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Abstract: Estimating sleeping postures with body joint positions is critical for identifying potential sleeping problems
and the risk of pressure ulcers. Many methods have estimated postures with body joint positions from camera images
for general purposes. However, visual monitoring of sleeping contexts suffers from privacy and occlusion issues due to
blankets, pillows, etc. An approach to solve those issues is the use of body pressure images obtained from bed surfaces.
We have developed a textile-based sheet-type pressure sensor to avoid such issues. Unfortunately, its use raises other
issues that are absent from camera images such as low resolution and noise caused by the wrinkling of sensor sheets.
In this paper, we extend DNN-based joint estimation, called Convolutional Pose Machine (CPM), using body area and
posture estimation mashups to improve the accuracy of joint estimation. The following are our evaluation results with
cross-validation with 16 joints in six sleeping postures of 12 subjects: 7.15 cm accuracy in mean absolute error (MAE),
which is a 33.7% improvement from the standard CPM, and 8.52 cm accuracy in MAE, which is a 37.4% improvement
from CPM with camera images in situations using a pillow and a blanket.

Keywords: sleeping posture, body pressure image, joint position estimation, body area estimation, posture classifica-
tion

1. Introduction

Human sleeping postures can be used as various health indica-
tors. These can be utilized to evaluate not only sleep quality but
also estimate the risk of health diseases that occur during sleep,
such as pressure ulcers and sleep apnea syndrome. In this paper,
we focus on the prevention of pressure ulcers.

One cause of pressure ulcers is that pressure is applied to the
same part of the body for many hours. According to an ul-
cer guidebook [1], seniors and patients with pelvic fractures and
spinal cord injuries are at higher risk of pressure ulcers because
they find it difficult to change their postures. To prevent pres-
sure ulcers in such bed-ridden patients, changing their postures
at roughly two-hour intervals is recommended. Such a burden is
onerous on nurses and health-care workers. Since the actual risk
differs from patient to patient, depending on body type, weight,
sleeping posture, and health conditions, the interval for changing
postures can be individually optimized by estimating the risks of
the progression of pressure ulcers to reduce nursing burdens.

An e-textile pressure sensor sheet [2], which measures
sleeping-body pressure distribution on a bed’s surface, consists
of an array of capacitive sensor elements constructed by weaving
conductive threads. Although sensor sheets visualize the pressure
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pattern images of sleeping body postures, the images themselves
don’t provide the relationship to individual body parts where
the risks of ulcers is dependent on the body posture. We must
identify which part of the body is indicating high pressure.
Overlaying body joint positions and a skeleton figure on the
images will serve to increase our understanding of the health
situations of patients.

Methods for estimating body joint positions from camera im-
ages have been actively studied [3], [4], [5], and their estimation
accuracy is fairly high. They show good potential for estimat-
ing the position of body parts during sleeping. However, such
visual monitoring introduces privacy issues and occlusion prob-
lems, which are often caused by blankets in a sleeping context.
Therefore, we apply a camera-based body joint position estima-
tion method to identify pressure sensor images. However the
available pressure image [2] is one-channel and low resolution
(80 × 40 pixels that cover a 160 × 80 cm area in our case). Thus,
the question remains whether such a camera-based method works
well even with low-resolution, one-channel images.

We modify the algorithm of the Convolutional Pose Machine
(CPM) [4], which is a leading body joint position estimation
model, to achieve good estimation of sleeping body posture even
with one-channel, low-resolution image data by pressure sensors.
We focus on three approaches to modify CPM: (i) noise suppres-
sion of sensor data with a body area estimated by U-Net [6] as a
mask; (ii) the addition of a classified posture value channel esti-
mated by VGG16 [7]; and (iii) weighting feature vectors in CPM
by a classified posture estimated by VGG16 [7]. The contribu-
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tion of our method is the extension of CPM using these methods
((i)–(iii)) to improve the accuracy of the joint positions estimated
from pressure images.

The rest of our paper is organized as follows. Section 2 summa-
rizes related work. Section 3 describes our proposed body joint
position estimation method using body area and posture infor-
mation. Section 4 shows the experimental results and discusses
the effect of modifying the estimation accuracy by the proposed
method. Section 5 describes the weight parameter investigation
for noise suppression. Section 6 concludes the paper.

2. Related Work

Many studies estimate body joint positions and sleeping pos-
tures from body pressure. This section describes some of them to
clarify the position of our study.

