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Abstract: Model checking is an automated reasoning technique for the verification of hardware and software. If
there is a fault in a system description, model checkers return, as an explanation of failure, a single execution trace
of the system that results in an error state. Counterexamples are useful clues for locating faults, however, there is a
big gap between computing counterexamples and locating faults, and the fault localization task is done by a manual
inspection of counterexamples, which largely depends on individual expertise and intuition. Effective explanation of
the failure is, thus, considered as an important issue. Since a single counterexample returned by model checkers is
only one instance of failing executions, it is hard to gain clear perspective on the failure with just one specific case.
In this paper we take another approach for error explanation: we generate many counterexamples and then abstract an
essence of the failure from them. For example, in the formal verification of network configuration, a range of possible
values (naturally identified with integers) to a single variable often makes it easier to understand the essence of the
failure. In our experiments, such a range of values (called interval) is simply a set of consecutive IP addresses and
can be substantially represented in two end addresses. We formulate the notion of intervals in a general setting. The
concept of intervals is not limited to network configuration and it can be considered in an arbitrary system model as
long as a variable on which interval is computed substantially takes integers. We present a method for computing the
longest interval by combining bounded model checking, BDD, and AllSAT solver. To evaluate our method for the
longest interval computation, we conduct experiments with a real network dataset and its randomly modified dataset.
We confirm that about 8 millions of counterexamples are generated in 1.61 s and among them, the longest interval of
length about 600 millions is reported in less than 0.01 s.
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1. Introduction

Model checking is an automated reasoning technique that is
used to determine whether a concurrent system never behaves
against the intention of designers, i.e., specifications of the sys-
tem. When it turns out in model checking process that some er-
roneous behavior can occur, model checkers show, as an explana-
tion of failure, a single execution trace of the system that results
in an error state, which is called a counterexample. Counterexam-
ples are useful clues for locating faults in the system description.
Thanks to the power of model checking, there are many applica-
tions to industry [4] and its practical utility is well-recognized.

Model checking alone is not enough to fix erroneous systems.
Although counterexamples are automatically computed by model
checkers, locating faults is not immediate. Indeed, there is a big
gap between faults in system descriptions and execution traces
caused by them. Generally, fault localization is done by a manual
inspection of counterexamples, which largely depends on individ-
ual expertise and intuition. Doing this task manually is cumber-
some and depressing. Due to the inherent hardness, rather than
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automating or semi-automating this task, we consider it more re-
alistic to concentrate on error explanation, which is defined as
the task to aid users in moving from a trace of failure to an under-
standing of the essence of the failure and perhaps, to a correction
for the problem [8].

There are some papers that share the same motivation as ours,
i.e., error explanation. They are categorized into three approaches
as follows. The first approach is to focus on specific domains and
largely exploit their knowledge. A typical technique is anima-
tions. However, animations do not work well when abstraction
of models is excessively done. This is discussed in the context of
railway interlocking verification [23] and natural language inter-
pretation is used instead.

The second approach is to examine a single counterexample by
transforming it into a more suitable form so that it becomes more
informative. A typical transformation is minimization of coun-
terexamples in its length or by excluding irrelevant parts. Another
work minimizes the values of variables [9].

The third approach is to generate multiple counterexamples
and analyze them with comparison. Almost all papers in this ap-
proach that we are aware of are concerned with software verifica-
tion: they assume the notion of lines in source codes, but hardly
use further knowledge, thereby they are distinguished from the
domain specific approach. One work of the third approach in-
troduces the notions of successful executions and failing execu-
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tions, exploiting the notion of lines, and presents techniques for
comparing the two kinds of executions using set operations to
see common and different features [10]. Another work applies
Lewis’ counterfactual theory of causality to program executions
and presents a technique to generate probably-most-similar suc-
cessful executions and to compare them with a failing execu-
tion by introducing a distance between executions and solving
a pseudo-Boolean optimization problem [8].

We discuss the three approaches here. The domain specific
approach can be effective if domain knowledge is fully utilized;
however, it cannot be easily adapted to other domains. The single
counterexample approach can be connected to model checkers
without major change, which means it requires only adding some
post-processing or replacing their counterexample finding algo-
rithms; however without domain knowledge it is hard to know
what is informative, and there are few clues to reduce the com-
plexity of counterexamples. Moreover, a single counterexample
returned by model checkers is only one instance of failing ex-
ecutions, and which counterexample is picked up from among
many others is determined according to which search algorithm
is taken. It is thus hard to gain clear perspective on the failure
with just one specific case. In this respect, the multiple coun-
terexamples approach is promising because of a large amount of
information. The major challenge is how to take advantage of
the amount of information. One counterexample is complicated,
and many counterexamples are even more so. It is important to
abstract an essence of the failure from many counterexamples in
some way.

In this paper we take the multiple counterexample approach for
error explanation: we generate many counterexamples and then
abstract an essence of the failure from them. For example, in
the formal verification of network configuration, a range of IP
addresses often makes it easier to understand the essence of the
failure because addresses in the same range are probably related
to a common failure. We formulate such a range of possible val-
ues (hereafter called interval) naturally identified with integers in
a general setting to allow not only network models but also arbi-
trary models that come from diverse domains as long as a variable
on which the interval is computed substantially takes integers.
It would be desirable that we could present all such intervals in
compact and human-understandable form such as a bit pattern,
however this task is more involved.

