
IPSJ SIG Technical Report

A Probability Distribution Learning Method for
Extracting Key Vertex Pairs in Graph

Classification Tasks

Jianming Huang1,a) Zhongxi Fang2,b) Hiroyuki Kasai2,c)

Abstract: Graph classification is a hot topic of machine learning for graph-structured data, and it is also
a very potential and valuable research because it has a wide range of applications such as bioinformatics,
computer vision, social networks, and so on. However, the difficulty of graph classification is challenging
and special, which is different from the ones of normal classification problems. One of the most difficult
points of graph classification is that, the number of vertex neighbors in a graph tends to be variable, which
makes the number of weights uncertain and ambiguous. In order to overcome these difficulties, we propose a
novel method which weights the vertex neighbors based on a weighting function by learning the probability
distributions of vertex pairs. The numerical evaluations show that our proposed method outperforms many
state-of-the-art methods including some deep learning methods.

1. Introduction

Graph-structured data have been used widely in various

fields, such as chemoinformatics, bioinformatics, social net-

works, and computer vision [1], [2]. Therefore, there also ex-

ist many classification tasks for the graph-structured data,

such as the toxicity analysis of compounds and recognitions

of handwrittings.

However, the graph classification has its difficulties, most

of which quite differ from other classfication problems of

computer vision and natural language processing. One of

the biggest problems is that, unlike the matrix data of a

image or the sequence data of a sentence, the number of

neighbors of a vertex in a graph is usually variable and un-

certain. As shown in Figure 1, this makes it hard to learn the

weights of neighbors because we cannot define a size-fixed

parameter such like a convolution kernel in the Convolution

Nerual Network (CNN), or a window of sequences in the Re-

current Neural Network (RNN). In this case, a continuous

function based on features of vertex pairs might help resolve

this difficulty, because this continuous weighting function

can dynamically compute the weight when inputs are given.

In recent work of the Graph Attention Networks (GAT) [4],

they propose a Graph Nerual Network (GNN) based on the

transformer [5], where they use the following weighting func-

1 WASEDA University, Graduate School of Fundamental Science
and Engineering

2 WASEDA University, School of Fundamental Science and Engi-
neering, Dept. of Communications and Computer Engineering

a) koukenmei@toki.waseda.jp
b) fzx@akane.waseda.jp
c) hiroyuki.kasai@waseda.jp

Fig. 1 A vertex tends to have varible number of neighbors, which
makes it hard to learn size-fixed parameters. Therefore, a
weighting function based on features of vertex pairs might
help.

tion:

fθ(xi,xj) =
exp (LeakyReLU(a[Wxi||Wxj]))∑

k∈N (vi)
exp (LeakyReLU(a[Wxi||Wxk]))

,

where xi,xj denote the feature vector of two vertices, a,W

are the learned parameters, the former is a vector and the

later is a matrix. || is the concatenation operation. The

value of this function is called the weight of attention. The

GAT brought great success to the node classification re-

searches. Nevertheless, some questions are still remained:

is this equation proper for learning attention? What infor-

mation is important for learning attention? Will it suffer

from the over-fitting problem?

In order to find out what information is advantageous to

the attention model, and make an effective attention model

1ⓒ 2021 Information Processing Society of Japan

Vol.2021-AVM-115 No.12
2021/11/25

IPSJ SIG Technical Report

for the graph classification, we propose a novel method

which learns the weighting function by applying the Gaus-

sian Mixture Model (GMM) to the probability distribution

of vertex pairs. We conduct evaluations on several real world

benchmark datasets and found that our proposed method

outperforms many state-of-the-art methods in graph classi-

fication tasks.

