft-

ware, and programming languages. He is also a member of ACM,
IEEE, and USENIX.

c© 2021 Information Processing Society of Japan