As a first step to automatize such an analysis, in this paper we
concentrate on computing the longest interval, which captures
many cases probably caused by a common failure. More con-
cretely, we consider the following computation with user’s aid in
part.
( 1 ) Perform a bounded model checking and obtain a counterex-

ample πB.
( 2 ) Manually inspecting πB, select a specific variable of integer

type, vT , from a system description.
( 3 ) Perform the computation for generating all counterexamples

such that all Boolean variables are assigned the same values
as πB but those encoded from vT need not.

( 4 ) Perform the computation for finding the longest interval of
integers that are assigned to vT in the initial states of the gen-

erated counterexamples.
Although our approach needs a user’s aid in part, our approach

provides a practical and useful way of better understanding the
errors that are found in an ordinary model checking.

We present a practical method for computing the longest inter-
val by combining bounded model checking, BDD, and AllSAT
solver. Since the number of counterexamples generated in Step 3
is likely to blow up exponentially, our method utilizes a well-
accepted space-efficient data structure BDD, seen as a kind of
finite automaton, to avoid a combinatorial explosion. The com-
putation in Step 3 is indirectly done by constructing a BDD that
accepts counterexamples to be computed, in stead of searching
them one by one. The computation in Step 4 is then run over the
BDD. We will prove that Step 4 can be done in time proportional
to the product of the number of Boolean variables encoded from
vT and the number of nodes in the BDD. This means that once
BDDs can be successfully constructed within a realistic amount
of time and space, Step 4 can be done quickly. This will be con-
firmed by experiments using a real network dataset and its ran-
domly modified dataset.

In order to realize not only the longest interval computation
but also other analyses based on the same approach, we present a
generic computational framework that integrates bounded model
checking with advanced functions such as constrained coun-
terexample generation, counterexample databases, and AllSAT
solvers.

The paper is organized as follows. Section 2 summarizes ba-
sic notions and terminology of model checking and BDDs. Sec-
tion 3 describes a basic idea of counterexample analysis in the
context of the verification of network configuration. Based on
this, Section 4 formulates intervals, related notions, and the prob-
lem of computing the longest interval in a general setting. Our
proposed method for the longest interval computation consists of
the preprocessing part and the main part. Section 5 describes the
preprocessing part, and Section 6 describes the main part and a
computational complexity result. Section 7 presents the whole
picture of our computational framework. Section 8 presents ex-
perimental results of the longest interval computation. Section 9
concludes the paper.

2. Preliminaries

In this section, we summarize model checking and BDDs,
which can be skipped by familiar readers.

Model checking is a method for checking the behavior of
systems whose states change over time in a non-deterministic
manner [6], [7]. Kripke structure models such a system with
(S , I,T, l), where S is a set of states; I is a set of initial states
with I ⊆ S ; T is a binary relation over S and (s, s′) ∈ T means
that the transition from s to s′ is possible in one step; and l is a
function that maps each state s to a set of atomic propositions,
meaning atomic propositions that evaluate to true in state s.

Model checking is to determine whether the model of a given
system satisfies properties of system behaviors (called specifica-

tions). Specifications are described using temporal logic. Typi-
cal temporal operators are X, F, and G, which refer to the “next
time”, “some time in the future”, and “all time in the future”, re-
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spectively. Among variants of temporal logic, this paper concen-
trates on linear temporal logic (LTL for short) because our work
uses bounded model checking.

A path is an infinite sequence of states such that all adjacent
states satisfy the transition relation of a model. It represents one
instance of possible system behaviors. The truth values of LTL
formulas are determined along paths. This implies that a given
specification may happen to be satisfied by one behavior, while
falsified by another.

A (universal) LTL model checking problem is, given an LTL
formula f and a Kripke structure M, to determine whether f holds
along π for all paths π that start from initial states in M. LTL
model checking is PSPACE-complete and it is hard to compute in
general.

Bounded model checking is a practical method for LTL model
checking [2]. The basic idea is to limit the range of states so that
states to be examined are only those reachable from initial states
in a certain number of steps and to determine whether there is
an error state reachable, through states in that range, from ini-
tial states. If such an error state exists, bounded model check-
ing returns, as a counterexample to the specification, a sequence
of states representing one instance of failing executions. Since
counterexamples are searched just within a limited portion of the
vast search space, the completeness of verification is not ensured,
although it is, in principle, possible to achieve by incrementally
expanding a search range [20], [24]. Actually bounded model
checking is widely accepted as a practical method for bug hunting
rather than the means of verification.

A binary decision diagram (a BDD for short) is a graphical
representation for Boolean functions [1], [3], [17]. We follow the
terminology of the literature [16]. A BDD is an acyclic directed
graph with exactly one node of indegree 0, which is called the
root, and each non-terminal node has a variable index as its label
and two children: LO child and HI child. The arc to a LO child
(resp. a HI child) is called a LO arc (resp. a HI arc). The LO arc
(resp. the HI arc) means that the value 0 (resp. 1) is assigned to
the variable of the source node. There are two terminal nodes,
denoted by � and ⊥. Paths from the root to � correspond to the
assignments by which a Boolean function evaluates to true. The
variables of a BDD appear in a fixed order along paths from the
root to terminal nodes. A BDD is reduced in that (1) every pair
of equivalent subgraphs is shared and (2) every node whose HI
arc and LO arc point to the same node is eliminated. It should be
noted that each node in a BDD is conventionally identified with

the subgraph rooted by the node, which also forms a BDD.

