
Procedural Content Generation for Tower Defense Games:
a Preliminary Experiment with Reinforcement Learning

Yueming Xu1,a) Tetsuro Tanaka2,b)

Abstract: Although procedural Content Generation via Machine Learning (PCGML) has recently enjoyed consider-
able popularity, there is little research on PCGML applied to more complicated games such as Tower Defense (TD).
We trained agents to play TD levels (the solver) and generate TD levels (the generator) using reinforcement learning
on a TD simulator developed in-house. We conducted the experiments of solver agents with different action spaces to
find the most proper one for our task. Then we tried to generate levels, but the results showed that there is still a lot of
room for improvement.

Keywords: Procedural Content Generation, Reinforcement Learning, Tower Defense

1. Introduction
Procedural Content Generation (PCG) is the process of algo-

rithmically creating game assets. PCG can be employed to in-
crease games’ replay value and reduce the production cost and
effort for the games industry[5]. Some forms of game content
such as trees and landscapes have been generated procedurally
for a long time. However, many traditional PCG usually needs
developers to do much hand-coding work.

Machine learning has achieved great success in content pro-
duction, including generating audio, photo, and other content
types across different domains. It stands to reason that machine
learning would be applicable to games content generation. One
relatively new paradigm of PCG called Procedural Content Gen-
eration via Machine Learning (PCGML)[15] has had enjoyed
considerable popularity recently.

In this research, we will focus on level generation based on re-
inforcement learning. As the level design is costly, there are usu-
ally too limited game levels available to generate playable lev-
els through data-driven machine learning methods. To address
this challenge, for one thing, researchers proposed variants of su-
pervised learning, such as TOAD-GAN[4] and CESAGAN[16],
which need only one example or a few examples to generate lev-
els similar to sample levels. For another thing, which is our core
focus, reinforcement learning-based PCG[11] methods have be-
gun to be studied for their role in yielding various and playable
levels without sample data recently [8].

The tile-based dungeon is one of the most popular testing
grounds for level generation, in which levels are made up of dif-
ferent types of tiles, including walls, roads, collectible items and
even enemies. Many previous works [16], [11] have made out-
standing contributions to dungeon generation. However, there is

1 Graduate School of Arts and Sciences, The University of Tokyo
2 Information Technology Center, The University of Tokyo
a) xu-yueming863@g.ecc.u-tokyo.ac.jp
b) ktanaka@g.ecc.u-tokyo.ac.jp

little research on PCGML applied to more complicated games
such as Tower Defense games.

Tower Defense (TD) is a popular casual game genre that has
proven to be a good testbed for AI and game research.[3]. At the
present stage, we mainly focus on approaches based on adver-
sarial reinforcement learning (ARLPCG)[8], in which the solver
agent and generator agent perform generate-and-test iterations to
create playable levels. These two agents should be trained it-
eratively, i.e., when one network’s parameters are updating, the
parameters of the other network are frozen. Nevertheless, the
number of previous works using reinforcement learning to play
TD games or generate TD games’ levels is limited, so it is neces-
sary to do the preliminary experiments of solvers and generators
separately to examine whether reinforcement learning agents can
compute proper policy for TD games. Besides, due to the lack
of high-quality open data for modern TD games, we developed
a TD game in-house based on the rule of a popular mobile game
called Arknights[1] as our test subject.

2. Background
2.1 Tower Defense Game

The most common form of tower defense game is a single-
player game in which the player aims to strategically place de-
fensive towers on the game’s map to fight waves of invading at-
tackers. The player will be granted a set amount of gold to begin
with, which may be spent to place and improve towers. By killing
enemies, the player may gain additional gold. The player’s life
count will be reduced if enemies arrive at the map’s exit points.
When all enemies have been defeated or the player’s life count
lowered to zero, the level ends.

2.2 The rules of Arknights
Our testbed is modeled on Arknights, which has tile-based

maps, see Figure 1. There are the following main differences
between common TD games and Arknights:
• Deployment Points (DP), functionally identical as golds in

The 26th Game Programming Workshop 2021

© 2021 Information Processing Society of Japan -93-



©Shanghai HyperGryph Network Technology Co.,Ltd.

Fig. 1 A screenshot of Arknights

other TD games, regenerates at the rate of 1 DP per second.
Furthermore, unlike standard TD games, players will get DP
when the specific towers instead of all towers kill enemies.