2. Related Work

For graph classification tasks, Graph Kernel (GK) meth-

ods were the mainstream methods and it has been used

widely for several decades before Graph Neural Networks

(GNN) came out. Theoretically, GKs are kernel functions

which could compute similarity for graph pairs. Most of

GKs are based on the isomorphism and structural similarity

of graph-structured data. In earlier researches, GKs have

shown its effectiveness for graph classification tasks with

machine learning algorithms including the Support Vector

Machine (SVM). A famous work of GK is the Weisfeiler–

Lehman (WL) Graph Kernel [7], which brought great suc-

cess in this domain and it is still inspiring many state-of-

the-art reseaches now. In WL graph kernel, They proposed

a similarity metric based on the Weisfeiler–Lehman test and

implement it as a general framework. To improve the sim-

ilarity metric of the WL graph kernel and make it more

robust for the decomposite graph structure, related work [6]

brought an optimal assignment kernel variant from the WL

graph kernel, which is called Weisfeiler–Lehman Optimal

Assignment (WL-OA) graph kernel. It is based on an op-

timal bijection between substuctures of graph pairs, which

performs better and more robust than the original WL graph

kernel. Similar to the WL-OA graph kernel, there is a re-

search [8] proposing a Wasserstein-based Weisfeiler–Lehman

(WWL) Graph Kernel, which maps a node embedding based

on its neighborhood pattern to a novel feature space. In this

feature space, they compute distance of graphs based on the

Wasserstein distance of two point clouds where a single point

denotes a node of graphs.

In recent years, as the large-scale datasets become more

important, the shortcomings of GKs become more obvious:

the high cost of both the computational complexity and the

memory. Thus, GNNs become hot topics in graph domain

including the graph classification, the node prediction and

the link prediction. A representative method of GNN in

recent years is the Graph Convolution Network (GCN) [9],

which is inspired by the Convolution Neural Network (CNN)

in computer vision domain and applies the same way to deal

with graph-structured data. Another representative GNN is

the Graph Isomorphism Network (GIN) [10]. The GIN is in-

spired by the WL graph kernel which specifically examines

graph isomorphism. They prove that the SUM aggregation

generates better aggregation than other schemes including

MEAN and MAX, in message passing process of graphs.

They apply this scheme in GIN, which make it more power-

ful than other GNNs in graph classification tasks.

3. Probability Distribution Learning for

Binary Classification

In this section, to make it easy to understand, we first

propose a probability distribution learning scheme of vertex

pairs under a simple task: the binay classification. We will

then expand it for the multi-class classfication in the next

section.

3.1 Step 1: Sample the vertex pairs and map

them to a discrete distribution

Firstly, as shown in Figure 2, before the sampling, we

should compute the feature vector of vertex pairwise which

will form the discrete distribution. Let x1,x2 ∈ Rd be the

feature of two connected vertices and let fpair : Rd × Rd →
Rd be the function aggregating features of these two vertices,

the aggregated feature of vertex pair is

fpair(x1,x2) = x1 + x2.

After the aggregation, we can obtain a d-dimensional vec-

tor for each connected vertex pairs, which can be mapped

to a d-dimensional Euclidean metric space.

For the process of sampling, let us consider a binary clas-

sification task, we first divide the graphs into 2 subsets cor-

responding to their class labels. Next, all connected ver-

tex pairs of graphs in the subset of i-th class label will be

mapped to a distribution Di. Therefore, we can get 2 dis-

crete distrbutions D1,D2.

Fig. 2 Overview of step 1, where connected vertex pairs will be
mapped to a discrete distribution.

3.2 Step 2: Use the GMM learn the probability

distribution

Use the discrete distribution directly will bring great dif-

ficulties for computation, which may lead to high compu-

tational costs and memory costs because of frequent point

comparison. Therefore, we use distribution learning meth-

ods such as GMM to learn continuous probability distribu-

tions of vertex pairs as shown in Figure 3.

3.3 Step 3: Compute a combined distribution

Through analyzing the obtained continuous distributions,

we found that there exist independent parts in these distri-

butions which are independent to the class labels. As shown

in Figure 4, the red part does not change too much w.r.t class

label 1 and class label 2. These part should be considered as

features less valuable for classification. In order to filter out

these independent parts, we apply a simple way to combine

2ⓒ 2021 Information Processing Society of Japan

Vol.2021-AVM-115 No.12
2021/11/25

IPSJ SIG Technical Report

Fig. 3 Overview of step 2, where we use the GMM to learn a
continuous probability distribution.

Fig. 4 Illustration of the independent parts in distributions.

two distribution as:

D′ = |D1 −D2|,

where D1,D2 are two distributions and D′ is their combined

distribution.

