IPSJ SIG Technical Report

Vol.2021-CSEC-95 No.21
Vol.2021-SPT-45 No.21
Vol.2021-E1P-94 No.21
2021/11/9

Certificate Verification under FIDO Authentication

MoMOKO SHIRAISHI

1

Hirosur Ampal

Abstract: As a variety of financial applications are offered, the security in the authentication of users or transactions is
required. FIDO authentication is considered to be resistant to man-in-the-middle attacks in user authentication because
only the signed authentication result is returned to the authentication server without sending any secret information.
Accordingly, it enables authentication without passwords, which is more user-friendly and has recently been intro-
duced into various applications. However, under the current authentication protocol, if any of the software modules
comprising FIDO authentication is infected with malware and behaves improperly, it is possible to lead mis-binding
attack, parallel session attack, or DoS attack. In this paper, we specify the attacking paths of which types are the
mis-binding attack and the parallel session attack. Afterwards, we propose a protocol to authenticate each software
module that constitutes FIDO authentication on a session-by-session basis in order to deal with these attacks.

Keywords: FIDO authentication, digital certificate, transaction authentication

1. Introduction

With a variety of financial applications being offered these
days, user authentication systems are indispensable. FIDO (Fast
IDentity Online) is an authentication method based on a pub-
lic key infrastructure that prevents man-in-the-middle attacks by
keeping authentication information out of the network. More-
over, it replaces conventional password management with bio-
metrics and other lighter authentication methods, thereby provid-
ing a more user-friendly environment.

The protocol of FIDO is released by the FIDO alliance, a non-
profit standards organization launched in July 2012. FIDO 1.0
consists of two technical specifications, UAF (Universal Authen-
tication Framework) and U2F (Universal 2nd Factor). UAF was
released in December 2014. Additionally, U2F was released in
May 2015, which aims to be implemented as a second factor au-
thentication using USB key, Bluetooth and NFC. FIDO 2.0, on
the other hand, which was launched in November 2015, inte-
grates both UAF and U2F. Since the World Wide Web Consor-
tium (W3C) adopted a new approach to web authentication based
on the FIDO 2.0 web API in February 2016, companies have
started to implement the FIDO authentication methods on their
web platforms. This resulted in FIDO being actively adopted
in various businesses. However, not much specific research on
the protocol has been reported. A recent study in 2021[5] firstly
presented a detailed cryptographic formulation of the protocol.
Although potential attacks were pointed out as limitations, no de-
tailed countermeasures against such attacks have been provided.

In FIDO authentication, the communication between the user’s
device and the application server is secured by TLS communica-
tion. However, the authentication process within the device does
not authenticate each of the multiple modules involved, result-

' The University of Tokyo, Japan

(© 2021 Information Processing Society of Japan

ing in potential malware infection. This paper provides a new
scheme that each software provider is required to issue a digital
certificate in their code, and users verify the certificate when they
conduct FIDO authentication process. In the existing framework,
iOS applications and Android applications already adopted regu-
lations concerning the issuing of digital certificates to application
developers. While sustaining the above scheme, as an extension,
we suggest a framework to issue certificates for software modules
dedicated FIDO authentication that are not yet covered.

The contributions of this paper are summarized as follows:

e We summarize the vulnerabilities of the FIDO authentica-
tion protocol, describing the new attacking paths related to
the mis-binding attack and the parallel session attack. Those
attacks are caused by malware infection of each software
module.

e We provide the countermeasure against the aforementioned
attacks. By requiring each software module to issue a digi-
tal certificate, the user surely detects the malware infection
in the authentication process. Basically, the FIDO alliance
or some other organization is assumed to be responsible for
issuing the digital certificate.

The next section provides the conventional FIDO authentication
scheme offered by FIDO alliance. Section 3 then summarizes the
vulnerabilities under the conventional FIDO protocol. Section 4
proposes countermeasures solving the vulnerability issues. Lastly
section 5 provides a conclusion.

2. Conventional FIDO Scheme

In this section, we describe the conventional FIDO authentica-
tion mechanism. There are two stages: the registration stage and
the login authentication stage. First, the software components in-
volved in these stages will be described. Then, the authentication
process will be presented.

IPSJ SIG Technical Report

2.1 Components of FIDO Authentication Scheme

Since FIDO authentication is a mechanism for user authentica-
tion in application use, it is roughly a two-party communication
structure between the application provider (Relying Party in Fig-
ure 1) and the user device as Figure 1 shows. Authentication in
the user device is divided into UAF Agent, UAF client, ASM, and
an authenticator. Mention that applications can be distinguished
by the way they are obtained. The classification is as follows.

e Native application: Obtained from stores managed by OS
vendors. Examples are Android app, iOS app, and Windows
app.

e Web application: Obtained from the developer’s website.