3. Basic Idea

In this section, we describe a basic idea of counterexample
analysis in the context of the verification of network configura-
tion, which is an active area attracting a lot of attention of re-
searchers recently [14], [19], [21], [25].

Figure 1 depicts a network with three routers R1, R2, R3 and
three end nodes A, B, D, which is a simplified version of the net-
work in the literature [18]. The table below the network shows a
routing table. Packets have two fields, ipdst and ipsrc, with each
represented as a bit sequence of length 3 for simplicity. Each row

Fig. 1 Network and routing table.

of the table is a packet transfer rule. The column in denotes the
current location of packets, ipdst and ipsrc denote patterns of ad-
dresses, where � is a wildcard and either 0 or 1 matches, and out

denotes the next location of packets to be transferred. For each
packet, the rules are scanned in order from the top. The first rule
that matches all the conditions specified by in, ipdst, and ipsrc

is applied. The packet is then transferred to the location speci-
fied by out. For example, R1 transfers incoming packets with the
ipdst field 10� and the ipsrc field 01� to R2; among the remain-
ing packets, R1 transfers packets with the ipdst field 1 � � to R3;
R1 drops all the remaining packets.

Network configurations can be modeled using Kripke struc-
ture. For example, Fig. 2 shows how the network of Fig. 1 is de-
scribed in NuSMV2 model checker’s language. States are repre-
sented by the two variables: packet and location, where packet

holds two bit sequences for the ipdst and ipsrc fields, which are
indicated by packet.ipdst and packet.ipsrc, and location holds
one of the network nodes. The ipsrc and ipdst fields are declared
as FRONZENVAR, meaning that these fields retain their initial
values throughout state transitions. Word constants presented in
this paper begin with 0u, followed by one of the characters b (bi-
nary) and h (hexadecimal); next comes an optional decimal inte-
ger giving the number of bits, then the character and lastly the
constant value itself.

Let us now consider the following LTL formula, which is also
described in NuSMV2 Language.

LTLSPEC
p a c k e t . i p d s t 2 = 0 ub3 100 −> F ( l o c a t i o n = b )

This formula states that if the upper 2 bits of the ipdst field
matches 10, then the packet some time in the future reaches B.
Here packet.ipdst2 is defined in Fig. 2 as the bit-wise AND of
packet.ipdst and 110.

Running NuSMV2 model checker with the network model and
the LTL formula above, we may obtain the following counterex-
ample.

−> S t a t e : 1 . 1 <−
p a c k e t . i p s r c = 0 ub3 101
p a c k e t . i p d s t = 0 ub3 101
l o c a t i o n = a

−> S t a t e : 1 . 2 <−
l o c a t i o n = r1

−> S t a t e : 1 . 3 <−
l o c a t i o n = r3

−− Loop s t a r t s h e r e
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−> S t a t e : 1 . 4 <−
l o c a t i o n = c

−> S t a t e : 1 . 5 <−

This means that if the ipdst and ipsrc fields of a packet are both
101, then the packet is transferred along A→ R1 → R3 → C and
it remains in C forever. This shows that the LTL formula is re-
ally falsified. Indeed, even though the ipdst field of the packet
matches 10�, the packet does not reach B forever.

In this way, bounded model checking explains why the LTL
formula is falsified by presenting one specific witness. This is
informative thanks to the concreteness, however we are often
not satisfied with just this because counterexamples are probably
lengthy and complicated in practice. We need an error explana-
tion in more abstract form.

MODULE p a c k e t
FROZENVAR

i p s r c : u n s i g n e d word [ 3 ] ;
i p d s t : u n s i g n e d word [ 3 ] ;

DEFINE
i p s r c 1 := i p s r c & 0 ub3 100 ;
i p s r c 2 := i p s r c & 0 ub3 110 ;
i p d s t 1 := i p d s t & 0 ub3 100 ;
i p d s t 2 := i p d s t & 0 ub3 110 ;

MODULE main
VAR

p a c k e t : p a c k e t ;
l o c a t i o n : { a , b , c , r1 , r2 , r3 , d rop } ;

ASSIGN
i n i t ( l o c a t i o n ) := a ;
n e x t ( l o c a t i o n ) :=

c a s e
l o c a t i o n = a :

c a s e
TRUE: r1 ;

e s a c ;
l o c a t i o n = r1 :

c a s e
( p a c k e t . i p d s t 2 = 0 ub3 100 ) & ( p a c k e t

. i p s r c 2 = 0 ub3 010 ) : r2 ;
p a c k e t . i p d s t 1 = 0 ub3 100 : r3 ;
TRUE: drop ;

e s a c ;
l o c a t i o n = r2 :

c a s e
p a c k e t . i p d s t 2 = 0 ub3 100 : b ;
TRUE: drop ;

e s a c ;
l o c a t i o n = r3 :

c a s e
p a c k e t . i p s r c 1 = 0 ub3 100 : c ;
p a c k e t . i p d s t 1 = 0 ub3 100 : r2 ;
TRUE: drop ;

e s a c ;
l o c a t i o n = b :

c a s e
TRUE: b ;

e s a c ;
l o c a t i o n = c :

c a s e
TRUE: c ;

e s a c ;
TRUE: drop ;

e s a c ;

Fig. 2 Network model described in NuSMV2’s Language.

