Electronic Preprint for Journal of Information Processing Vol.29

Recommended Paper

Management and Network Orchestration for
Edge/Fog-based Distributed Data Processing

Hirok1 WATANABE!+?)

Takao Konpo!:2-d

Kazukir HAavAsHI
Fumio TErAOKA

Lb) Tomonorr Saro!-©

3.e)

Received: March 10, 2021, Accepted: July 7, 2021

Abstract: In the age of edge/fog computing, it is important to consider not only computing resources but also net-
work resources when hosting services. Since service is composed of multiple small functions in the microservice
architecture, we treat a service as a set of BFs (basic functions) that fulfill a single task. It is required to place BFs
at edge/fog nodes considering the computing resources and network requirements within a practical time. This paper
proposes a MANO (Management and Network Orchestration) for deploying services composed of multiple BFs with
requirements to computing and network resources of distributed nodes. The proposed MANO considers the computing
resources of edge/fog/cloud as well as the network delay and the bandwidth between them. This paper proposes an
optimal method and a heuristic method for calculating the placement of BFs. The evaluation results show that the
placement calculation time for a service composed of four BFs is about 10 seconds with the optimal method and about
20 seconds with the heuristic method. The calculation time is within the practical range.

Keywords: edge computing, fog computing, MANO

1. Introduction

Emerging of applications with delay sensitive feature and high
volume content delivery, edge/fog computing is spreading to host
applications in the vicinity of users in the network. It reduces the
latency between users and application endpoints and the amount
of traffic in the backbone network. Meanwhile, combining multi-
ple simple functions to realize complex network services and ap-
plication services has been spreading such as service chaining [1]
and microservice architecture [2]. In such services, a common
issue is where each function should be placed in the network fo-
cusing on the computing resources. It is expected that large ISPs
(Internet Service Providers) and carriers will provide not only net-
work services but also edge/fog/cloud computing services utiliz-
ing their own networks in the near future. In such an environ-
ment, the functions composing a service should appropriately be
placed on edge/fog/cloud considering network resources as well
as computing resources. Therefore, a scalable MANO (Manage-
ment and Network Orchestration) mechanism in a geographically
distributed environment is a challenge.

This paper assumes that a service is composed of one or more

Graduate School of Science and Technology, Keio University,
Yokohama, Kanagawa 223-8522, Japan

Computer Security Incident Response Team, Keio University, Minato,
Tokyo 108-8345, Japan

Faculty of Science and Technology, Keio University, Yokohama,
Kanagawa 223-8522, Japan

¥ nelio@inl.ics.keio.ac.jp

Y gordon@inl.ics.keio.ac.jp

9 glue@inl.ics.keio.ac.jp

9 atte@itc.keio.ac.jp

9 tera@keio.jp

© 2021 Information Processing Society of Japan

simple functions called Basic Functions (BFs) which have re-
quirements to network and computing resources. BFs are ap-
propriately distributed on edge/fog/cloud and compose a chain
called a Basic Function Chain (Chained-BF). A Basic Function
Chain may have various shapes such as linear chain and chain
with branch and merge. Data are processed by BFs one after an-
other along the Basic Function Chain.

This paper proposes a MANO architecture for Chained-BF.
This paper also proposes a heuristic placement method of BFs
in addition to an optimal placement method based on linear pro-
gramming in a mathematical model. In the proposed MANO
mechanism, resource information is managed at two levels: per
machine in a computing site (e.g., a single data center) and per
domain (e.g., a single ISP). The proposed MANO mechanism
decides the machines on which BFs should be placed considering
the requirements of each BF and the shape of the chain. This pa-
per evaluates the time for calculating the placement of a Chained-
BF as changing the shape of the Chained-BF and the number of
BFs in the Chained-BF. In addition, this paper evaluates the end-
to-end latency of packet delivery through a Chained-BF deployed
with the optimal method and the heuristic method.

2. Basic Function based Distributed Data Pro-
cessing Platform

Cloud computing services are centralized systems in a single
administrative domain. Therefore, users have only a few choices

The preliminary version of this paper was published at IPSJ SIGDPS
Technical Reports, March 2020. The paper was recommended to be sub-
mitted to Journal of Information Processing (JIP) by the chief examiner
of SIGDPS.

Electronic Preprint for Journal of Information Processing Vol.29

about data centers to which their service is deployed. BF-DDPP
(Basic Function based Distributed Data Processing Platform) en-
visions an era in which network operators have medium-scale
computing resources at the PoPs (point of presences), which can
be handled transparently by service developers. Figure 1 illus-
trates an overview of BF-DDPP and how a service (Chained-BF)
is treated. Making computing resources at edges open to third
parties, which have traditionally been reserved for network oper-
ators, it is expected that medium-scale data centers are available
to users at, e.g., the prefectural level in Japan. Such a medium-
scale data center is defined as a Spot in BF-DDPP. In order to
execute a service using multiple Spots, an administrative domain
that controls the Spots is necessary. In BF-DDPP, the administra-
tive domain is defined as a Zone. When a user starts execution
of a Chained-BF, the orchestrator decides on which Spot each BF
in the Chained-BF is deployed according to requirements, such
as the delay and the bandwidth. BF-DDPP also considers multi-
Zone coordination.

2.1 Basic Function and Basic Function Chain

BF (basic function) is a program that should fulfill only a sin-
gle task and work together with other BFs. Each BF has require-
ments for computing resources such as CPU and RAM usage, and

Zone Manager —.

- Node
Ve
3. - £3
Spot Manager Spot Manager . i Spot Manager Spot Manager
: i ----- - - -) = : : ii
§|—/ 3
ﬂ

Spot Manager k " Spot Manager . Spot Manager Spot Manager

e

i GN-1 BF-3 BF-2 BF-1

Fig.1 An overview of Basic Function based distributed data processing
platform and MANO.

BF-4 | BF-3 ‘

(¢) An example of cycle-type Chained-BF.
Fig. 2 Various shapes of Chained-BF.