2.1.1 RP (Relying Party)

Refers to the provider of the application. The application
provider needs to prepare a web server that communicates the
actual service contents and a FIDO server that performs user au-
thentication in accordance with the FIDO authentication mecha-
nism. In addition, the application provider uses the meta database
only in the initial process. In addition, the application provider
uses the meta database only at the beginning of the process,
which is a database containing digital key certificates correspond-
ing to the pre-installed attestation keys in the user devices. This
database needs to be consulted only for initial user authentication.
ApplD identifies the application provided each RP.

2.1.2 User Agent

Refers to the browser, which provides the results from the web
app server to the client side. Chrome, Safari, and Firefox are typ-
ical examples. TLS communication is used between the RP and
the User Agent. The FacetID identifies each Use Agent.

2.1.3 UAF Client

A software module dedicated for FIDO authentication to com-
municate with FIDO server. In the case of native applications, it
is included in the application module itself. For web applications,
on the other hand, it is a separate software module that is required.
Each UAF client is distinguished by the index CallerID.

2.1.4 ASM (Authenticator Specific Module)

A software module that mediates between the UAF client and
the authenticator. A token is issued at the beginning of use.
2.1.5 Authenticator

In a broad sense, it is a mechanism for verifying the authentica-
tion response of a user, while it consists of two components: the
module that verifies the actual user’s authentication response and
executes the application authentication process, and the database
that stores the keys used for authentication. In this paper, the
part that performs the former function is defined as authentica-
tor, while the latter is referred to as secure storage. In addition,
the hardware device that actually catches the user’s authentica-
tion information is denoted as a biometric reader. Note that there
are two types of the authentication devices: those with built-in
authentication devices such as biometric authentication or PIN
code input, and those with external authentication devices such as
USB. The former is called bounding authentication and the latter
is called roaming authentication. Each authenticator module is
distinguished by the index AAID.

(© 2021 Information Processing Society of Japan

Vol.2021-CSEC-95 No.21
Vol.2021-SPT-45 No.21
Vol.2021-E1P-94 No.21

TLS Channel 202] /1 1/9
/User Device N Relying Party
Web App Native App.
Browser App
UAF UAF I
Client Client
t ‘ FIDO Server
ASM
a
& t
@ Roxer q@) Authenticator
‘ Meta database
Secure Siorage’

Attestation Key Pre-installed

Fig.1 Overview of the Authentication Scheme

2.2 FIDO Authentication Procedure

FIDO authentication consists of two phases: A) public key reg-
istration phase as described in Figure 5 and B) actual login au-
thentication phase as described in Figure 6. Table 1 describes the
notation of each parameter in the protocol, including those in the
proposed protocol described below in section 4. While the pro-
tocol has been formulated in previous studies[5], we provide a
more precise description here, referring to a report published by
the FIDO alliance[1][12] [2]. The following subsections specify
the individual phases including the set up.
2.2.1 Setup

As a prerequisite, before the user actually registers the applica-
tion initially, the user’s device is pre-distributed with a secret key
called the attestation key sksr. This is stored in the secure stor-
age. The public key pkur corresponding to the secret key skar is
stored in a meta database that can be accessed by the application
provider. This mechanism is collectively referred to as the meta
database service.
2.2.2 Registration Phase

When the user clicks on the URL of the web application, the
user agent receives the click response from the user and ac-
cesses the website, based on TLS communication. The appli-
cation server sends the username, AppID, and challenge to the
UAF client. The UAF client calculates the challenge parameters
fcp after verifying FacetID and sends them to the ASM. The
ASM then calculates ak and hash(fcp), and sends them to the
authenticator. The authenticator generates a pair of private and
public authentication key (skay pkay) and sends them back to
the ASM. The ASM receives them and returns them to the ap-
plication server. The application server sends them to the FIDO
server, which verifies the signature. If the verification is success-
ful, the authentication public key pkay is stored.
2.2.3 Authentication Phase

When the user clicks on the URL of the web application, the
user agent receives an action from the user and accesses the web-
site. The application server sends the KeylD which corresponds
to the username, ApplID, challenge, and transaction text 7'r to the
UAF client. The UAF client verifies FacetID and calculates the
challenge parameters fcp, and send them to the ASM. The ASM
calculates ak and hash(fcp), and send them to the authenticator.
The authenticator verifies ak at first. After obtaining the user’s
confirmation, the authenticator increments the counter CNTRy,.
After signing the information including the transaction text 7'r,
the authenticator sends them to the ASM. The ASM, the UAF

IPSJ SIG Technical Report

client and the user agent receive them and return them to the
application server. The application server sends it to the FIDO
server, which verifies the signature. If the verification is success-
ful, the confirmation result is sent to the user’s device.