• Instead of upgrading towers when challenging levels, play-
ers can upgrade towers before games’ levels start, like role-
playing games. Therefore, there is a recommended average
level of towers for each level in the original Arknights game.

• Towers will stop enemies’ moves if they are placed on the
enemies’ path. Melee enemies will attack the tower that is
blocking it, and ranger enemies will attack the tower in the
attack range.

3. Related Research
Reinforcement learning (RL) is one of three fundamental ma-

chine learning paradigms, alongside supervised learning and un-
supervised learning, and is generally modeled as a Markov De-
cision Process (MDP). The MDP describes the transition of an
agent between different states, and transition probabilities be-
tween states are determined only by the current state and the
agent’s actions. After each state transition, the agent is given a
reward. The RL agent aims to maximize the expectation of the
cumulative discounted rewards.

Andersen et al. [2] introduced a real-time strategy game envi-
ronment with a relatively more uncomplicated observation space,
which attempts to fill the gap between Atari 2600 and Starcraft
II games. To examine whether the game environment is work-
ing properly, they used standard DQN from Mnih et al.[13], a
variant of DQN, rule-based, and random policy to play the game.
However, as a result, they found that the performance of learning-
based methods can not advantage over the rule-based methods.

Liu et al. [12] presented a framework based on evolutionary
search, which is capable of automatically generating levels with
a similar style of existing content for TD games. A reinforce-
ment learning agent was also used to determine a winning policy
and a numerical difficulty evaluation for each created level. Their
experimentation created three levels, later tested by humans and
considered to be enjoyable.

Khalifa et al. [11] proposed a framework for 2D level gener-
ation using reinforcement learning. PCGRL framework models
the generation process of levels as an MDP. In this process, the
generator iteratively modifies the level toward given goals. Earle
et al. [6] presented an approach that is capable of producing con-
trollably diverse levels based on the PCGRL framework by using
conditional input and reward shaping.

Gisslén et al. [8] introduced a model based on adversarial re-
inforcement learning, which can improve the generalization of a
reinforcement learning agent and generate levels for 3D games.

4. Proposed Methods
In this research, we developed a clone of Arknights as our

tower defense simulator. Then we trained the solver and gen-
erator agents through reinforcement learning with PPO[14]. We
will introduce our tower defense simulator, solver, and generator
agent details in the next subsections.

4.1 The Tower Defense Simulator
As mentioned above, Arknights is a TD game with role-playing

games’ elements necessitating more intricate level design and dif-
ficulty balance in order to provide a satisfying player experience.
That is why we take Arknights as our tower defense simulator’s
basic rule. We developed the tower defense simulator with Unity
*1 based on wiki*2*3 written by players (see Figure 2).

4.2 The Solver
We trained the solver through reinforcement learning with

PPO[14]. Generally, we defined map size observations and vec-
tor observations. We adjusted the IMPALA ResNet’s implement
[7] by removing the max-pooling layers and used it to process
the map size observations. Figure 3 shows how the game-states
are represented as map size observations. The detail of the map
size observations is presented in Table 1. The vector observations
will be concatenated to flatten map size observations before feed-
ing to full-connected layers. The detail of vector observations is
presented in Table 2.

Table 1 The map size observations

Observations Type Numbers of
channels

The type of tiles one-hot 8

If in towers’ attack range one-hot 36
Number of flying enemies one-hot 6
Number of normal enemies one-hot 6
Number of ranger enemies one-hot 6
Number of melee enemies one-hot 6
Number of enemies who can not attack one-hot 6
Number of enemies in the next wave one-hot 6
Physical DPS of existing enemies float 1
Magical DPS of existing enemies float 1
Defense of existing enemies float 1
Magical resistance of existing enemies float 1
Current HP of existing enemies float 1

Number of enemies towers can block one-hot 6
Skill’s state of towers one-hot 5
Defense of existing towers float 1
Magical resistance of existing towers float 1
Current HP of existing towers float 1

Melee DPS of existing towers float 1
Ranged physical DPS of existing towers float 1
Ranged magical DPS of existing towers float 1
HPS of existing towers float 1

Generally, the solver agents can place towers, destroy existing

*1 https://unity.com
*2 http://prts.wiki/
*3 https://map.ark-nights.com/

The 26th Game Programming Workshop 2021

© 2021 Information Processing Society of Japan -94-



Fig. 2 A screenshot of the tower defense simulator based on Arknights with some characters as towers
(left). Some representations of the game state (right).