© 2021 Information Processing Society of Japan

requirements to network resources such as acceptable delay and
bandwidth usage. A Chained-BF is composed of one or more BFs
and terminated by GNs (Gate Nodes), which are located at bor-
ders of a Zone. A Chained-BF is treated as a service in BF-DDPP.
Figure 2 shows examples of various shapes of Chained-BFs such
as branch-type, merge-type, and cycle-type.

3. Related Work

3.1 Distributed Data Processing

Service chaining and microservice architecture are typical ex-
amples of distributed data processing focused on in this paper.
Service chaining is an approach for realizing a single service by
chaining multiple small services. Data processing is achieved by
passing data through a pre-defined chain. One of the service
chaining technologies is SFC (Service Function Chaining) [1],
which is used to provide network services such as firewall and
load balancing. An overview of the SFC architecture is shown in
Fig. 3. In SFC, the classifier tags the packet as to which SFP (Ser-
vice Function Path) it applies when a packet arrives at an ingress
node. The tagged packets pass through the SF (Service Function)
according to the order defined in the SFP and finally reach the
egress node. In a SFC-enabled domain, SFFs (Service Function
Forwarders) on the way interpret the tag of the packet and for-
ward the packet to the appropriate SF or forward the packet to the
next node. In service chaining, each function is often connected
with an input and an output like a pipe in a shell script.

Microservice architecture [2] is an approach for realizing ser-
vices by invoking one function on another function. Figure 4
shows a general application service overview with microser-
vice architecture. In Fig. 4, the application is composed of four

SFC-enabled domain
SF-1 SF-2

|
incoming
packet = ﬁ
Dl -

outgoing

— packet
[5 .
i
AlLA

SFP-1 vy) 4 A 4
Ingrggs o A AL o C 1, | Egress
(classifier) ”
[) L (| \ :Q;
SFP-2 SFF SFF

SF: Service Function SFP: SF Path SFF: SF Forwarder

Fig.3 SFC architecture [1].

client

n’

\request

response

\ microservice-2 microservice-3 /

Fig.4 General microservice architecture.

Electronic Preprint for Journal of Information Processing Vol.29

=7 0SS/BSS T NFV Orchestrator (NFVO) —

— —— Or-Vnfm — -+
NS VNF 4 NFV NFVI
Catalog Catalog Instances Resources

]
]
]
]
]
]
[}
1
1
1
1
]
]
]
—_ H
]
VeEn-Vnfm ! :
-]
]
]
]
1
]
]
]
]
]
)
]
1
]
]
]

T VNF Manager

T (VNFM)
H VeNf-Vnfm T
VNF VniT;\/i

1
1
] Virtualised Oor-Vi
ﬁ : NF-Vi Infrastructure
| NEVI ; % Manager T
VIM
! (VIM) NFV-MANO

—® Execution reference points |-~ Other reference points === Main NFV reference points

Fig. 5 NFV-MANO Architecture [7].

microservices. Each microservice uses another microservice
through APIs such as REST and RPC. Recent cloud services
are often provided with microservice architecture in mind, and
application services are increasingly adopting microservice ar-
chitecture. In addition, it is assumed that each microservice is
deployed on edge/fog nodes [3], [4], [5] along with the expec-
tation of edge/fog computing. Microservices are expected to be
used not only in application services but also in the 5G Core net-
work [6]. Related technologies of a standard resource manage-
ment and resource management in distributed environments for
service chaining and microservices are described in the next sec-
tion.

3.2 ETSINFV-MANO

NFV (Network Functions Virtualization) is an approach for re-
alizing network functions on general purpose hardware instead of
specialized hardware. The management and coordination func-
tions required to build an NFV environment are called MANO
(Management and Network Orchestration). Figure 5 shows the
architecture of NFV-MANO [7] proposed by ETSI (the European
Telecommunications Standards Institute). The MANO mecha-
nism is composed of NFVO (NFV Orchestrator), VNFM (Virtu-
alized Network Functions Manager), and VIM (Virtualized In-
frastructure Manager). ETSI adapts NFV-MANO to a multi-
domain environment by standardizing the NFVO peer collabo-
ration mechanism [8]. DASMO [9] has proposed an architecture
which integrates ISM (In-Slice Management) with ETSI NFV-
MANO. ISM introduces an interface to manage the inner work-
ings of network slices, allowing third parties to manage slices.
MEC-NFV [10] introduces the concept of VAF (Virtual Applica-
tion Function) to integrate ETSI NFV with MEC (Multi-access
Edge Computing/Mobile Edge Computing)[11], [12]. ETSI
NFV-MANO and its extended methods manage resources virtu-
alized by NFVI (NFV Infrastructure) with VIM. We introduce a
mechanism for collecting resource information per machine in a
distributed data center and per data center in a network provider,
referring to the multi-domain architecture of ETSI NFV-MANO.

3.3 Resource Management in Edge/Fog Computing

FogTorchI1[13] proposes a method for deploying complex ap-
plications in a heterogeneous fog environment. FogTorchIT mod-

© 2021 Information Processing Society of Japan

els QoS, infrastructure, and applications and outputs multiple
suitable deployment locations through a two-stage search. Fog at
Edge [14] is an edge computing platform. It proposes DNR (Dis-
tributed Node-RED), an extension of the flow-based program-
ming tool Node-RED [15] for distributed environments. Both of
them handle the location of users and network delay, but do not
handle bandwidth.

A MEC application in Ref.[16] adopts a microservice archi-
tecture and assumes that the application client is a mobile device.
In Ref. [16], a mathematically optimal model and a Pareto opti-
mal algorithm are proposed to select the migration destination of
a microservice when the client is moving. The optimal model is
difficult to implement because it requires prior knowledge of the
client’s travel path. In the Pareto optimal algorithm, the model
is approximated as a shortest path problem. However, Ref. [16]
considers the delay and the migration cost, but does not consider
the bandwidth. Our proposed MANO considers the delay and the
bandwidth as a network resource as well as a computing resource.