2.3 Conventional Entities

This section provides the actual identity figures that service
providers are currently offering for their products. Table 2 shows
what denotes the ID for each software module and who deter-
mines it. In particular, for AppID, FacetID and CallerID, the
identifiers are set by service providers, implying that they are set
under the control of the app store provider for native applications:
i0S apps, Android apps, and Windows apps. On the other hand,
for web applications AppID and FacetID are identical to each
HTTPS URL. For the other software components are managed
depending on service and device providers.

3. Vulnerabilities

In the conventional FIDO process, the entity authentication be-
tween the PR server and the UAF client is proceeded with TLS
communication. However, not all other communication within
the device is authenticated in each transaction. Therefore, if the
authenticator, ASM, and UAF client are infected with malware,
authentication will not always be performed correctly. Here, to
be infected with malware means to have a module that behaves
in an unappropriate manner between modules. In this section, we
will discuss what kind of attacks are possible based on the mal-
ware infection of the software modules that are not authenticated
by the conventional protocols.

3.1 Authenticator Mis-binding Attack in Registration Phase

In the registration phase, the attackers try to register their own
device, indicating that the attackers’ authentication public key
is registered to the application provider. The lurking place for
the attacker is the authenticator itself or the ASM or UAF client.
Specifically, if one of those software modules sends a request to
the attacker’s own authenticator before the registration request
reaches the legitimate authenticator, the attack succeeds.

3.2 Pararell Session Attack in Authentication Phase

A parallel session attack is an attack in which a malicious soft-
ware module exists between legitimate modules, and it sends a
request again and obtains random values generated for each ses-
sion, resulting in the success of the authentication process. The
purpose of this attack can be simply to successfully authenticate
the login or to establish a false transaction. The former case indi-
cates that the legitimate user reacts and inputs the credential while
the internal software module is malicious. If the attacker’s goal
is to browse or operate the application after the user has authenti-
cated, the attacker also needs to interfere with systems other than
the FIDO authentication module. The protocol mechanism of the
attack is provided in [5], while this paper provides the attack of
the latter case which requires the operation to falsify the trans-
action text. Again, this paper focuses the parallel session attack
whose purpose is not login authentication, but authentication for
transactions. In this case, the transaction text to be recognized by

(© 2021 Information Processing Society of Japan

Vol.2021-CSEC-95 No.21
Vol.2021-SPT-45 No.21
Vol.2021-E1P-94 No.21
2021/11/9

the user and ones that the attacker tries to complete are different,
indicating that the attacker has to break through the process of
the user looking at the display to confirm. Hence, except for the
authentiactor malware infection, we assume a clickjacking attack
at the same time. For the attack technique, we assume that the
technique has been successfully implemented as in the previous
works [6] [8] [10]. We divide the cases according to whether the
biometric reader is inside or outside the device.

3.2.1 Bounding Authentication

Under bounding authenticating, we first consider the case
where a malicious file exists between the legitimate ASM and
the legitimate authenticator as described in Figure 2. Under the
conventional scheme, the authentication of the ASM is based on
whether the ak stored by the authenticator at the registration stage
matches the ak sent by the ASM at each session. Therefore, al-
though the ASM itself cannot generate the correct ak, once the h
and ak are intercepted in communication with the authenticator,
a false transaction can be established.

Next, in addition to the condition that a malware exists between
the legitimate ASM and the legitimate authenticator, for the case
of malware infection between the legitimate UAF client and the
legitimate ASM, the validity of CallerID of the UAF client is not
checked under the conventional method. Therefore, a malicious
module exists between them successfully creates a fake transac-
tion Try, and sends it to the subsequent ASM. Afterwards, the
user’s signature on Tr4 can be obtained and its authentication
will be completed.

3.2.2 Roaming Authentication

While the above was for bounding authenticating, now con-
sider the case of roaming authenticating. First of all, the authen-
tication phase of roaming authenticating is not tied to the value
of the registration phase, and only the AppID is used in each ses-
sion, therefore the attacker only requests again and complete the
fake transaction, without acquiring % or ak. For the case of mal-
ware between the legitimate authenticator and ASM as described
in Figure 3, the attacker only needs to make the false transaction
request Tr4 and sends it to the subsequent legitimate authenti-
cator. Moreover, under the roaming case, regardless of whether
a malicious module exists before the legitimate authenticator, a
malware between the legitimate UAF client and the legitimate
ASM succeeds to make a false transaction 7r4 and to obtain the
user’s signature as described in Figure 4.