The body joint position estimation method using DNN for
camera images is highly accurate. Using a CNN, Toshev et al.
proposed a network-based estimation method that predicts end-
to-end from feature extraction to describe body joint positions [3].
Wei et al. proposed a method to estimate body joint positions
from a wider range of image features by connecting multiple
identical network structure CNNs [4]. Cao et al.’s OpenPose sys-
tem allowed the estimations of body joint positions of multiple
people by estimating body joint positions and joint associations
using multi-stage CNNs [5]. Since these are camera image-based
methods, they are plagued by privacy and occlusion problems.

A method that only estimates sleeping postures using the pres-
sure on beds has also been widely studied. Nishida et al. proposed
a system for monitoring respiration and sleeping posture using a
pressure sensor with 221 measurement points [8]. Mineharu et
al. estimated nine sleeping postures with 77.1% accuracy using a
pressure sensor with 32 × 54 measurement points [9]. Xu et al.
estimated six sleeping postures with 90.8% accuracy by a pres-
sure sensor with 64 × 128 measurement points [10]. Enokibori et
al. estimated three sleeping postures with 99.7% accuracy by an
optimized deep learning method with an augmented dataset [11].

Recently, both posture classification methods as well as
schemes that estimate body joint positions only using pressure
have been investigated. Body parts can be identified by estimat-
ing body joint positions. This approach can be used to evaluate
the body parts at risk of high pressure ulcers. Liu et al. estimated
two-dimensional body joint positions in three sleeping postures
with an average error of about 3.6 cm. Their method matches the
primary parts of a human body [12]. Clever et al. estimated three-
dimensional body joint positions in specific sleeping and sitting
postures of moving limbs with an error rate of about 7.7 cm. Their
method uses CNN and a motion model of human body struc-
tures [13]. These studies evaluated joint estimation accuracy us-
ing data from the measurements of limited sleeping posture and
less pressure noise in experimental environments. To grasp the
risks of the progression of pressure ulcers, various sleeping pos-
tures must be estimated. In long-term monitoring, pressure noise
occurs from dislocated pressure sensors due to the subject chang-
ing posture, for example. An estimation method must be robust
against pressure noise during long-term monitoring.

We therefore propose a method to improve the accuracy of es-

timating body joint positions using body area and posture infor-
mation estimated from sleeping-body pressure images. We veri-
fied the accuracy of body joint position estimation in six natural
sleeping postures.

3. Body Joint Position Estimation Using Body
Area and Posture Information

In this section, we describe a method that features three modifi-
cations to the Convolutional Pose Machine (CPM) [4] to improve
the accuracy of estimating body joint positions: (i) noise sup-
pression of sensor data using the estimated body area as a mask;
(ii) the addition of a classified posture value channel; and (iii)
weighting feature vectors in CPM by a classified posture. Fig-
ure 1 shows an overview of the proposed method. In the fol-
lowing, first, we describe CPM, which is the original method we
expanded in this study. Next we explain the noise suppression,
the addition of a posture channel, and weighting feature vectors.

3.1 Convolutional Pose Machine
CPM is a model that estimates body joint positions and im-

proves accuracy by estimating features in a wider range of im-
ages. It connects CNNs with multiple identical structures to ex-
tract features and estimate body joint positions. The accuracy is
high and the computational cost is small, especially when only
one person appears in the image. Since we have just one person
per bed, we believe that CPM can estimate body joint positions
with high accuracy and a small amount of calculations even from
sleeping-body pressure images.

We used such sleeping-body pressure images as input data and
such body joint position coordinates as a grand truth, which is
generated by semi-manual annotation on color images. We cre-
ated a model to estimate body joint positions by training these
data. A six-stage CPM is employed in our experiment as the base,
according to previous research [4]. We supplemented the amount
of training data by fine-tuning a model trained in advance with
the MPII dataset [14].

3.2 Pressure Noise Suppression with Body Area
The first modification exploits the estimated body area from the

input images and uses it as a mask to suppress the sensing noise
around the actual body area. Figure 2 shows an example of (a)
an input pressure image, (b) a body area image created manually
from its camera RGB image, and (c) a noise suppression result
that is masked (a) by (b). The input data (a) is very noisy and
noise propagates outward from the bed’s areas in contact with
the body. Such pressure noise is caused by the wrinkles of the
sheet-type pressure sensor, the weight of blankets, humidity off-
set bias, and so on. We estimate the body area and use it as a
mask to reduce the pressure noise outside of the estimated body
area, which is estimated from input images by U-Net [6]. U-Net
is a convolutional neural network for biomedical image semantic
segmentation. Each pixel of the input image is multiplied by dif-
ferent weights: 1.0 for inside the body area and 0.2 for outside
it. Thus, noise is suppressed, as shown in Fig. 2 (c). Why the
weight for outside of the body area is 0.2 is that the accuracy of
estimating body areas by U-Net is not perfect and also there is
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Fig. 1 Overview of proposed method.