3.4 Step 4: Update each vertex feature

Similar to most graph classification methods, we apply a

message-passing-based framework to update and aggregate

vertex features in graphs. In this step, feature of each ver-

tex will be updated by aggregating its and its neighbors’

features. Let xi ∈ Rd be the feature vector of i-th vertex in

a graph, then it will be updated as

x′
i =

∑
j∈N (vi)

fθ(xi,xj) · xj ,

where fθ : RD × Rθ → R is:

fθ(xi,xj) =
exp

(
D′(xi + xj)

)∑
k∈N (vi)

exp (D′(xi + xk))
,

where N (vi) denotes the set of neighbors of i-th vertex.

The step 1 to step 4 will repeat H iterations for updat-

ing. If the process of updating ends, all vertex features will

be inputted into a global mean pooling layer to get a graph

representation, which will be used for classification.

4. Class-wise Feature Updating for

Multi-class Classification

So far, the feature updating process w.r.t a single class-

label is described in the last section, which can be directly

used in the binary classification task. However, there are

many classification tasks that have more than 2 class labels.

In order to expand our method so that it can work in the

multi-class classification task, we conduct a separate-and-

concatenate framework which is as shown in the Fig. 5.

Vertex featureVertex feature

Updated feature for
Class 1

Updated feature for
Class 1

Updated feature for
Class K

Updated feature for
Class K

Updated feature for
Class K

Updated feature for
Class K……

Feature updating
process

Graph SUM
pooling

Feature updating
process

Graph SUM
pooling

Linear Layers Linear Layers

ScalarScalar ScalarScalarScalar

Concat

Output

Fig. 5 Illustration of the framework for the multi-class classifica-
tion task, where the vertex features of a single graph will
be updated separately w.r.t each class label and finally
they will be concatenated into an ouput vector.

Let G be the graph that we are going to transform and clas-

sify, X ∈ RN×D denotes its vertex features, which expresses

that it has N vertices and each vertex is embedded into a

D-dimensional vector. Assume that we have K class labels.

In this case, we first copy the vertex features and repeat

them into K channels, which are denoted as X(1)...X(K).

The vertex features in K channels will be updated sepa-

rately and independently for a proper number of iterations,

w.r.t the class label that they belong to. This means that, in

the probability distribution learning step of the i-th channel,

graphs will be divided into two subsets: belonging to class

label i and not belonging to class label i. Then the proba-

bility distribution is learned by following the steps described

in the last section. After we finish the feature updating pro-

cess, we will conduct a graph SUM pooling on the vertex

features, where the vertex features will be added together

to form a new embedding for the graph G. Then we will

apply several linear layers to X(1)...X(K) separately, which

take an input of D dimension and give an output of 1 dimen-

sion. Then we can obtain K scalars p1..pK , each of them

denotes the probability of belong to their class labels. Fi-

nally, these scalars will be concatenated together to form an

output o ∈ RK , which will be inputted into a log-softmax

classifier.

5. Numerical Evaluation

We conduct evaluation experiments on several widely-

3ⓒ 2021 Information Processing Society of Japan

Vol.2021-AVM-115 No.12
2021/11/25

IPSJ SIG Technical Report

Table 1 Average classification accuracy on graph datasets

METHOD MUTAG PTC-MR PROTEINS COX2

WL H = 4 85.61±8.02 62.51±4.11 74.24±3.75 81.36±3.21
WWL H = 4 85.90±7.39 65.31±7.06 74.13±3.47 81.75±3.71
WL-OA H = 4 82.72±7.09 63.45±8.63 73.83±3.61 80.47±4.44
GIN 88.59±6.89 64.76±7.67 73.72±4.27 82.59±4.42

unweighted 74.03±8.79 60.16±9.03 76.82±3.82 78.15±0.80
weighted 80.87±10.53 65.42±7.40 75.74±4.31 81.99±4.27

used real world benchmark datasets, which are the MUATG

[11], the PTC-MR [12], the PROTEINS [13] and the COX2

[14] datasets, where we use the Support Vector Machine

(SVM) to do classification. For each dataset, I conduct one

time of 10-fold nested cross validation to get the average

accuracy and standard deviation. For the parameter set-

ting, we use the GMM with 100 clusters and update vertex

features for H = 4 iterations.