4. Proposed Scheme

As a countermeasure to the above attacks, we propose a
method of performing individual authentication for each soft-
ware module. The predecessor/successor module in the commu-
nication constantly verifies the digital certificate of the succes-
sor/previous module file in the registration/authentication phase.
Under the existing framework, the connection eventually reach
the RP server whose trust is established through mutual authen-
tication based on the TLS communication. Thus, if any module,
single or multiple, is infected with malware, an anomaly can be
detected at some point. The following subsections specify the
protocol for each phase. Note that in the proposed method, the
identical protocol is applied for the bound authenticator and the

IPSJ SIG Technical Report

Vol.2021-CSEC-95 No.21
Vol.2021-SPT-45 No.21
Vol.2021-E1P-94 No.21

2021/11/9
Table 1 Parameter Description both in the Conventional Protocol and Proposed Protocol
Notation Description
Conventional Scheme Proposed Scheme
ApplD Identifier for each application
FacetID Identifier for each browser
CallerlD Identifier for each UAF client
tok - Token which is gernerated in ASM in the initial step
- ASMID Identifier and also certificate for each ASM
- AAIDc Identifier and also certificate for each authenticator
AAID Identifier for each authenticator software module
UName Username, identifier a user’s account
KeylD Identifier for each user replaced by UName used in the registration phase
skar Attestation secret key which is pre-installed in the user’s device
pkar Attestation public key which is stored in the meta-database and corresponds to skar
skay Secret key for authentication
Pkau Public key for authentication
k A symmetric key for eyncryption and decryption for confidential information
Chlg Random value for each session created by the FIDO server
S Data Random value for each session created by the Relying Party
TLS Data Identifier of TLS channel for each session
fc Final challenge for Challenge-Response mechanism
CNTR Counter for authentication sessions
n Random value which authenticator generates
[Tr] Transaction text
ak - Value for authenticating ASM
h - A key container generated in the registration phase
Table 2 IDs Classification
Application Type RP User Agent | UAF client ASM Authenticator
(AppID) | (FacetID) (CallerlD) (AAID)
Native i0S App ID Bundle ID (issued by Apple) Token is issued by AAID is issued by
application | Android APK signing certificate (issued by users themselves or Google) | application providers | application providers
‘Web application https://fido.example.com | -
| User | | authenticator | Adv | ASM
| Request]
g APPID,ak, fc, [T ™|
Y Request
’ User ‘ | authenticator | Adv | ASM &R el

— . Request

. |-
1 gtppiD ak, fc,h, G

:l store ak, h

Request

>
_AppiD,ak, e [Try]
<

] APPID,ak, fe b, [Try]
<

[o« hash(ak||ApptD

< skayr, PkAy , XUName, KeylD >+ Dy (h)
check xak + ak

If right then:

display and let the user verify the Tr
RTry « hash(Try)

XCNTRy ~ CNTRy +1

User React

new random n

S signg

WAID, n, fe,KeyID, [hTry h
ACNTR, .S UD,n, fe,KeyID, [hTry
————————— XCNTRy,S

Fig.2 Malware between ASM and authenticator (Bound Authenticating)

(AAID,n, fc,[hTry |, KeyID,xCNTR,
A 4

roaming authenticator, although in the conventional method the
different protocols are implemented.

4.1 Procedure
4.1.1 Setup

It is necessary that the module of authenticator, AMS and UAF
client is installed or updated with digital certificates. For these

(© 2021 Information Processing Society of Japan

—— _AppID,ak, fc,[Try]

g ok« hash(ak||AppID)

< skay, kg, xUName,KeyID > Dy ()
check xak < ak

If right then:

display and let the user verify the 7r
hTry ¢ hash(Try)

XCNTR < CNTRy +1

new random n

S« sign,

>
Y User React

skggy (AAID, . fc, (KT], KeyID,xCNTRy)

MAID, n, fc,KeyID, [hTry
XCNTRy,S

ID,n, fc,KeyID, [hTry

Fig. 3 Malware between ASM and authenticator (Roaming Authenticating)

products created for FIDO authentication itself, the FIDO al-
liance is basically responsible for issuing the certificates. How-
ever, since the authenticator is closely tied to the operating sys-
tem, there is a possibility that the vendor providing the device
manages the certificate. Currently, to provide FIDO authentica-
tion as a service, it is necessary to obtain authorization from the
FIDO alliance to ensure compliance with the standard protocol.
The proposed scheme adds the role of FIDO alliance to issue a
certificate for each source file under that authorization process.
In the model specification, in addition to the conventional
scheme, let AS MID and AAIDc be a certificate for ASM module
and for authenticator module respectively, which are issued by