3.4 VNF Deployment Problem in NFV

Approaches to VNF placement in NFV can broadly be clas-
sified into two types. One is a method that uses a proprietary
algorithm. The method for provisioning SFC using dynamic
programming [17] calculates a VNF deployment that maximizes
the provider’s revenue. A recursive algorithm using divide-
and-conquer and memorialization allows execution in polyno-
mial time. Methods for managing VNF using genetic algorithms
take account of both computing and network resources [18]. In
this work, after a random selection with depth-first search, NF
placement is determined by an algorithm that simulates GA (Ge-
netic Algorithms) crossings and mutations. However, Ref. [18]
does not assume multi-domain platform while our proposal does.
Therefore, the method in Ref. [18] does not take account of the
delay as a requirement to network. In contrast, our method takes
account of not only the bandwidth but also the delay as a require-
ment to network.

The second is to model the problem appropriately and solve it
with a solver. In the latency-aware VNF deployment method [19],
the authors propose a method to determine VNF deployment that
minimizes resource consumption, satisfies a certain amount of
end-to-end latency, and does not violate SLAs (Service Level
Agreements). A VNF placement method based on a mathe-
matical optimization model formulates NF placement and chain-
ing problems and solves it using ILP (Integer Linear Program-
ming) [20]. In this work, a heuristic approach is also proposed to
cope with the increased computation time with large infrastruc-
tures.

A MANO for a Basic Function based distributed data process-
ing platform needs to take account of not only the delay and the
bandwidth, but also policies of BFs and a Chained-BF. It is dif-
ficult to find the optimal solution in polynomial time, based on a
proprietary algorithm. Our proposed MANO adopts a solver for
the BF placement problem to meet a variety of requirements.

Electronic Preprint for Journal of Information Processing Vol.29

rZone —-Zone:
—Spot: —Spot MANO AAA AAA MANO
Network Network Server Server
Monitor Monitor
*
M M —1—
Spot Nanagekr Spot Nanage; ~Zone Manager- Zone Manager
etworl etworl
Resource Manager Resource Manager Network o Network/
Resource Manager Computing
Computing Computing Computing Resource
R rce Manager R rce Manager
esource Manage esource Managel | Resource Manager Manager
~Node+—— ——Noden ~Nodet+—— ——Node~
Node Node Node Node
Monitor Monitor Monitor Monitor Ol Qliehesiiizie)
BF BF BF BF RuEt'i:me
Runtime Runtime Runtime Runtime C-Plane
= G| (& |G =
D-Plane
Fig. 6 Proposed MANO architecture.
. —Spot1 Spot2-
4. DeSlgn Of MANO Spot Manager Spot Manager Zone Manager
‘ Network Network ‘ Network Network Network
Monitor Resource Manager Monitor Resource Manager Resource Manager
4.1 Overview of a Basic Function based Distributed Data
Processing Platform 1. Sub. Request
Figure 6 shows the MANO architecture for BF-DDPP as- <—2. Sub. Request
sumed in this paper. A BF-DDPP is composed of a single Zone. 3 Sub. Response__,
. L. . . . —4. Sub. Response—>
A Zone is an administrative domain of a network provider and N Ne‘WOfT Measurement -——-=---- "
iS COmpOSCd Of multlple SpOtS, the AAA (Authentication, Au- 6. Pub. Request + Resourc‘e Data 8. Pub. Request + ResourcT Data
thorization and Accounting) server, the Zone Manager, and the |7 Pub. Response M"m

Orchestrator. The AAA server exists in a Zone for BF-DDPP
coordination and accounts for the use of BFs and Chained-BFs.
The Zone Manager is composed of the Network Resource Man-
ager and the Computing Resource Manager. The Orchestrator
calculates a placement of a Chained-BF satisfying computing and
network resource requirements of each BF. A Spot is composed
of a set of Nodes, the Spot Manager, and the Network Monitor.
A Node is a physical or a virtual machine and is the smallest unit
that manages computing resource information. It is assumed that
each Spot is a medium-scale distributed data center of an ISP or a
carrier. The Network Monitor observes network resources such as
the delay between its Spot and another Spot and the utilization of
each link in its Spot. The Spot Manager is composed of the Net-
work Resource Manager and the Computing Resource Manager.
All Spots are connected with each other through the network of
the network provider. All Spots in a Zone share the same manage-
ment policy. Two programs are running on each Node: the Node
Monitor and the BF Runtime. The Node Monitor acquires infor-
mation of the computing resources of a Node (CPU usage and
RAM usage). The BF Runtime is responsible for launching BFs
and for the reachability between BFs. The Orchestrator requests
the BF Runtimes on the selected Nodes to launch the BF after it
calculates the placement of each BF. It is very important for the
BF placement to be aware of network resources such as the delay
and the bandwidth as well as computing resources. Therefore, the
BF-DDPP introduces a layer for the collection and management
of resource information.

© 2021 Information Processing Society of Japan

10. Sub. Notification + Resource Data

t
‘ 11. Sub. Notification + Resource Data
il tteshddion

(a) Network resource collecting sequence.

Spot:
Nodel Node2 Spot Manager Zone Manager
Node Node Computing Network
Monitor Monitor Resource Manager Resource Manager

1. Sub. Request

2. Sub. Response

3. [collecting resource of Node1]

|4. Pub. Request + Resource Data

5. Pub. Response

6. Sub. Notification + Resource Data

7. [collecting resource of Node2]
|
8. Pub. Request + Resource Data

-

9. Pub. Response

10. Sub. Notification + Resource Data

(b) Computing resource collecting sequence.

Fig.7 Resource collecting sequences.