To see this, let us continue the network example. In order for
the LTL formula to be falsified, there is no necessity for the ipsrc

and ipdst fields to be both 101. We want to know other related
cases that are probably caused by the same failure. For instance,
let us consider what packets are transferred along the same route.
Suppose, for simplicity, that we fix the ipsrc field of a packet to
101. All we need to do is consider all possible values for the
ipdst field such that the LTL formula is falsified: in other words,
among all packets such that the ipdst field matches 10�, consider
all possible ones that are transferred along the same route. In-
specting the routing table in Fig. 1 manually, we will realize that
they are the bit sequences matching 1 � �. Such sequences form
the interval ranging from 4 to 7 if a bit sequence is seen as the
binary representation of an integer. Although it happens to be a
single interval, but for other network configurations it would be
pairwise disjoint intervals in general. It would be desirable that
we could compute all such intervals and present them in a com-
pact form such as a bit pattern, however this task is more involved.

As a first step to automatize such an analysis, in this paper
we concentrate on computing the longest interval, which captures
many cases probably caused by a common failure. Our proposed
framework is applicable to arbitrary models that come from di-
verse domains as long as a variable on which interval is com-
puted substantially has integers. In this paper, intervals are those
indicated by bitmasks, but our framework can handle arbitrary
intervals and thus applications are not limited to network only.
Learning a bit pattern remains as future work.

4. Formulation

Based on the basic idea presented in the previous section, we
formulate our general setting of this paper. The notations and the
terminology introduced in this section will also appear in later
sections.

Let M = (S , I, T, l) be a Kripke structure. Let V be a set of
variables, and suppose that every state in S is represented as an
assignment of the variables of V to values. For all x ∈ V , the set
of all possible values that can be assigned to x is called the do-

main of x. As in bounded model checking, variable domains are
assumed to be finite.

Recall that a path π in M is an infinite sequence of states in
S such that for all adjacent states si, si+1, the transition relation
holds: (si, si+1) ∈ T . For all i = 0, 1, · · · and all u ∈ V , let us
denote by πi the i-th state of π, and by πi(u) the value assigned to
u in πi.

Let f be an LTL formula, and suppose that f is falsified by a
path such that the first state is an initial state of M and the path
has the form uvω for finite sequences of states u = s0 · · · sl−1, v =

sl · · · sk. Here, vω represents the infinite repetitions of v. Let us fix
such a path and denote it by πB. We will call πB a base counterex-

ample at bound k. Since πB is substantially represented by the
first k+1 states, it will be sometimes identified with the sequence
of the first k + 1 states, i.e., uv.

Let us fix a variable vT of V such that the domain of vT is to-
tally ordered with respect to order relation ≤. Since the domain
is finite, it can be identified with a (unsigned) integer domain.
Without loss of generality, we can assume that such a domain is
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an interval, i.e., there is no missing integer between the minimum
and the maximum integers in the domain. We will call vT a target

variable.
A counterexample π is constrained by πB except vT if πi(u) =

πBi(u) for all i = 0, 1, · · · , k and all u ∈ V\{vT }. Since a base coun-
terexample is fixed, we will sometimes omit πB and simply say a
constrained counterexample. The longest interval problem is to
compute the longest interval of values, e, such that e is assigned
to vT in the initial state of some counterexample constrained by
πB except vt. Here, a set of values, J, in a totally ordered domain
is an interval if a ≤ b ≤ c for a, c ∈ J and a value b in the domain,
then b ∈ J.

Our framework computes the longest interval problem by sep-
arating it into the preprocessing part and the main part. This will
be separately explained in the succeeding sections.

5. Preprocessing

In this section, we describe the preprocessing part of the
longest interval computation.

In the preprocessing part, our framework computes the set of
all constrained counterexamples. Since the number of such coun-
terexamples is likely to blow up exponentially, our method uti-
lizes a well-accepted space-efficient data structure BDD (see Sec-
tion 2), seen as a kind of finite automaton, to avoid a combinato-
rial explosion. The computation is indirectly done by construct-
ing a BDD that accepts counterexamples to be computed, in stead
of searching them one by one.

We do this computation with AllSAT solver. An AllSAT solver
is a program for computing all satisfying assignments to a CNF
(, which is a normal form of propositional formulas). Among sev-
eral types of AllSAT solvers, we select the one integrating SAT
solver and BDD [11], [12], [22]. A basic division of roles is that
satisfying assignments are enumerated using a SAT solver, while
they are added to a BDD. However, these two are not separately
done. Actually, the solution enumeration is accelerated by using
BDD as if it is a DP table. That is, the search for each subformula
(obtained by applying the current partial assignment) is pruned
if it turns out to have been done by looking it up in the BDD.
Hence, the duplicated search for equivalent subformulas can be
largely reduced.