IPSJ SIG Technical Report

| User | | authenticator ‘ | ASM | | Adv | | UAF client

Request

»
| Ko, jcp, [T
equest

>
| KeyID, fep,[Try
l

— KeyID, fop, [Tr4]
<

—AppID,ak, fc,h,[Try||
-«

? ak < hash(ak{|AppID)

< skayy, pkgyy xUName, KeylD >« Dy (h)

check xak < ak

If right then:

display and let the user verify the 7r

[| hTry hash(Try)

XCNTRy CNTRp +1

new random n

S+ :ignSkAU (AAID,n, fc,|hTry),KeyID,xCNTR)

<
€ User React

AMD,n, e KeyID,WTHy) | foKeD, Tl

xCNTRy,S

D, n, fe,KeyID,[hT}y)

Fig. 4 Malware between ASM and UAF client (Roaming Authenticating)

the FIDO alliance.
4.1.2 Registration Phase

Figure 7 describes the registration phase protocol. The proce-
dure until that the user sends a request and the series of ID infor-
mation is transmitted to the user agent((*) in Figure 7) is the same
for the conventional method. Afterwards, the UAF client sends its
own CallerID to the predecessor user agent. The user agent then
verifies this CallerID. Since CallerID is a digital certificate, it is
checked with the use of a trusted certificate list built into the de-
vice beforehand, similar to the procedure for a normal SSL/TLS
certificate. If the verification is successful, the user agent and the
UAF client follow the conventional process. Then, the the UAF
client requests the ASM to send AS MID. After the UAF client
verifies its validity, the UAF client and the ASM follow the con-
ventional procedure. Note that ak is not generated here, while be-
ing used in the conventional method. Next, the ASM verifies the
certificate of the authenticator AAIDc. If the verification is con-
firmed, then the same procedure as in the conventional method is
conducted until the verification operation of the RP server.
4.1.3 Authentication Phase

Figure 8 describes the authentication phase protocol. The same
operation as in the conventional scheme is performed until the
UAF client receives the information calculates fcp((*) in Fig-
ure 8). Afterwards, the UAF client sends its own CallerID to the
subsequent ASM. The ASM then verifies this CallerID. As in the
registration phase, CallerID is checked with the trusted certificate
list built into the device beforehand. If the verification is success-
ful, the ASM calculates the fc. Then, the fc and the ASM’s own
certificate AS MID, are sent to the authenticator. Next, the au-
thenticator verifies the AS MID received from the ASM using the
certificate list. If it is verified, then it proceeds to the next step. In
the conventional scheme, there is a process to check the ak sent
from the ASM against the ak stored in the registration stage, but
this is not done in the proposed scheme because the ASM is au-
thenticated with AS MID. After that, there is no change from the
conventional process.

4.2 Security Analysis
This subsection explains the mechanism through which the

(© 2021 Information Processing Society of Japan

Vol.2021-CSEC-95 No.21
Vol.2021-SPT-45 No.21
Vol.2021-E1P-94 No.21
2021/11/9

proposed method mitigates the attacks described in section 3.
First, for the mis-binding attack at the registration stage, if a ma-
licious software exists before the legitimate UAF client, the at-
tack can be detected when the user agent verifies the CallerID
from the attacker (malicious UAF client), because the malicious
CallerID is not attributed to a trusted certificate. Similarly, if the
attacker shows up before the legitimate ASM, then the verifica-
tion of AS MID at the legitimate UAF client detects it. Also for
the authenticator, a malware predecessor to the legitimate authen-
ticator is detected when the legitimate ASM verifies AAID¢

Regarding an attack in the authentication phase, we first de-
scribe the parallel session attack that establishes fraudulent trans-
actions. In the parallel session attack, the values (ak and /) used
for authentication of each software module are obtained in ad-
vance, and the attack succeeded by re-generating the random
numbers used for each session under the conventional scheme.
While in the proposed method, the UAF client, ASM, and au-
thenticator are each followed by a subsequent module that verifies
its validity based on the certificate confirmation for each session.
Specifically, if a malicious file exists before the legitimate ASM,
the subsequent ASM can detect it by verifying CallerID. If the
attacker exists between the legitimate ASM and the legitimate au-
thenticator, then the subsequent legitimate authenticator notices it
by verifying AS MID.