4.2 Mechanism for Collecting Resource Information
Figures 7 (a) and (b) show sequences of collecting a network
resource and a computing resource, respectively. Resource in-
formation is collected by the Publisher/Subscriber model. The
Network Monitor measures the network status (bandwidth and
delay) between the Spots and sends it to the Network Resource
Manager in the Spot Manager. A Network Resource Manager
collects the network resource information from Network Moni-
tors. A Computing Resource Manager collects the computing re-
source information from Node Monitors. Both resource managers
aggregate each resource information and send it to the Zone Man-

Electronic Preprint for Journal of Information Processing Vol.29

ager. The Zone Manager collects and stores the resource informa-
tion from the Network Resource Manager and the Computing Re-
source Manager of Spot Managers. The Zone Manager provides
resource information in the Zone to help the Orchestrator calcu-
late the appropriate placement of BFs. The resource information
is periodically updated by notifications from Spot Managers and
is sent upon request from the Orchestrator.

5. Optimal Placement of BFs

5.1 Modeling BF-DDPP

Table 1 denotes the definitions of the symbols used in the
model. The model defines the number of cores of vCPUs (virtual
CPUs) and the capacity of RAM (main memory) as the comput-
ing resources of a Spot. The model also defines the maximum
capacity that can be allocated to BFs and the capacity that has al-
ready been allocated to BFs. The unit price of vCPUs and RAM
can be defined in each Spot. The model treats only the links be-
tween Spots as network resources. Furthermore, two types of
links are considered. One is a closed network dedicated to BF-
DDPP and the other is a public network. This is because some
Chained-BFs may require guarantee of certain bandwidth and
network delay while a best-effort network quality may be accept-
able to some Chained-BFs depending on services provided by
Chained-BFs. Assuming that QoS can be guaranteed in a private
network, maximum bandwidth, reserved bandwidth, and network
delay are defined as service parameters. The unit price of vCPU
and RAM required to run a BF as well as the unit price of the
BF itself can be defined at each Spot. The redundancy of a BF
is defined as the value indicating how many redundant instances
of the BF are created in a Chained-BF. The Spot in which a
GN (Gate Node) is installed is determined by the location of the
Chained-BF User. A Chain is defined as a connection between a

Table 1 Definition of the symbols in the proposed model.

Symbol Definition
ies§ Spot
C;/ C1sed Max / Used number of vCPUs in Spot i
P Unit Price of vCPU in Spot i
M; | Mysed Max / Used amount of RAM in Spot i
prm Unit Price of RAM in Spot i
(,))eL Link between Spot i and j
B;;/ B?,‘]‘.“d Max / Used bandwidth of Link (i, j)
D Delay of Link (i, j) (Private)
P?f;"d Unit Price of leased Link (i, /)
D! 7b Delay of Link (i, j) (Public)
meF BF (Basic Function)
F,P) Fram Requirement to vCPU / RAM of BF m
P}n’f Unit Price of BF m
Fiur Redundancy of BF m
neG GN (Gate Node)
Afi €{0,1} GN n is installed on Spot i or not
N=FUG Union set of BFs and GNs
AN €0, 1) Chain exists between
BF and GN (m/n) or not
band Bandwidth requirement for Chain
between m and n
re Dt Delay requirement for Chain
Af”m’” €{0,1} Pair of m and n satisfying r exists or not
delay Sum of network delay satisfying r
Ximi € {0, 1} BF m is placed at Spot i or not
le {1, 2,.,[1F ‘“‘”] Variables for redundancy F, f,l,”p

© 2021 Information Processing Society of Japan

BF and another BF or between a BF and a GN. A Chained-BF is
composed of one or more Chains. A),, € {0, 1} denotes the exis-
tence of a link between BFs or between a BF and a GN in which
m and n are a BF and a GN, respectively. Similarly, an‘fzd de-
notes bandwidth requirements between BFs or between a BF and
aGN. A?

between a BF and a GN. A matrix with elements of value O or 1

€ {0, 1} denotes delay requirements between BFs or

can be used to configure the shape of a Chained-BF as well as the
requirements to bandwidth and delay for each Chain.

5.2 Problem of BF Placement to Spot

The problem of BF placement to Spot in the MANO is rep-
resented by a model that takes as input the Spot AnGJ. € {0,1} to
which the GN is placed and outputs the Spot x;,,; € {0,1} to
which the BF is placed. When GN n is placed to Spot i, Aﬁi =1
is satisfied. Finally BF m is placed at Spot i such that x;,,,; = 1.

Equation (1) shows the objective function. The first term rep-
resents the sum of the network delays xy; - X Al - A2, - D;
between BF m and BF n for all BFs, Spots, r, and /. The second
term represents the sum of the network delays x;,,.; ~Ar167| Flj AN
AP . D; ; between BF m and GN n for all BFs, GNs, Spots, 7,

rm,n

and /.

N D
Z Z Xlm,i * Xin,j Am,n) Ar,m,n) Di,j

m,neN i,jeS
:m<n<|F| reQ,l

G N D
+ Z Z Xlm,i * Anf\p\,j : Am,n : Ar,m,n : Di,j- (1)

mneN i,jeS
m<|F|<n reQ,l

The required Spot placement x;,,; € {0, 1} of a BF contains a
subscript I. When x;,,,; = xi; is satisfied, the instances repre-
sented by x;,,; and x ,,,; are identical. The constraints are denoted
in Eq.(2)—(5). Equations (2) and (3) are the conditions under
which the requirements to the total vCPUs or RAM of the BFs in
a Chained-BF do not exceed the allowable amount at each Spot.
Equation (4) is the condition that the bandwidth requirements of a
Chained-BF do not exceed the allowable bandwidth of the Chains
between Spots. The first term of the left-hand side represents the
sum of the bandwidth requirements x;,,; - x;,; - Al - 0% be-
tween BF m and BF n for all BFs. The second term represents the
sum of the bandwidth requirements X, - Ay | - A}, - Qband pe-
tween BF m and GN £ for all BFs and GNs. The right-hand side is
the maximum bandwidth B; ; minus the reserved bandwidth Bl?f‘]‘.e‘i
for the link between Spot i and Spot j. Equation (5) is the condi-
tion for each BF in a Chained-BF to satisfy the redundancy level.
Based on these objective functions and constraints, the Orches-
trator calculates the BF placement to each Spot. As denoted in
Eq. (4), the bandwidth requirement can be set for each Chain in
a Chained-BF. When a public network and a private network co-
exist between Spots, a Chain which has a bandwidth requirement
is automatically assigned to the private network if the available
bandwidth of the corresponding link of the public network is set
to 0. The same model can be used without changing the objective
function or constraint equations.