Fig. 2 Relationship between pressure data and body area masking for noise
suppression: (a) is an input pressure image of sleeping posture, (b)
is a body area image created manually from its camera RGB image,
(c) a noise suppression result that is (a) masked by (b).

the possibility that the pressure appeared in out of the body area
make some contributions for body joint estimation.

3.3 Original Image Expansion Using Posture Information
The second modification exploits the body posture classifica-

tion result. The posture class information is embedded as an ad-
ditional channel of the image. In this case, for an RGB color
code image structure, we put the pressure data into the R (red)
channel and the posture class label into the G channel, leaving
the B channel blank (zeros). By combining all the channels to-
gether in CNN, classified posture information can be added to
the original pressure image. Large deviations in the estimated
joint positions can be reduced by gathering correct information on
the sleeping posture types which can be classified into four types
from input images by VGG16 [7] (an image-classifying model):
supine, right lateral, left lateral, and prone. We fill the posture
information channel with different values depending on the types
of classified postures: 0 for supine, 50 for right lateral, 150 for
left lateral, and 100 for prone. Of course, we had tried to select
the values for each posture within DNN automatically. However,
this attempt did not demonstrate better performance than that ob-
tained from fixed values. We therefore used fixed values in this
study.

Fig. 3 Feature weighting using posture information.

Fig. 4 Overview of the CPM structure extended with feature weighting
structure (modified “Fig. 2” of Ref. [4]).

3.4 Feature Weighting Using Posture Information
The third modification is the weighting for the features in CPM

based on the four types of posture classes with structures similar
to SENet [15]. Figure 3 shows how to weight the features by
posture classes. We call this extension, “Feature Weight (FW)”
block. FW block has two inputs. One input is the output of
the previous layer. The another input is the classified posture in-
formation which is represented in four-dimensional vectors, i.e.,
[1,0,0,0] for supine, [0,1,0,0] for the right lateral, [0,0,1,0] for the
prone, and [0,0,0,1] for the left lateral. The input classified pos-
ture information vector is expanded to the same size of the output
of the previous layer through a full connected layer. The FW
block generates its output by multiplying the expanded vector by
the output from the previous layer. This method makes it possible
to select and emphasize the features that are important for each
type of posture from the features of the sleeping-body pressure
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image in CPM.
Figure 4 shows an overview of the CPM structure and feature

weighting structure extension. This figure is a modified image of
the “Fig. 2” of [4]. We added the structure of feature weighting
after the fourth convolution layers in each CPM stage.

4. Body Joint Position Estimation Experiment

In this section, we experimentally verified the effect of our
proposed modifications: noise suppression, addition of a posture
channel, and weighting feature vectors. Section 4.1 describes the
dataset used for the experiment. Section 4.2 presents the evalua-
tion method including the condition and data set-up and evalua-
tion criterion. Section 4.3 shows the result of improving the esti-
mation accuracy by the proposed method. Section 4.4 discusses
the effects of its accuracy improvements based on the results.

4.1 Dataset
To evaluate the accuracy of estimating the body joint positions,

we collected the pressure from the sleeping postures, the correct
joint positions, the body areas, and the classification posture la-
bels. In this section, we describe the measurement and creation
method.
4.1.1 Measurement Environment

To measure the sleeping-body pressure, we used a sheet-type
pressure sensor that was covered with a moisture-proof cover and
laid it on the mattress. We covered it with box-type sheets. Sub-
jects assumed a sleeping posture and the pressure that was ap-
plied to the sheet surface was measured. In addition, a pillow and
a blanket were used during the measurement to create an environ-
ment closer to that of actual beds. Figure 5 shows an overview of
the measurement. We used the same sheet-type pressure sensor as
a previous study [11]. This sensor had 3,200 measurement points
(40 × 80), and the sampling rate was set to about 6 Hz. The sen-
sor was about 90× 180 cm, the pillow was about 43× 63× 10 cm,
and weight 660 g, and the blanket was about 150 × 210 × 3 cm,
1,070 g. To obtain correct joint positions and the body areas of
subjects, we captured the sleeping postures with a camera set
about 2,350 mm above the sheets (Fig. 5). The camera was set
at 1,920 × 1,080 for the pixels and 60 Hz for the FPS.
4.1.2 Data Measurement Procedure

In this measurement, our subjects were 12 healthy male uni-
versity students (S1 to S12) with the following attributes: age,
22.6±1.5 years; height, 172.2±6.6 cm; weight, 64.2±11.0 kg. We