The CNF fed into the AllSAT solver is obtained as follows.
As in bounded model checking, encode a Kripke structure M =

(S , I,T, l) and an LTL formula f to a CNF φ. Suppose that
the base counterexample πB is the one obtained by solving φ.
Through the encoding, for each state of πB, the assignments for all
variables of V except vT are mapped to assignments for Boolean
variables in φ. Hence, apply these truth assignments to φ. The
resulted CNF, φ′, is the one such that satisfying assignments to φ′

exactly correspond to constrained counterexamples to f .
For the main part of the longest interval computation, we make

two assumptions and a simplification of BDD. First, we fix a
Boolean encoding for the target variable vT as follows. Here, let
us identify πB with the sequence of states s0s1 · · · sk, as noted
in the previous section. For each state si, we introduce a set
of Boolean variables, bitsi(vT ), to encode the value assigned
to vT . We use log encoding, where Boolean variables corre-

spond to bits of the binary representation of an unsigned inte-
ger. The variables of BDD now fall into two groups: variables in
bitsi(vT ) (i = 0, . . . , k) and other variables introduced for auxil-
iary purpose in the encoding of bounded model checking.

Next, we predetermine a variable ordering of BDD so that x

precedes y if one of the following conditions holds:
• x ∈ bits0(vT ) and y � bits0(vT );
• x, y ∈ bits0(vT ) and the bit assigned to x is more significant

than that of y.
Finally, we simplify the BDD by the projection on bits0(vT ).

Because for the longest interval computation, we are only inter-
ested in the values assigned to vT in an initial state, there is no
problem for ignoring other assignments. The projection can be
done efficiently thanks to the variable ordering. Indeed, since all
the variables in bits0(vT ) precede the other variables, it is suffi-
cient to traverse the BDD and redirect each arc to � if the source
node has some variable in bits0(vT ) and the target node has any
other variable not in bits0(vt).

6. Main Algorithm

In this section, we describe the main part of the longest interval
computation and analyze its computational complexity. As de-
picted in Fig. 3, the key is that an interval is represented in BDD
as a pair of paths that fork on the way to �, having a certain con-
dition. We will call such paths forked paths. The longest interval
computation is then reduced to finding the longest interval among
all pairs of forked paths.

We first describe the basic idea for efficiently finding the
longest interval in a BDD using an example. Suppose that we
have a target variable packet.ipdst of some network as given in
Section 3; By applying the preprocessing, we now have the BDD
in Fig. 3, which represents a set of values for packet.ipdst. Here,
the values for the upper 19 bits are fixed due to the following LTL
formula.

LTLSPEC
p a c k e t . i p d s t 1 9 = 0 uh32 ab43a000 −> F (

l o c a t i o n = b b r b r t r | l o c a t i o n = b b r a r t r )

The LTL formula states that if a destination is in the range

Fig. 3 Forked Paths, which is a pair of the paths marked in red and blue.
A path from the root to � corresponds to a satisfying assignment if
the number of complement arcs along the path is even. Solid arcs,
dashed arcs, and dotted arcs represent HI arcs, LO arcs, and comple-
ment arcs, respectively.
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Algorithm 1 The main part of the longest interval computation
for a BDD f obtained after the preprocessing.

function LongestInterval( f )

if f is a terminal node or f .done = true holds. then

return;

end if

LongestInterval( f .lo);

LongestInterval( f .hi);

IL ← FindForkedPaths( f , L);

IR ← FindForkedPaths( f ,R);

IM ← FindForkedPaths( f ,M);

I ← the longest one among IL, IR, and IM ;

f .dir ← the label of direction to which I is included;

f .done← true;

end function

171.67.160.0 to 171.67.191.255, then the packet some time in the
future reaches bbrb rtr or bbra rtr.

For simplicity, the BDD nodes for the upper 19 bits are re-
moved, and the remaining BDD nodes are only those for the
lower 13 bits.

The long dashed arc, designated by Pa, and the long solid
arc, designated by Pb, in Fig. 3 correspond to 171.67.160.35 and
171.67.177.11, respectively. The important observation here is
that not only these addresses but also all addresses between them
are accepted in the BDD. Actually, in each non-terminal node in
Pa, either
( 1 ) the HI child is a non-terminal node, or
( 2 ) the HI child is � and the LO child is a non-terminal node.
For any bit sequence, S , of length 13 larger than Pa as integers,
there must be a bit position at which S has value 1 while Pa has
value 0. Either the case (2) above occurs at the highest one, i,
among such positions or S has value 1 at bit 12. The former case
means that if the value at bit i is 1, any values for the lower bits,
i.e. from bit 0 to bit i − 1, are allowed, and thus S is accepted in
the BDD. For the latter case, one can also check, by a symmetric
argument with respect to Pb, whether S is accepted.

It would be easy to see that for any BDD obtained after the pre-
processing, if [a, b] is maximal among all intervals such that all
integers in [a, b] are accepted in the BDD, then a corresponds to
the path, Pa, in the BDD so that in each non-terminal node in Pa,
either one of the conditions (1) and (2) above holds. The same
observation applies to b and its corresponding path, Pb.