dup

F
z cpu m used
Xlm,i * Fm : H qup < Ci - C,‘
meF,l

Electronic Preprint for Journal of Information Processing Vol.29

Vies)
] qup
" X Fpm S < Mo M
mekF,l H
VieS 3)

N band
Z Xlm,i * Xln,j Am,n ! Qm,n

m,neN
:m<n<|F|
+ Z Xim,i 'Afz;—lFL j AN QZ‘TZ"
m,neN
:m<|F|<n
< Bij— B VG, j)eL, VI 4)
D ximi=1 ¥meF, vl (5)
ieS

6. Implementation

6.1 Mechanism for Collecting Resource Information

We implement the resource collecting sequences shown in
Fig.7 and the modules shown in Fig. 6: the Network Monitor,
the Node Monitor, the Spot Manager, and the Zone Manager.
6.1.1 Network/Node Monitor

The Network Monitor and the Node Monitor in a Spot are im-
plemented as a single program. After requesting a connection
to the Spot Manager, the Network Monitor or the Node Monitor
publishes network resource information or computing resource
information to the Spot Manager.
6.1.2 Spot Manager

The Network Resource Manager and the Computing Resource
Manager in the Spot Manager are implemented as a single pro-
gram. It waits for connection requests from the Network/Node
Monitors and the Zone Manager. The Spot Manager plays the
role of a broker: it aggregates resource information published by
the Network/Node Monitors for each Spot and notifies the Zone
Manager. The resource information is stored in Redis [21], one
of KVSs (Key-Value Stores).
6.1.3 Zone Manager

The Network Resource Manager and the Computing Resource
Manager in the Zone Manager are implemented as a single pro-
gram. It requests a connection to the Spot Manager specified
in the configuration file. After establishing a connection, it sub-
scribes to network resource information and computing resource
information to the Spot Manager. When the subscribed informa-
tion is published by the Network/Node Monitor, the Zone Man-
ager is finally notified.

6.2 Calculation Methods in Orchestrator
6.2.1 Optimal Method

An optimal method uses the objective function and constraints
defined by Egs.(1)—(5) to find a solution using a solver. We
use Pyomo [22] as a modeling language and a library to create
mathematical optimization models in Python. We use IBM ILOG
CPLEX Optimizer 12.9.0 [23] as a solver.
6.2.2 Heuristic Method

A heuristic method combines a solver calculation with some
algorithm. Algorithm 1 shows the pseudo code of the heuristic
method. In order to prevent the calculation time from increasing

© 2021 Information Processing Society of Japan

Algorithm 1 Pseudo code for the heuristic method.

Ensure: Spot Position of GN x;,,,; € {0, 1}
Require: BF placement to Spot A, € {0, 1)
upper «— MAX > Calculate the maximum delay in advance.
lower « 0
while upper — lower < k do
delay « (upper + lower)/2
s « solveModel(delay)
if s is ok then

result « s

> Treat the obj. func. as a const.

> If a solution is found, save it.
upper « delay > Make constraints tighter.
else
lower « delay > Make constraints looser.
end if
end while
if result = 0 then
return error
else
return result

end if

depending on the constraint conditions, the objective function is
set as a constant in the heuristic method. The calculation is ter-
minated when one solution satisfying the constraint conditions is
obtained. A near-optimal solution is obtained by iteratively run-
ning the solver while narrowing the constraints on the network
delay using binary search. The maximum network delay MAX is
calculated from the shape of the Chained-BF and the maximum
delay between Spots.

7. Evaluations

7.1 Mechanism for Collecting Resource Information

Figure 8 shows the experimental environment built on the five
NOCs (Network Operation Centers) of the WIDE Cloud [24],
which is an inter-university VM cloud infrastructure. One VM
(Virtual Machine) is placed in each of the five NOCs (Yagami,
Nezu, Komatsu, Dojima, and Nara). Each NOC is regarded as a
Spot in the BF-DDPP. The value of the network delay between
NOCs amounts to half of the RTT (round-trip time). It is assumed
that all links between Spots are built on a private network. The
VMs at each Spot are running Ubuntu 18.04 LTS with two virtual
CPU cores of QEMU and 2 GB of RAM. One Spot Manager, one
Network Monitor, and four Node Monitors are installed at each
Spot, and one Zone Manager is installed only at the central Spot
(Dojima). It is assumed that the clocks of all VMs used for the
measurement are synchronized.
7.1.1 Subscribe Request & Subscribe Response

In this evaluation, we show that Subscribe Request messages
and Subscribe Response messages are exchanged in parallel for
each Spot. The Zone Manager sends a Subscribe Request mes-
sage to all Spot Managers (Time #;). Each Spot Manager sends
back a Subscribe Response message individually as the response.
The Zone Manager receives the last Subscribe Response message
(Time ;). We define latency as the difference between #; and
ty. The result shows a latency of 21.2 ms, which is smaller than
the total RTT between the Zone Manager and each Spot Manager.
This indicates that the Subscribe Request messages and Subscribe
Response messages were exchanged in parallel for each Spot.

Electronic Preprint for Journal of Information Processing Vol.29

Node

Monitor Monitor

ey

Monitor Monitor

Network: Sendai
Monitor @
." E

‘S mngr

omatsu
fe >
H|rosh|ma @528 MS [simnge
7.9 mgfS U N

@ﬁﬂ“‘*uef

Z-mngr)W/
Fukuokm Z2ms f0.7ms
mng;’ DO]Ima

@S ;lgr
0.9ms \guh e’
~ Yagami

2

Nara™

Fig. 8 Experimental environment using WIDE Cloud.