4.3 Malware Infection Route

The operations described above are performed by malware in-
fection among the legitimate UAF client, the legitimate AMS, and
the legitimate authenticator, i.e., the cases when these malicious
operation code files are installed between the legitimates. Thus,
it is minimum required to check whether the original file is le-
gitimate when it is installed or updated. In other words, in order
to reduce the verification time, it may be sufficient to check only
when the application file is installed. However, it may have the
ability of root exploits. If the malicious file has the root privi-
leges, then the malicious file, which may be installed at any time,
enables the manipulation of files involved in FIDO authentica-
tion. In this case, it is necessary to authenticate the code file
involved in FIDO authentication in each session of FIDO authen-
tication. In fact, the existence of malware capable of root exploits
has already been pointed out [15]. When more sensitive informa-
tion is to be handled using FIDO authentication, the certificate of
each code file must be verified in each session.

5. Related Literature

Although FIDO authentication is implemented into various
commercial applications, not much academic analysis on it has
been conducted. Feng et al. (2021) [5] formulated the UAF proto-
col and firstly conducted its cryptographic analysis with Proverif.
They presented the attacks: mis-binding attack, parallel session
attack and DoS attack from the cryptographic aspect and recom-
mended to implement a mechanism of authenticating the UAF
client, ASM and Authentiactor as the countermeasure, although
they did not provide the specific method. Hu and Zhang (2016)
[7] also formulated the UAF protocol and presented two attacks,
which are examples of a mis-binding attack and a parallel session

IPSJ SIG Technical Report

attack respectively. However, there is no mention of the counter-
measure against the attacks. Panos et al. (2017)[11] listed pos-
sible attacks on FIDO authentication: malware infection of each
software module, failure of key management and malware infec-
tion of OS. They provided the comprehensive security analysis
on the scheme, however, none of the specific attacking route or
the countermeasure was described. As for attacks in which trans-
action details are falsified, a vulnerability in the display screen
was shown, for which the solution was to place the module that
manipulates the screen in the TEE (Trusted Execution Environ-
ment) [14], although no methods was included to cover the other
attacks such as mis-binding attacks and parallel session attacks.

For FIDO authentication, vulnerabilities other than the FIDO
specialised protocol were also shown. Several previous studies
show the possibility of attacks on USB keys used for authentica-
tion[13] [9]. In addition, re-keying attacks were described, which
occurred in authenticating a second factor[4]. Not only regard-
ing FIDO authentication, but also related to the other common
authenticating methods in the Internet, the vulnerability on TLS
channel, a technical component constructing FIDO authentication
was provided in [3].

6. Future Work and Conclusion

This manuscript explains the new attacking paths of the mis-
binding attack and the parallel session attack. Moreover, we pro-
vide the countermeasure against the attacks, in which the certifi-
cates on the code file of all software modules are verified in each
session or transaction. Since the proposed method is based on a
digital certificate attached to the source file, it is not feasible if
the certificate itself is not reliable. In fact, there is a possibility
of MITM certificate attacks and MITM key attacks. For future
direction, methods to overcome these attacks are expected to be
provided.

References

[1] AtrLiancg, F. Fido uaf protocol specification, ” . FIDO Alliance Review
Draft (2017).

[2] BaGHDASARYAN, D., HiLL, B., Sasson, R., Hopaes, J., AND YanG, K. Fido
uaf authenticator-specific module api, 2013.

[3] BHARGAVAN, K., BLancheT, B., aNp Kogersst, N. Verified models and
reference implementations for the tls 1.3 standard candidate. In 2017
IEEE Symposium on Security and Privacy (SP) (2017), IEEE, pp. 483—
502.

[4] CHANG, D., MisHrA, S., SaANADHYA, S. K., AND SiNGH, A. P. On mak-
ing u2f protocol leakage-resilient via re-keying. JACR Cryptol. ePrint
Arch. 2017 (2017), 721.

[5] Feng, H., L1, H., Pan, X., AND ZHA0, Z. A formal analysis of the fido
uaf protocol. In Proceedings of 28th Network And Distributed System
Security Symposium (NDSS) (2021).

[6] FratanTONIO, Y., QIAN, C., CHUNG, S. P., aND LEE, W. Cloak and dag-
ger: from two permissions to complete control of the ui feedback loop.
In 2017 IEEE Symposium on Security and Privacy (SP) (2017), IEEE,
pp. 1041-1057.

[7] Hu, K., AND ZHANG, Z. Security analysis of an attractive online authen-
tication standard: Fido uaf protocol. China Communications 13, 12
(2016), 189-198.

[8] Huang, L.-S., MosHcHUK, A., WaNG, H. J., SCHECTER, S., AND JACK-
soN, C. Clickjacking: Attacks and defenses. In 21st {USENIX} Security
Symposium ({USENIX} Security 12) (2012), pp. 413-428.

[9] JacommE, C., AND KREMER, S. An extensive formal analysis of multi-
factor authentication protocols. ACM Transactions on Privacy and Se-
curity (TOPS) 24, 2 (2021), 1-34.