Our algorithm finds such Pa and Pb for each non-terminal node
and among all intervals [a, b] formed by such pairs (Pa, Pb) se-
lects the longest one. We will call Pa and Pb the left branch and
the right branch, and Pa and Pb forked paths.

The main part of the longest interval computation is shown
in Algorithm 1. We summarize notations there. For each non-
terminal BDD node f , the variable index is denoted by f .idx; the
LO child and the HI child are denoted by f .lo and f .hi, respec-
tively. For efficient computation, f in addition has the two aux-
iliary fields: f .done and f .dir, where f .done holds a truth value,
initially false, showing whether the computation for f is done,
and f .dir holds one of the labels L, R, and M, showing in which
child of f , the current longest interval is included.

Algorithm 1, in each step of the recursion, computes the forked

Algorithm 2 The left branch for IM with starting node curr,
where curr is a non-terminal node.

if curr.lo = ⊥ then

return NIL;

else if curr.lo = � then

Fill(assign, curr, L, 0);

return assign;

end if

Fill(assign, curr, L, 1);

prev← NIL;

curr ← curr.lo;

while (1) curr.hi is a non-terminal node or (2) curr.hi = � holds and curr.lo

is a non-terminal node. do

if (1) holds. then

Fill(assign, curr,R, 1);

curr ← curr.hi;

else if (2) holds. then

Fill(assign, curr, L, 1);

prev← curr;

curr ← curr.lo;

end if

end while

if (3) curr.hi = � and curr.lo = ⊥ then

Fill(assign, curr,R, 0);

else if (4) curr.hi = ⊥ then

if prev � NIL then

Fill(assign, prev,R, 0);

else

return NIL;

end if

end if

return assign;

paths pairs, IL and IR, in the BDDs rooted by f .lo and f .hi, respec-
tively. We in addition compute one more forked paths pair, IM ,
which consists of branches with one in each child, that is, the left
branch goes along the LO arc of f and the right branch goes along
the HI arc of f .

The function FindForkedPaths computes IL by reducing to triv-
ial cases or the computation of IM for some descendant of f .lo.
That is, starting from the LO child of f , it repeats to move to the
child indicated by the dir field of the current node, curr, until
dir is M or the indicated child is a terminal node. For the trivial
cases,
• if curr.lo is ⊥, it returns NIL, which means an empty inter-

val;
• if curr.lo is �, it returns the pair of assignments such that

one is the assignment with the i-th and later variables all as-
signed 0, where i = curr.idx, and the other is the assignment
with the i-th and later variables all assigned 1.

For the computation of IM , it tries to find the left branch and the
right branch for the BDD rooted by curr. If it fails to find either
branch, it returns NIL; Otherwise, it returns the pair of the left
branch and the right branch.

We omit the computation of IR because it is symmetrical to that
of IL.

For the computation of IM , the left branch of IM is computed
as shown in Algorithm 2. It goes down BDD while filling an
assignment of variables so that the assignment satisfies the nec-
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essary and sufficient condition for left branches described previ-
ously. For each step, we fill a part of the current assignment by
invoking the subroutine Fill: given an array, assign, a BDD g, a
label of direction dir, and value ∈ {0, 1}, the subroutine Fill sets
assign[ f .idx] to 0 if dir = L and to 1 if dir = R, and moreover,
for each eliminated node g between f and the child of f indicated
by dir, it sets assign[g.idx] to value.

In the while statement, the algorithm attempts to find the left
branch in the BDD pointed to by the LO arc of the starting node.
In each step of this loop, there are only four cases (1) – (4) for the
children of curr, as described in Algorithm 2. (1) and (2) mean
that it is possible to move to one of the children so as not to vio-
late the condition for left branches; (3) means that the left branch
is found; and (4) means that it is necessary to backtrack to prev,
because otherwise the condition for the left branch is violated. If
(2) holds at least once in the while loop, then prev.hi must be �
and the left branch must be found. Otherwise, prev is NIL and
this case means that there is no left branch. The right branch of
IM can be computed in the same way, and hence omitted.
Theorem 1. Let f be a BDD obtained after the preprocessing de-
scribed in Section 5. The longest interval in f can be computed in
O(nm) time, where two extra fields of constant size for each BDD
node are assumed. n is the number of Boolean variables encoded
from a target variable with log encoding and m is the number of
nodes in f .

Proof. If f is �, the longest interval is [0, 2n − 1]. If f is ⊥, it
is an empty set. If f is a non-terminal node, we invoke the func-
tion LongestInterval with f , which can be done in O(nm) time
because computing FindForkedPaths and comparing IL, IM , and
IR are in O(n) time. After that, invoking FindForkedPaths with f

and f .dir, we obtain the longest interval. The whole computation
time is O(nm). �

7. Computational Framework

In this section, we present the whole picture of our computa-
tional framework and some remarks for each module. Only major
modules are described and implementation details are omitted.