Fig. 5 Overview of measurement.

measured the following six sleeping postures (Fig. 6): 1 supine
(i), 2 right lateral decubituses (ii) and (iii), 1 prone (iv), and 2
left lateral decubituses (v) and (vi). Although the subjects did
not lie in exactly identical postures, they assumed natural sleep-
ing postures based on six reference postures we showed them
(Fig. 6). Sleeping-body pressure was measured under four con-
ditions: with a pillow and a blanket; with neither a pillow nor a
blanket; with a blanket and without a pillow; with a pillow and
without a blanket. The subjects changed their sleeping postures
according to the experimenter’s instructions (we prepared before-
hand). The order satisfied all the before/after patterns for combi-
nations of postures from (i) to (vi) in Fig. 6. After changing their
posture, the subjects maintained their sleeping posture for five
seconds. After that, the experimenter placed the blanket over the
subjects and instructed them to maintain the same posture again
for five seconds. The data collecting task can be summarized as
shown below.

foreach (with the pillow and without the pillow):

for 12 subjects:

for 12 times:

for 6 postures:

-get one data from one 5-second

posture keeping without the blanket

-then get one data from one 5-second

posture keeping with the blanket

4.1.3 Post-processing of Body Pressure Data
The measured body pressure data was resampled at 2 Hz and

smoothed in the time-series direction. To remove the pressure
fluctuation by changing the sleeping postures, we selected a pres-
sure image four seconds after the subjects started to maintain the
posture and four seconds after the blanket was placed over them
as the sleeping-body pressure image for each posture. We re-
sized the measured sleeping pressure images of 40×80 points into
400 × 800 points by Bicubic interpolation, which is a curvilinear
interpolation method using a weighting function. In addition, we
added data inverted along the long axis direction of the sheet to
expand the amount of data.
4.1.4 Posture Data Generation

In this section, we explain how to obtain the ground truth of
the joint positions, the body areas, and the posture labels.

We estimated the following 16 body joints using OpenPose [5]
from the images taken by the camera (Fig. 7); 0: r-ankle, 1: r-
knee, 2: r-hip, 3: l-hip, 4: l-knee, 5: l-ankle, 6: pelvis, 7: tho-
rax, 8: upper neck, 9: head top, 10: r-wrist, 11: r-elbow, 12:
r-shoulder, 13: l-shoulder, 14: l-elbow, and 15: l-wrist. We used
the code and trained model in Ref. [16]. To select camera images
that correspond to each sleeping body pressure image, we esti-
mated with 30 frames from 3.75 to 4.25 seconds after the subject
started to maintain the posture. For each estimated joint point,

Fig. 6 Reference measurement postures.

c© 2021 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.29

Fig. 7 Estimated joint position.

only those whose reliability exceeded 0.3 were averaged and used
as joint positions for one posture. If the body joint points could
not be estimated, we obtained them manually. Each position was
converted into a 400 × 800 pixel image.

Body areas for the U-Net training were manually created from
camera images four seconds after they started to keep the posture
for each posture.

Posture labels for the VGG training were created according to
the instruction to change postures shown in Section 4.1.2. The
types of sleeping posture labels were follows: supine, right, left,
or prone.

Finally, we added the inverted body joint positions and body
areas created in the same way as the inverted body pressure data
and appropriate posture labels. The ground truths of the joint po-
sitions, body areas, and posture labels with the blanket were iden-
tical as those without the blanket. We made two correct datasets
(with and without a pillow) that consisted of 1,728 data.

We made 4 kinds of datasets as follows and each consisting of
1,728 data. We utilized a total of 6,912 data in this experiment.
• without the pillow and the blanket
• without the pillow but with the blanket
• with the pillow but without the blanket
• with the pillow and the blanket

4.2 Accuracy Evaluation Method
In this section, we describe our method that evaluated the ac-

curacy of the estimations of the body joint positions by the pro-
posed method. The model that estimated the body joint positions
was trained and evaluated under eight conditions, which are com-
binations of using/not using each proposed three method: noise
suppression (NS) using the body area in Section 3.2, channel ad-
dition (CA) using the classified posture information in Section
3.3, and feature weighing (FW) using classified posture informa-
tion in Section 3.4. Table 1 shows the eight conditions. Each
condition is written as PNCF

100 . For example, PNCF
100 means the con-

dition of NS: ON(1), CA: OFF(0), FW: OFF(0). We divided the
data for each subject and used them for the evaluations. Table 2
shows how the data were selected. The training data consisted of
the data of ten subjects, the validation data consisted of the data
of another subject, and the test data consisted of the data of the
remaining subject. All the data select patterns are written in a
format given as Dv11

t12 . Here S11 denotes the validation data, S12
is the test data and the remainder is the training data.