Therefore, the latency is bound by the maximum RTT between
the Zone Manager and the Spot Manager. As shown in Fig. 8, the
maximum RTT is 15.8 ms between Dojima and Komatsu. The
remaining 5.4 ms is considered to be the processing time in the
Spot Manager and the Zone Manager.
7.1.2 Publish Request & Subscribe Notification

In this evaluation, we show that Publish Request messages
and Subscribe Notification messages are forwarded in parallel
for each Node. All Node Monitors simultaneously send a Pub-
lish Request message to the Spot Manager of the Spot to which
they belong (Time #;). Each Spot Manager sends back a Publish
Response message individually as the response, and then sends a
Subscribe Notification message to the Zone Manager. The Zone
Manager receives the last Subscribe Notification message (Time
;). We define latency as the difference between #; and #,. The
result shows a latency of 8.9 ms, which is smaller than the total
delay between the Zone Manager and each Node Monitor. This
indicates that Publish Request messages and Subscribe Notifica-
tion messages were forwarded in parallel for each Node. There-
fore, the latency is bound by the maximum delay between the
Zone Manager and the Node Monitor. As shown in Fig. 8, the
maximum delay is 7.9 ms between Dojima and Komatsu. The
remaining 1.0 ms is considered to be the processing time in the
Node Monitor, the Spot Manager, and the Zone Manager.

7.2 Calculation Time: Placement of BF's to Spots

We evaluated the time taken by the Orchestrator to calculate
the placement of BFs and the results of the placement decision
comparing the optimal method with the heuristic method. We
use a part of the PoP level network topology [25] published by
AT&T as the evaluation environment. We considered 18 PoPs
distributed across the U.S. as Spots in the BE-DDPP. As the eval-
uation environment, we used VMs on the Hypervisor as shown in
Table 2.

We measured the calculation time of the optimal and the

© 2021 Information Processing Society of Japan

Table 2 Evaluation environment for the Orchestrator.

HV (Hypervisor)

oS VMware(R) ESXi(TM) 6.7.0
CPU Intel(R) Xeon(TM) Gold 6248 2.50 GHz x 40
RAM 400 GB
VM (Virtual Machine)
oS Ubuntu Server 18.04 LTS
vCPU | Intel(R) Xeon(TM) Gold 6248 2.50 GHz x 32
RAM 16 GB

86400 E
(1day) E

[Branch (optimize) ®Branch (heuristic)
10000 F—— — " Merge (optimize) ®Merge (heuristic) ———— —
E Cycle (optimize) m Cycle (heuristic) B

1000 F—no

100 [—o

—_
o

Calculation Time [s]

6
the Number of BFs

Fig.9 Calculation time of the Orchestrator as changing the number of BFs
and the shape of a Chained-BF.

heuristic methods for three different shapes of Chained-BFs
shown in Fig. 2. For each shape, the number of BFs is varied from
4 to 8. At the beginning of each calculation, computing and net-
work resources of each Spot are not used at all. Figure 9 shows
the results. Note that the calculation time in Fig. 9 shows only the
time from when a Chained-BF configuration is entered into the
Orchestrator to the time when target Nodes are derived, and does
not include the deployment time to each Node. In the optimal
method, it seems that the calculation time is highly dependent on
the shape of the Chained-BF. The constraint conditions are ex-
tremely relaxed in the optimal calculation of cycle-type Chained-
BF placement. This is because a cycle-type Chained-BF speci-
fies only a single Gate Node as both an ingress and an egress of
the chain while other types specify two or more Gate Nodes as
an ingress and an egress, respectively. Under extremely relaxed
constraints, the number of candidates satisfying the conditions
increases. It leads to an increase of the number of times to find
which one is optimal. As a result, the calculation time increases.
In other words, tightening the constraints leads to a reduction in
the calculation time. The reason why the calculation time of the
cycle-type increases is that the constrains are extremely relaxed.

Increasing the number of BFs works to increase the calcula-
tion time and tighten the constraints regardless of the shape of the
Chained-BF. In the optimal calculation, MANO checks whether
the placement of a pair of BFs on each pair of Spots satisfies
the requirement for every pair of BFs in a Chained-BF. As the
number of BFs increases, the number of BF pairs that must be
checked to see if they satisfy the bandwidth and delay require-
ments also increases. Thus, an increase in the number of BFs
contributes to an increase in the calculation time (Factor 1). This
property is also true for other shapes as shown in Fig. 9. In addi-
tion, an increase in the number of BFs also leads to tighter con-
straints since the number of candidates satisfying the conditions
decreases (Factor 2).

As described above, increasing the number of BFs in a cycle-
type Chained-BF results in both an increase in calculation time

Electronic Preprint for Journal of Information Processing Vol.29

Table 3 End-to-End delay ratio [heuristic]/[optimal].

No. BFs 4 5 6 7 8
Branch-type | 1.5 1.0 1.1 08 .
Merge-type | 1.0 1.0 10 1.1 15

due to Factor 1 and a decrease in calculation time due to Factor 2.
When the number of BFs was increased from 5 to 6, the calcula-
tion time to optimally place a cycle-type Chained-BF decreased
because it seemed that Factor 2 had a larger impact than Factor 1.
On the other hand, when the number of BFs was increased from 6
to 8, the calculation time increased because it seemed that Factor
1 had a larger impact than Factor 2.