[10] Niemierz, M., AND ScHWENK, J. Ui redressing attacks on android de-
vices. Black Hat Abu Dhabi (2012).

[11] Panos, C., MALLIAROS, S., NTaANTOGIAN, C., PANOU, A., AND XENAKIS, C.

(© 2021 Information Processing Society of Japan

[12]

[13]

[14]

[15]

Vol.2021-CSEC-95 No.21
Vol.2021-SPT-45 No.21
Vol.2021-E1P-94 No.21
2021/11/9

A security evaluation of fido ’ s uaf protocol in mobile and embedded
devices. In International Tyrrhenian Workshop on Digital Communi-
cation (2017), Springer, pp. 127-142.

SrRINIVAS, S., BaLranz, D., Tirrany, E., Czeskis, A., AND ALLIANCE, F.
Universal 2nd factor (u2f) overview. FIDO Alliance Proposed Stan-
dard 15 (2015).

Tian, J., Scarrg, N., KuMAR, D., BAiLEY, M., BATEs, A., AND BUTLER, K.
Sok:”” plug & pray”” today—understanding usb insecurity in versions
1 through c. In 2018 IEEE Symposium on Security and Privacy (SP)
(2018), IEEE, pp. 1032-1047.

ZHANG, Y., WANG, X., ZHA0, Z., AND L1, H. Secure display for fido trans-
action confirmation. In Proceedings of the Eighth ACM Conference on
Data and Application Security and Privacy (2018), pp. 155-157.
Zuou, Y., AND JianG, X. Dissecting android malware: Characteriza-
tion and evolution. In 2012 IEEE symposium on security and privacy
(2012), IEEE, pp. 95-109.

IPSJ SIG Technical Report V(\)}ozlozzolzfsé%%?é Eg%i

Vol.2021-EIP-94 No.21
2021/11/9

[authenticator/4AID | [ASM| [UAF client/CalleriD | | User agent/FacetID || RP Server/AppID

skar,k,Certy

1 : Resister Request, U Name —

»
l open TLS channel -
- >
" Resister Request, UName _ [~
gencrate random SData
|/ Name, SData, Chig. ApplD gencrate random Chig
™ U'Name.SDaia,Chig, ApplD, FacetlD
check FacetID
if right then;
[| gt TLSData from TLS channel
cp &< ApplD, Facet!D,Chig, TLSData >
[Name. fep. CallertD Jep=arm £
fe+ hash{fcp)
ak « hash(ApplD||Tok||Caller!D)
g UNameAppiD, fc.ak
i ak « hash(ak|lApplD)
< generate skary , phay
IRNUES SRR generaterandom KeylD
=] b Ey{skyry.ak,UName KeylD)
seperale CNTR,
8 sigG 1 (AAID. fe plyyy KeylD CNTRY)
AAID, fe.KeylD.h
L VT Ra b Certar
- store Catler!D, AppID, h, KeylD
st TiSData
AAID, e KestD e hash(AppID| Chls| [T 1SData)
NTRa Py 5, Coryg | check
******* AAID, fe KeyID, xSDaia xSData == $Data
CNTRy phygy . S.Cerigp fop AAID, fe, KeyID, x5 Data fe
fepApplD == ApplD
7 fepTLSData == TLSData
:I fep.Chlg hig
if fep. Facet!D in FacetIDs list, then
check
L s 15, AALD, fe, KeylD.CNTRy >)
(- — if right then
CNTRg + CNTRy
stare phy; KeylD, AAID.CNTR s
Fig.5 Registration Process of the Conventional Scheme
[authenticator/AAID | ASM| [UAF client/CalleriD | | User agent/FacerID | | RP Server/AppID |
: q
skau,k 10k, h | AAID/,KeyID, phyys CNTRs |
| : Log-inor Tr Request, UName — :
: ; »
[Cogio or i Request &-Namg —
" generate random SDara
zl ‘gencrate random Chlg
| KeylD.ApplD. SData,Chis. [T7] get (7]
— _ KeylD, ApplD.SData,Chig, |Tr]. Facet Iy il
<
set teunted Facet s
check Facer/Dy
e | cet TLSDara
: = < ApplD, FacetlD,Chlg, TLSData >
(——KeyiD, fep, [T¥], Callerti] fep = < ApplD. FaceriD, Cls. “
fe+ hash{fcp)
T | ak + hash(appib|Tok|CaliertD)
locate k by KeylD)
g AppiD.ak, fe.h,[Tr]
-
g ak « hashiak|lAppiD)
< sk xak,xUName, KeyID > Dy (h)
check xak == ak
LT 1 right then:
display and let the user verify the Tr
[| v hashirr)
FCNTRY « CNTRg +1
generate new random n
S signg , VAAID. n, fo. [hT7] Keyl D xCNTR 5}
get TLSDara
AAID.n, fe, Keyl D, [6TT] locate phygy by < UName. AAID, KeyD >
[AAID: . fe, KeyID, K] xfe + hash{ApplD||Chlg|[T LSData)
XCNTR, S X b ¥
----- xSData, AALD,n, fe, [T KeyiD check:
LCNTR, LS. fep [xSData. AAID, n, fc, KeytD, [T+
Lo CNTRaS S N
F=1k Jfep Chig == Chig
If fep FacerlD in FacetDs list, then:

g, (8. AAD,n, fe, TY), KeylD, xCNTRy =)
If ight then:
CNTRg & CNTRy

Fig. 6 Authentication Process of the Conventional Scheme

(© 2021 Information Processing Society of Japan 7

IPSJ SIG Technical Report V(\)}021022012 fsé%%zg Eg%i
Vol.2021-EIP-94 No.21
2021/11/9

[authenticato/AAID | [ASMIASMID | [UAF client/CallerfD] | User agent/FacetID || RP Server/AppID
ASMID

Resister Regquest, UName =

Resister Request_ t/Name]

generate random SDara
o Name D, Ctg Appip | [ssaerse rndom Chlg
<

[verify CalleriD

| Name.SData, Chig, ApplD. FacertD

get tmusted Facet IDs
check Facet!D? C trusted FacetList

[| i e
Request get TLSDara from TLS channel
= Asip fep < ApplD. FacetID,Chlg, TLSData >

[verify ASMID

g UName, fep.CalteriD
2 | s rashisp)
kg vty AdiD
UName,ApplD. fe
J—————
[TerReaet _ gencrste randorn KeylD
B Ey(rkyyy UName, KeyiD)
sencrate CNTRy
S NG (ANID. fe.phyy) KeIDENTRY)
AAID, fe KeylD.
CNTRy, phay 8. Certay
g [sore Cattertn, appite.i eyt
AAID, fc,KeylD
CNTRy, phay 5. Certay Ll
”””””” AAID, fe, KeylD, xSData xfe 4 hash{ApplD||Chlg|| TLSData)
ENTRy gy S.Cenay . fep AAID, f.KeytD,1SDaia check
77777777777777 CNTRy pay 8 Certyy fep xSPata == SData
e B e e ¢ s
fepAppID == AppID
1 fepTLSData == TLSData
I | Fepcnis — cus
if fep.FacetlD in FacctlDslist, then
— check
gl 8, < AAID, e, KeylD,CNTRy =)
fright then
ENTRg + ONTRy
store pkgyy KeplD.AAID. CNTR;

Fig. 7 Registration Process of the Proposed Scheme

authenticator/AAID

UAF client/CalleriD | |User agent/FacetID H RP Server/AppID ‘
|AAID, KeyID, pkay CNTRs |

Log-inor Tr Request, UiName —
2 > ,
[t
[“Log-in or Tr Request, Ui
‘generate random SData
[sencrato random Chlg
Key!D. ApplD, $Daa, Chlg,] g 177
= KeyiD, AppiD, SDasa,Chig, [T7] <
<
get trusted Facet IDs
check Facer D)
[l
(*)fep = < ApplD. FacertD Chlg TLSDara >
[—fgID. fep,[Tr) CallertD)
e+ hash{fep)
[| verify Callerid
locate by KeylD
—_4ppID.ak. fe ik [Tr] ASMID
[verify ASMID
< skygy. phaty xUName, KeylD > Dy (i}
[eeRaa __| display and let the user verify the Tr
KT & hash{Tr)
| st o e 1
new random n
S signg, | (AAID.n, fe. [KTr|. KeylD.xCNTRy)
AAID. . fe KeytD, [WTr]
SCNTRy.S
— et TLSData
AAID,n, fe, KeylD, [hiv] tocate phygy by < UName AAID, KeylD >
XCNTRy,S xfe « hash(App!D||Chig|[TLSDara)
—mm-- xSData, AAID, n, fc. [T+ KeylD
St |<SDara, AAID, n fc, KeytD, KT+
- fep TLSData == TLSData
b | - fewcits == chie
1f fep. Facet!Din FacetIDs list. then

- check
signgi gy, (5. < AAID . f,NTe] KeylD, sCNTRy >)

1 right then:
CNTRg « €NTR,

Fig. 8 Authentication Process of the Proposed Scheme

(© 2021 Information Processing Society of Japan