Since our framework utilizes bounded model checking in in-
teractive manner, it includes the modules of an interactive com-
mand interface, a Boolean encoder, and a SAT solver as shown in
Fig. 4. Our framework integrates bounded model checking with
advanced features of a constrained counterexample generation
and the longest interval computation by adding them as separate
modules as shown in Fig. 4. Analysis of generated counterex-
amples is not limited to the longest interval computation. These
major modules of our framework are described in more detail be-
low.

Interactive Command Interface. This module can be taken
from bounded model checkers but it is necessary to register addi-
tional commands such as those for the constrained counterexam-
ple generation and the longest interval computation.

The longest interval computation can be performed through a
command-line interface as follows. Issue the command for the
bounded model checking. If a counterexample is found, it is dis-
played as shown in Section 3. This can be repeated in different

Fig. 4 Major modules of our computational framework.

settings until a desirable counterexample is found. Found coun-
terexamples are associated with unique indices in order to distin-
guish between them.

Among such counterexamples, manually select one as a base
counterexample and an integer variable in it as a target variable.
Issue the command for the constrained counterexample genera-
tion with parameters including the selected base counterexam-
ple and the target variable. This also can be repeated, although
unlike bounded model checking, a resulting set of constrained
counterexamples (called a counterexample database) consumes
much memory space in general and it would be hard to repeat
many times. It would be convenient to make it possible to discard
counterexample databases when needed.

Finally issue the command for the longest interval computation
with parameters including a selected counterexample database.
As a resulted interval, just two end values of the interval are dis-
played. As shown in Theorem 1, this computation would not
become a computational bottleneck.

Boolean Encoding. This module can be taken from bounded
model checkers without modification. Kripke structures and LTL
formulas, which are described with some modeling language, are
translated into propositional formulas such as CNFs to be able to
utilize various solvers and data structures such as SAT solvers,
AllSAT solvers, and BDDs. Based on the Boolean encoding, the
results of analysis such as a counterexample and an interval of a
specified variable are decoded and displayed in a human-readable
form.

Bounded Model Checking and SAT Solver. These modules also
can be taken from bounded model checkers without modification.

Counterexample Generation and AllSAT Solver. These mod-
ules provide functions such as the constrained counterexample
generation and the projection of BDDs detailed in Section 5. In
the constrained counterexample generation, a CNF fed into All-
SAT solver is created using the Boolean encoding module. Like
the relation between the model checking module and SAT solver,
the constrained counterexample generation module is indepen-
dent of AllSAT solver, and any AllSAT solver can be utilized as
long as it supports a predetermined interface.
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Counterexample Databases. This module provides data rep-
resentations of generated counterexamples, called counterexam-

ple database, and basic operations over them. Since the number
of counterexamples is likely to blow up exponentially, our main
algorithm for the longest interval computation utilize BDDs in
order to efficiently represent and manipulate counterexamples.

Structure Analysis. This module is in charge of various analy-
ses based on generated counterexamples including the main part
of the longest interval computation detailed in Section 6. Al-
though this paper considers only the range of values for the initial
state and fixes all the other variables’ values, it would be inter-
esting to extend this to be able to allow a non-initial state and fix
only some variables’ values. It would be also interesting to con-
sider analyses based on efficient queries to BDDs. An example
is a membership of a user-specified interval, that is, given a user-
specified interval for a target variable and a base counterexample,
to determine whether substituting the value of the target variable
in the base counterexample with any integer of the interval re-
mains a counterexample.

8. Experiments

In this section we present experimental results of the longest
interval computation.

Implementation. We implement the longest interval compu-
tation based on constrained counterexample generation on top
of NuSMV2.5.4 [5], where CUDD 2.4.1 and MiniSat 2.2.0 are
linked. For the generation part, we utilize BDD solver, a variant
of AllSAT solvers [22]. For counterexample databases, we utilize
the same BDD library (CUDD 2.4.1) attached to NuSMV2.5.4.

Environments. All experiments are conducted on a computer
with an Intel R© Core TM i7-4600U 2.10 GHz processor and 16 GB
of RAM, running Ubuntu 18.04.4 LTS with gcc compiler 5.3.1.

Stanford Network. Our method is evaluated with a real network
dataset obtained from the backbone network in Stanford univer-
sity *1 and also with a dataset randomly modified from the Stan-
ford network so that each transfer rule regarding IP destinations
is changed in a certain probability but all LTL specifications are
unchanged.

The Stanford network has been used to evaluate network ver-
ification tools [13], [15]. It consists of 16 switches with 58 in-
terfaces in total. Packets are forwarded by the switches based
on their header bits; the forwarding decision is made with 88
bits including IP address, TCP port number, and so on. The
Stanford backbone network is modeled with 94 binary variables:
88 bits for packet header and 6 bits for switch interfaces. The
dataset can be converted into NuSMV models by the bundled
script (nu smv/nu smv generator.py).

Network verification is usually used to check conformance
with operational policies, but the Stanford dataset includes no
material that can be used to specify policies. In the experiments,
we try to find counterexamples under a hypothetical policy —
all packets should reach their destinations without being filtered
out inside the network. We randomly choose 764 interface pairs
and examine their reachability. The reachability properties are

*1 https://bitbucket.org/peymank/hassel-public/

converted into CNF instances with the shortest bounds such that
counterexamples are found; the bounds are 2 for internal inter-
faces, while they are 6 for external ones (note that reachability
related to special addresses, e.g., 0.0.0.0, 255.255.255.255, and
224.*.*.*, are ignored, because counterexamples are not found
until bound 100).