Fig. 3 Illustration of how the observations of game-state are represented as
matrices

Table 2 The vector observations

Observations Type Length

Current DP integer 1
Player’s current HP integer 1
Towers’ DP costs integer 12
Towers’ type (ranger or melee) one-hot 24
Towers’ type (attacker or healer) one-hot 24
Does player have enough DP to place towers one-hot 24

towers, and activating existing towers’ skills (e.g., generate ad-
ditional DP). Solver agents receive a small positive reward when
towers attack enemies and a significant positive reward when they
kill an enemy. They get a negative reward for failing to prevent
enemies from reaching players’ territories. Besides, we also add
some auxiliary rewards. The detail of the rewards is presented in
Table 3.

To find the proper action space for the solver, we trained the
three kinds of solvers having different sizes of action space, which
we named Wide, Medium, and Narrow.

Table 3 Reward of the Solver of the Solver

Action or Event Reward

Take an action -0.5
Take an invalid action -1
Tower is destroyed by player in 3 seconds after placing -0.5
Tower heals another tower 0.05
Tower hurts enemies 0.05
Tower kills a enemy 1
Tower is destroyed by enemies -5
Player’s lives count is deducted -10

4.2.1 Wide
This solver has the largest action space, including valid and in-

valid actions. The valid action is what can be executed according
to current environment states. In contrast, invalid action means

that it will not be executed even though the solver chooses to do
(e.g., try to activate a tower’s skill that is not ready). The solver
agent will get a negative reward when it tries to do an invalid
action.
4.2.2 Narrow

Opposite to Wide, this solver is allowed to execute valid actions
only.
4.2.3 Medium

This solver is allowed to do a part of invalid actions. In current
experiments, we only forbade the solver from taking the action of
placing a tower without enough DP.

Table 4 Types of tiles

Tile Tile’s name Description

Invalid padding of map

Low component tile of ground path

High component tile of high platform

Low Forbidden towers can not be placed on

High Forbidden towers can not be placed on

Start enemies’ spawn point

Drone Start flying enemies’ spawn point

End players’ territory

4.3 The Generator
As mentioned above, in this part, we will only discuss how we

train the map generator individually (i.e., the generator and the
solver are not trained iteratively).

Similar to the solver, we trained the map generator through
reinforcement learning with PPO. However, we used a smaller
CNN implementation proposed by Gudmundsson et al. [9] to
process the observations because the observation space of the
generator is tiles types of the map, which is relatively small. The
generator can change the type of any tiles in the current map (cor-
responding to Wide Representation in [11]). Before training, we
set a series of goals for the generator, such as suitable numbers
of specific kinds of tiles. When the agent does the action making
current states closer to the goal, it will receive a positive reward,

The 26th Game Programming Workshop 2021

© 2021 Information Processing Society of Japan -95-



and if farther, it will receive a negative reward. In current experi-
ments, we use eight different types of tiles, see Table 4, and maps
will be randomly initialized when each episode begins.

5. Experiments
In this section, we will introduce the preconditions of our ex-

periments and the solver and generator results.

Fig. 4 Results of the solvers

5.1 Preconditions
We conducted the experiments of training the solver and the

generator for generating maps individually by using the Unity
ML-Agents Toolkit[10]. In this toolkit, neural networks are im-
plemented using PyTorch. Our training programs are run on
Google Colab with Tesla K80 GPU. The detail of the environ-
ment is presented in Table 5.

Table 5 The detail of the environment

Name Version

Python interpreter 3.7.12
PyTorch 1.7.1
CUDA 11.0
ml-agents 0.26.0
Unity 2021.1.1.12f1

5.2 The Solver
We trained three solvers for 100000 steps in a level consisting

of the map (see Figure 6(c)) and the certain waves of enemies,
which can not be cleared by a random player but can be cleared
by experienced human players. The learning curves are presented
in Figure 5. Then, we let solvers make inferences for 50 episodes
in the same environment where they are trained, and Figure 4
shows the results. The players will get 10 HP when the game be-
gins, and if an enemy reaches the player’s territories, players will
lose 1 HP, i.e., 0 HP means the solver could not clear the level.

Fig. 5 The learning curves of agents

5.3 The Generator
Figure 6 shows the results after training 1000000 steps. We

can find that the generated level is more natural than the initial
level. However, compared to Figure 6(c), there are no obvious
path patterns in our results.