In contrast, in the heuristic method, the calculation time does
not change much as the number of BFs increases more than 6.
When the number of BFs composing a branch-type Chained-BF
increases from 6 to 7 in the heuristic method, the calculation time
decreases from 1,795 seconds to 1,226 seconds. The reason why
the calculation time does not change much as the number of BFs
increases is that the heuristic method sets a certain timeout during
the repeated calculations by the solver. The calculation time with
the solver increases when the constraints are extremely relaxed.
In the heuristic method, the calculation with the solver times out
when the calculation time becomes too long due to extremely re-
laxed constrains. The constrains are updated to more strict ones
and the solver is called again after the timeout. In most cases,
the optimal method completes the calculations in less time than
the heuristic method, but the placement calculation time tends to
increase gradually as the number of BFs increases.

Next, we calculated the ratio of the end-to-end network delay
using the results of the BF placement. Table 3 shows the results.
The values in the table are calculated in such a way that the net-
work delay with the heuristic method is divided by that with the
optimal method except for the cycle-type case because some cal-
culations are not completed due to extremely relaxed constrains.
The delay in the heuristic method is approximately 1.0 to 1.5
times longer than that in the optimal method. The ratio value
is 0.8 when the number of BFs is 7 in the branch-type. It seems
that the solver is stuck in a local optimal solution in the optimal
method because the model is nonlinear.

7.3 Applying Calculation Methods

In real-world usage scenarios, it is assumed that an operator of
a Zone decides which calculation method to apply according to its
operational policy. For example, we illustrate two patterns. In the
first pattern, a user specifies the calculation method at the same
time when the user deploys a Chained-BF. This is because it is
assumed that some users want to optimize the placement even if
it takes a long time while others want to get the calculation result
as soon as possible. In the second pattern, the decision is made
agnostic to users by a Zone operator. From a given Chained-
BF deployment request, the MANO programmatically applies ei-
ther the optimal placement calculation or the heuristic calculation
method based on the shape and the number of BFs.

8. Conclusion

With the spread of edge/fog computing, it has become more

© 2021 Information Processing Society of Japan

important to place functions of services in appropriate locations.
This paper assumes that a service is composed of one or more
simple functions called BFs. In the era of edge/fog computing,
it is increasingly important for network providers to consider not
only computing resources but also network resources when de-
ploying BFs in geographically distributed locations. This paper
proposed a MANO architecture and placement calculation meth-
ods for a BF-based distributed data processing platform (BF-
DDPP). We defined the BF-DDPP with a mathematical model
and proposed an optimal placement calculation method and a
heuristic placement calculation method. In the MANO archi-
tecture, we proposed a resource information collection mecha-
nism divided into two levels: Spot and Zone. The evaluation re-
sults showed that the mechanism for collecting resource informa-
tion had a sufficiently small overhead in terms of execution time.
The calculation time for deploying four BFs with branch-type or
merge-type was small enough, about 10 seconds with the optimal
method and about 20 seconds with the heuristic method. With the
heuristic method, the placement calculation time did not increase
regardless of the shape of Chained-BF when the number of BFs
exceeded 6. In most cases, the optimal method completed the
calculations in less time than the heuristic method, but the place-
ment calculation time tended to increase slowly as the number
of BFs increases. Future work includes reducing the calculation
time of cycle-type Chained-BF and evaluating the performance of
MANO in a more realistic environment. For more realistic eval-
uations, we can change the load on the Orchestrator, such as the
number of requests per second for launching Chained-BF. We
will also evaluate the calculation time of MANO and the utiliza-
tion dynamics of platform resources by giving the lifetime of a
Chained-BF.

References

[1] Halpern, J. and Pignataro, C.: Service Function Chaining (SFC) Ar-
chitecture, RFC 7665 (2015).

[2] Cerny, T., Donahoo, M.J. and Trnka, M.: Contextual Understanding
of Microservice Architecture: Current and Future Directions, SIGAPP
Appl. Comput. Rev., Vol.17, No.4, pp.29-45 (2018).

[3] Tato, G., Bertier, M., Riviere, E. and Tedeschi, C.: ShareLatex on
the Edge: Evaluation of the Hybrid Core/Edge Deployment of a
Microservices-based Application, MECC 2018 - 3rd Workshop on
Middleware for Edge Clouds & Cloudlets, pp.1-6 (2018) (online),
available from (https://hal.inria.fr/hal-01942807).

[4] Wang, S., Guo, Y., Zhang, N., Yang, P., Zhou, A. and Shen, X.:
Delay-Aware Microservice Coordination in Mobile Edge Computing:
A Reinforcement Learning Approach, IEEE Trans. Mobile Comput-
ing, Vol.20, No.3, pp.939-951 (online), DOI: 10.1109/TMC.2019.
2957804 (2021).

[5] Zhou, A., Wang, S., Wan, S. and Qi, L.: LMM: Latency-aware micro-
service mashup in mobile edge computing environment, Neural Com-
puting and Applications, Vol.32, No.19, pp.15411-15425 (2020).

[6] 3GPP: 5G System; Principles and Guidelines for Services Definition;
Stage 3, 3GPP TS 29.501, version 16.5.0 Release 16 (2020).

[71 ETSI: Network Functions Virtualisation (NFV); Management and or-
chestration, ETSI GS NFV-MAN 001, V1.1.1 (2014).

[8] ETSI: Network Functions Virtualisation (NFV) Release 3; Manage-
ment and Orchestration; Report on architecture options to support
multiple administrative domains, ETSI GS NFV-IFA 028, V3.1.1
(2018).

[9] Kukliriski, S. and Tomaszewski, L.. DASMO: A Scalable Ap-
proach to Network Slices Management and Orchestration, Proc. 2018
IEEEJIFIP Network Operations and Management Symposium (NOMS
2018), pp.1-6 (2018).

[10] Sciancalepore, V., Giust, F., Samdanis, K. and Yousaf, Z.: A double-
tier MEC-NFV Architecture: Design and Optimisation, Proc. 2016
IEEE Conference on Standards for Communications and Networking

Electronic Preprint for Journal of Information Processing Vol.29

(CSCN), pp-1-6 (2016).

[11] ETSI: Multi-access Edge Computing (MEC); Framework and Refer-
ence Architecture, GS MEC 003 V2.1.1, pp.1-21 (2019).