Experimental Result on Original Stanford Network. Since all
LTL formulas are reachability properties regarding IP destina-
tions, we select packet.ipdst as a target variable, and for each
LTL formula, we obtain a base counterexample by performing
bounded model checking.

For all LTL formulas, the maximum number of clauses and
variables in CNF fed into AllSAT solver are 71,358,640 and
4,980, respectively. The maximum time for the constrained coun-
terexample generation is 0.06 s, and the maximum time for the
main part of the longest interval computation is less than 0.01 s.
Picking up several LTL formulas, we inspect constructed BDDs
and the Stanford network carefully, and it turns out that all pack-
ets such that their destination addresses are in the ranges indi-
cated by LTL formulas to be inspected and the other fields such
as source addresses and port numbers are fixed according to a
counterexample computed in advance fail to reach specified lo-
cations. This is because no constraint is imposed on the Boolean
variables corresponding to the inspection ranges in the Stanford
network. If a few upper bits are fixed by LTL specification, many
counterexamples are reported because all the lower bits are not
affected, however this is a bit extreme situation due to the lack of
policies.

Experimental Result on Randomly Modified Stanford Network.

Considering the previous experimental result, we modify the
Stanford network for each LTL formula so that many addresses
in the inspection range of the LTL formula are likely to be for-
warded to different destinations. More concretely, each forward-
ing rule regarding IP destinations is changed in probability 0.3
so that some (but not necessarily all) addresses of the inspection
range of the LTL formula matches the replaced transfer rule. For
example, for the LTL specification given in Section 6, the follow-
ing rule

p a c k e t . i p d s t 2 8 = 0 uh32 4441a870 : drop ;

is changed in probability 0.3 so that the upper 19 bits of the
word constant 441a870 given in hex are fixed so as to match
the antecedent of the LTL specification and the other bits are un-
changed. The resulting rule is as follows.

p a c k e t . i p d s t 2 8 = 0 uh32 ab43a870 : drop ;

This means that the range from 68.65.168.112 to 68.65.168.
127 is changed to the range from 171.67.168.112 to 171.67.168.
127, and hence some packets satisfying the antecedent of the LTL
specification are dropped in the resulting rule. In the current ex-
periment we suppose that such a change is caused by a result of
mis-configuration.

We evaluate our method with the modified Stanford networks.
Figure 5 shows cummulative running times of all randomly
modified stanford networks, where bmc denotes bounded model
checking and allsat+interval denotes our method (i.e., the com-
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Fig. 5 Cummulative running times of randomly modified stanford net-
works, where the y-axis is in log-scale.

bination of allsat solving and longest interval computation over
BDD). Ranges of values that result in counterexamples are
confirmed to be computable with small overheads compared to
bounded model checking.

Other results are summarized below. For all LTL formulas,
the maximum number of clauses and variables in CNF fed into
AllSAT solver are 75,563,312 and 16,361, respectively. The
maximum time for the constrained counterexample generation is
1.50 s, and the maximum time for the main part of the longest
interval computation is less than 0.01 s. Picking up several LTL
formulas and inspecting carefully, we confirm that as intended,
not all addresses in the inspection ranges are present in the con-
structed BDDs. We confirm that 8,248,830 counterexamples are
generated in 1.41 s and among them, the longest interval of length
6,160,384 is reported in less than 0.01 s. This case achieves the
maximum number of counterexamples obtained after the con-
strained counterexample generation and also the maximum length
of interval among all LTL formulas.

9. Conclusion

In this paper, we studied counterexample analysis in model
checking, aiming at an effective explanation of failure. We for-
mulated such a range of possible values (called interval) naturally
identified with integers in a general setting to allow not only net-
work models but also arbitrary models that come from diverse
domains. We presented a practical method for computing the
longest interval problem given a counterexample (called a base
counterexample) and a variable (called a target variable) on which
the interval is computed. This computation is separated into two
parts: the preprocessing part and the main part. In the preprocess-
ing part, constrained counterexamples are generated using All-
SAT solver. Since the number of such counterexamples is likely
to blow up exponentially, our method utilized a well accepted
space-efficient data structure BDD in the AllSAT solving. In the
main part, our method searches the longest interval while travers-
ing the BDD obtained after the preprocessing. We proved that
the main part can be computed in time proportional to the prod-
uct of the number of Boolean variables encoded from a target
variable and the number of nodes in the BDD. Our method was
evaluated with a real network dataset and its randomly modified
dataset. We confirmed that about 8 millions of counterexamples
were generated in 1.61 s and among them, the longest interval of

length about 600 millions was reported in less than 0.01 s. We
also presented a generic computational framework that integrated
bounded model checking with advanced functions such as con-
strained counterexample generation, counterexample databases,
and AllSAT solvers to allow not only the longest interval com-
putation but also other analyses based on the same approach.
It would be desirable that we could compute all intervals and
present them in a compact form such as a bit pattern, however
this task is more involved, and remains a future work.
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