(a) Initial (b) Generated (c) Handcrafted

Fig. 6 Result of generator

6. Conclusions and Future Work
A conclusion we can draw from the results of the experiment

is that we can train an agent which is capable of clearing levels of
Arknights with PPO and ResNet. Besides, we find that the solver
agent with Narrow action space tends to have the highest success
probability. We can find that the generated level is more natural
than the initial level. However, compared to Figure 6(c), there are
no obvious path patterns in our results. We need to make more
efforts to improve the performance of the generators.

The most significant future work is to apply adversarial rein-
forcement learning based methods to TD games. To achieve this,
we need to tune the model of the generator or carry out exper-
iments using different action spaces and observation spaces for
generators since the result is undesirable. Then we should find
appropriate ways to analyze the performance of solvers and gen-
erators.

This work was supported by JSPS KAKENHI Grant Number
JP18K11600.

References
[1] Arknights. https://www.arknights.global/. (Accessed on 07/07/2021).
[2] P.-A. Andersen, M. Goodwin, and O.-C. Granmo. Towards a deep re-

inforcement learning approach for tower line wars. In International
Conference on Innovative Techniques and Applications of Artificial
Intelligence, pages 101–114. Springer, 2017.

[3] P. Avery, J. Togelius, E. Alistar, and R. P. Van Leeuwen. Computa-
tional intelligence and tower defence games. In 2011 IEEE Congress
of Evolutionary Computation (CEC), pages 1084–1091. IEEE, 2011.

[4] M. Awiszus, F. Schubert, and B. Rosenhahn. Toad-gan: Coherent style
level generation from a single example, 2020.

[5] A. M. Connor, T. J. Greig, and J. Kruse. Evaluating the impact of
procedurally generated content on game immersion. The Computer
Games Journal, 6(4):209–225, 2017.

[6] S. Earle, M. Edwards, A. Khalifa, P. Bontrager, and J. Togelius. Learn-
ing controllable content generators. arXiv preprint arXiv:2105.02993,
2021.

[7] L. Espeholt, H. Soyer, R. Munos, K. Simonyan, V. Mnih, T. Ward,
Y. Doron, V. Firoiu, T. Harley, I. Dunning, et al. Impala: Scalable dis-
tributed deep-rl with importance weighted actor-learner architectures.
In International Conference on Machine Learning, pages 1407–1416.
PMLR, 2018.

[8] L. Gisslén, A. Eakins, C. Gordillo, J. Bergdahl, and K. Tollmar. Adver-
sarial reinforcement learning for procedural content generation, 2021.

[9] S. F. Gudmundsson, P. Eisen, E. Poromaa, A. Nodet, S. Purmonen,
B. Kozakowski, R. Meurling, and L. Cao. Human-like playtesting with
deep learning. In 2018 IEEE Conference on Computational Intelli-
gence and Games (CIG), pages 1–8. IEEE, 2018.

[10] A. Juliani, V.-P. Berges, E. Teng, A. Cohen, J. Harper, C. Elion,
C. Goy, Y. Gao, H. Henry, M. Mattar, and D. Lange. Unity: A general
platform for intelligent agents, 2020.

The 26th Game Programming Workshop 2021

© 2021 Information Processing Society of Japan -96-



[11] A. Khalifa, P. Bontrager, S. Earle, and J. Togelius. Pcgrl: Procedural
content generation via reinforcement learning, 2020.

[12] S. Liu, L. Chaoran, L. Yue, M. Heng, H. Xiao, S. Yiming, W. Licong,
C. Ze, G. Xianghao, L. Hengtong, D. Yu, and T. Qinting. Automatic
generation of tower defense levels using pcg. In Proceedings of the
14th International Conference on the Foundations of Digital Games,
FDG ’19, New York, NY, USA, 2019. Association for Computing Ma-
chinery.

[13] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. Riedmiller. Playing atari with deep reinforcement
learning. arXiv preprint arXiv:1312.5602, 2013.

[14] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Prox-
imal policy optimization algorithms, 2017.

[15] A. Summerville, S. Snodgrass, M. Guzdial, C. Holmgård, A. K.
Hoover, A. Isaksen, A. Nealen, and J. Togelius. Procedural content
generation via machine learning (pcgml), 2018.

[16] R. R. Torrado, A. Khalifa, M. C. Green, N. Justesen, S. Risi, and J. To-
gelius. Bootstrapping conditional gans for video game level genera-
tion, 2019.

The 26th Game Programming Workshop 2021

© 2021 Information Processing Society of Japan -97-