For the comparing methods, we choose 4 state-of-the-art

works, which are the Weisfeiler-Leman graph kernel (WL)

[7], the Wasserstein Weisfeiler-Leman graph kernel (WWL)

[8], the Weisfeiler-Leman graph kernel with Optimal Assign-

ment (WL-OA) [6] and the Graph Isomorphism Nerual Net-

work (GIN) [10]. In order to show the difference between

weighted strategy and unweighted strategy, we also add an

unweighted variant of our proposed method, where we up-

date vertex feature by the following equation:

x′
i =

1

|N (vi)|
∑

j∈N (vi)

xj .

The experimental results are shown in Table 5, where the

top-2 are in bold typeface. From the results we can see that

our proposed method outperforms all comparing methods

in the PTC-MR, the BZR and the COX2 datasets. For the

MUTAG dataset, although our method is not the best, it

obtain a nice accuracy which is not far from other methods.

6. Conclusion

In this article, we propose graph classification method

based on a weighting function learned by applying the GMM

to the probabiliry distributions of vertex pairs. Although

the better performance comparing to other methods, our

proposed method still has some difficulties: It still has high

computational costs for the GMM learning, which makes it

hard to be used in large-scale datasets. For improvement,

we plan to set the follows as our future work: 1) Apply sam-

pling methods such as the Gibbs sampling to reduce com-

putational costs; 2) Use deep distribution learning methods

to learn continuous distributions.

References

[1] Vishwanathan, S.V.N., Schraudolph N.N.. et al.: Graph ker-
nels, The Journal of Machine Learning Research, Vol.11,
pp.1201–1242, 2010.

[2] Kriege, N.M. and Johansson F.D. et al.: A survey on graph
kernels, Applied Network Science, Vol.5, No.1, pp.1–42, 2020.

[3] Gary, M.R. and Johnson, D.S.: Computers and Intractabil-
ity: A Guide to the Theory of NP-Completeness, New York
(1979).

[4] Veličković, Petar and Cucurull, Guillem et al; Graph atten-
tion networks, International Conference on Learning Repre-
sentations.

[5] Vaswani, Ashish and Shazeer, Noam et al.: Attention is all
you need, Advances in Neural Information Processing Sys-
tems.

[6] Kriege, Nils M and Giscard, Pierre-Louis et al.: On valid
optimal assignment kernels and applications to graph classi-
fication, Advances in Neural Information Processing Systems

[7] Shervashidze, N. and Schweitzer, P. et al.: Weisfeiler-Lehman
Graph Kernels, The Journal of Machine Learning Research,
Vol.12, pp.2539–2561, 2011.

[8] Togninalli, M. and Ghisu, E. et al.: Wasserstein weisfeiler-
lehman graph kernels, Advances in Neural Information Pro-
cessing Systems pp.6439–6449, 2019.

[9] Kipf, Thomas N and Welling, Max: Semi-supervised clas-
sification with graph convolutional networks, International
Conference on Learning Representations.

[10] Xu, Keyulu and Hu, Weihua et al.: How powerful are
graph neural networks?, International Conference on Learn-
ing Representations.

[11] Debnath, Asim Kumar and Lopez de Compadre, Rosa L
et al.: Structure-activity relationship of mutagenic aro-
matic and heteroaromatic nitro compounds. correlation with
molecular orbital energies and hydrophobicity, Journal of
Medicinal Chemistry, Vol.34, No.2, pp.786–797 (1991).

[12] Helma, Christoph and King, Ross D. et al.: The predic-
tive toxicology challenge 2000–2001, Bioinformatics, Vol.17,
No.1, pp.107–108 (2001)

[13] Borgwardt, Karsten M and Ong, Cheng Soon et al.: Pro-
tein function prediction via graph kernels, Bioinformatics,
Vol.21, No.suppl 1, pp.i47–i56 (2005).

[14] Sutherland, Jeffrey J and O’brien, Lee A et al.: Spline-fitting
with a genetic algorithm: A method for developing classifi-
cation structure-activity relationships, Journal of Chemical
Information and Computer Sciences, Vol.43, No.6, pp.1906–
1915 (2003).

4ⓒ 2021 Information Processing Society of Japan

Vol.2021-AVM-115 No.12
2021/11/25