[12] ETSI: Mobile Edge Computing (MEC); Framework and Reference
Architecture, GS MEC 003 V1.1.1, pp.1-18 (2016).

[13] Brogi, A., Forti, S. and Ibrahim, A.: How to Best Deploy Your Fog
Applications, Probably, Proc. 2017 IEEE 1st International Conference
on Fog and Edge Computing (ICFEC), pp.105-114 (2017).

[14] Giang, N.K., Lea, R., Blackstock, M. and Leung, V.C.M.: Fog at the
Edge: Experiences Building an Edge Computing Platform, Proc. 2018
IEEE International Conference on Edge Computing (EDGE), pp.9-16
(2018).

[15] OpenlJS Foundation: Node-RED, available from ¢https://nodered.org).

[16] Wang, S., Guo, Y., Zhang, N., Yang, P., Zhou, A. and Shen, X.: Delay-
Aware Microservice Coordination in Mobile Edge Computing: A Re-
inforcement Learning Approach, IEEE Trans. Mobile Computing,
Vol.20, No.3, pp.939-951 (online), DOT: 10.1109/TMC.2019.
2957804 (2021).

[17] Ghribi, C., Mechtri, M., Soualah, O. and Zeghlache, D.: SFC Pro-
visioning over NFV Enabled Clouds, Proc. 2017 IEEE 10th Inter-
national Conference on Cloud Computing (CLOUD), pp.423-430
(2017).

[18] Rankothge, W., Ma, J., Le, F, Russo, A. and Lobo, J.: Towards
making network function virtualization a cloud computing service,
Proc. 2015 IFIP/IEEE International Symposium on Integrated Net-
work Management (IM), pp.89-97 (2015).

[19] Alleg, A., Ahmed, T., Mosbah, M., Riggio, R. and Boutaba, R.:
Delay-aware VNF Placement and Chaining based on a Flexible Re-
source Allocation Approach, Proc. 2017 13th International Confer-
ence on Network and Service Management (CNSM), pp.1-7 (2017).

[20] Luizelli, M.C., Bays, L.R., Buriol, L.S., Barcellos, M.P. and Gaspary,
L.P: Piecing Together the NFV Provisioning Puzzle: Efficient
Placement and Chaining of Virtual Network Functions, Proc. 2015
IFIP/IEEE International Symposium on Integrated Network Manage-
ment (IM), pp.98-106 (2015).

[21] Redis Labs: Redis, available from (https://redis.io).

[22] COIN-OR: Pyomo, available from ¢http://www.pyomo.org).

[23] IBM: ILOG CPLEX Optimization Studio, available from
(https://www.ibm.com/products/ilog-cplex-optimization-studio).

[24] WIDE Project: WIDE, available from ¢http://www.wide.ad.jp).

[25] Ciavattone, L., Morton, A. and Ramachandran, G.: Standardized ac-
tive measurements on a tier 1 IP backbone, IEEE Communications
Magazine, Vol.41, No.6, pp.90-97 (2003).

Editor’s Recommendation
This paper extended AFC (Application Function Chaining) for
mixing computing infrastructure provided by various companies.
The authors formulate an optimization problem that minimizes
the network latency due to the concatenation of application pro-
cessing, with redundancy and network bandwidth as constraints.
And they proposed a framework to manage the entire infrastruc-
ture. In addition, this paper showed its usefulness with experi-
ments in an actual network environment. The paper gives insights
to readers in this research field and thus is selected as a recom-
mended paper.
(Chief examiner of SIGDPS Atsushi Tagami)

Hiroki Watanabe is a Ph.D. student and
a project researcher at Graduate School
of Science and Technology, Keio Univer-
sity. He received a master degree in en-

gineering from Keio University in 2018.
His research interest covers future Inter-
’f‘y/// P net architecture, protocol layering, net-

work modeling, and edge computing. He
is a member of IEEE, ACM, IPSJ, and IEICE.

© 2021 Information Processing Society of Japan

Kazuki Hayashi received a master de-
gree in engineering from Keio University
in 2020. His research interest covers cel-
lular network protocol, Internet architec-
ture, and network slicing.

Tomonori Sato received a master degree
in engineering from Keio University in
2021. His research interest covers edge
computing and application platforms.

Takao Kondo is an assistant professor
in Computer Security Incident Response
Team and a researcher in Cyber Security
Research Center, Keio University. He re-
ceived master degrees in engineering and
medicine from Keio University, in 2015
and 2016, respectively. From 2013 to
2017, he was a project researcher in Grad-
uate School of Science and Technology, Keio University. From
2017 to 2020, he was an assistant professor in Information Tech-
nology Center, Keio University. His research interest covers cy-
ber security (network traffic analysis, anomaly detection, authen-
tication and authorization etc.) and Future Internet architecture.
He is a researcher in Industrial Cyber Security Center of Excel-
lence, IPA. He is a member of ACM, IEEE, IEICE, IPSJ and a
board member of WIDE Project.

Fumio Teraoka received a master degree
in electrical engineering and a Ph.D. in
computer science from Keio University in
1984 and 1993, respectively. He joined
Canon Inc. in 1984 and then moved to
Sony Computer Science Labs., Inc. (Sony
CSL) in 1988. Since April 2001, he is a
professor of Faculty of Science and Tech-

nology, Keio University. He received the Takahashi Award of
JSSST (Japan Society for Software Science and Technology) and
the Motooka Award in 1991 and 1993, respectively. He also re-
ceived the Best Paper Award in 2000 from IPSJ (Information Pro-
cessing Society Japan). His research interest covers computer
network, operating system, and distributed system. He was a
board member of the WIDE Project from 1991 to 2010. He was a
board member of IPSJ from 2000 to 2002. He was a board mem-
ber of JSSST from 2005 to 2009. He is a member of ACM, IEEE,
IPSJ, and IEICE.