U-Net, which is a semantic segmentation model used for the
noise suppression, and VGG16, which is a posture classification

Table 1 Comparison condition.

Pattern NS CA FW

PNCF
000 OFF OFF OFF

PNCF
100 ON OFF OFF

PNCF
010 OFF ON OFF

PNCF
001 OFF OFF ON

PNCF
110 ON ON OFF

PNCF
101 ON OFF ON

PNCF
011 OFF ON ON

PNCF
111 ON ON ON

Table 2 Data selection method.

Pattern Training data Validation data Test data

Dv11
t12 S1–S10 S11 S12

Dv10
t11 S1–S9, S12 S10 S11

Dv9
t10 S1–S8, S11, S12 S9 S10

Dv8
t9 S1–S7, S10–S12 S8 S9

Dv7
t8 S1–S6, S9–S12 S7 S8

Dv6
t7 S1–S5, S8–S12 S6 S7

Dv5
t6 S1–S4, S7–S12 S5 S6

Dv4
t5 S1–S3, S6–S12 S4 S5

Dv3
t4 S1, S2, S5–S12 S3 S4

Dv2
t3 S1, S4–S12 S2 S3

Dv1
t2 S3–S12 S1 S2

Dv12
t1 S2–S11 S12 S1

model used for the original image expansion and the weighting
features, were trained following the data selection method from
Dv11

t12 to Dv12
t1 . When estimating the joint positions, we used the

estimated results from these models. The accuracy of the body
area estimation by U-Net was 0.894 ± 0.017 in the correct pixel
ratio, and the accuracy of the posture classification by VGG16
was 0.978 ± 0.022 in the classification success ratio, evaluated
based on the data selection method from Dv11

t12 to Dv12
t1 .

As evaluation indexes for estimating the body point positions,
we used the mean absolute error (MAE) and the percentage of
correct key-points (PCK). The smaller MAE is, the higher the
accuracy. The larger PCK is, the higher the accuracy. Although
PCK is less affected by outliers than MAE, it is unsuitable for
capturing subtle improvements in accuracy. We calculated PCK
with every ten pixels of allowable error from 10 to 100 pixels
on 400 × 800 pixel pressure images and used its Area Under the
Curve (AUC) as an evaluation index. In this experiment, the error
is about 0.2 cm per pixel, so we evaluated PCK every 2 cm from
2 cm to 20 cm. Below, this index is called PCK-AUC@2-20cm.

4.3 Accuracy Evaluation Result
We trained and evaluated the models that estimated the body

joint positions in each condition of Table 1 based on a combina-
tion of the data selection methods of Table 2. Table 3 shows
the evaluation results of MAE and PCK-AUC@2-20cm. Fig-
ure 8 shows a box plot of the evaluation results in MAE. Fig-
ure 9 shows parts of the PCK graph which is the source of PCK-
AUC@2-20cm.
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Table 3 Evaluation result.

Improvement rate: from PNCF
000

Pattern MAE (cm) Improvement PCK-AUC Improvement

rate @2-20cm rate

PNCF
000 10.78 ± 2.03 - 0.662 -

PNCF
100 8.16 ± 1.64 0.243 0.721 0.059

PNCF
010 12.94 ± 1.89 −0.200 0.602 −0.060

PNCF
001 9.80 ± 1.98 0.091 0.681 0.019

PNCF
110 7.23 ± 1.22 0.329 0.743 0.081

PNCF
101 7.67 ± 1.33 0.288 0.732 0.070

PNCF
011 12.41 ± 2.16 −0.151 0.615 −0.047

PNCF
111 7.15 ± 1.25 0.337 0.745 0.083

Fig. 8 Evaluation result distribution in MAE.

Fig. 9 Evaluation result in PCK.

Next we describe the accuracy improvement effects by each
proposed method of noise suppression (NS), channel addition
(CA), and feature weighting (FW). As shown in Table 3, the accu-
racy improved when NS or FW was used compared to CPM alone
in both MAE and PCK-AUC@2-20cm. The accuracy dropped
significantly when CA was used. When two of the three proposed
methods were used, the accuracy improved when NS and CA or
when NS and FW were used compared to when each method was
used alone. The accuracy improved more when CA and FW were
used together than when CA was used alone. The accuracy was
lower when FW or no extension was used. The best condition was
when all three proposed methods were used together. The accu-
racy was 7.15 cm in MAE, which is a 33.7% improvement, and
0.745 in PCK, which is an 8.3% improvement, compared to CPM
alone. We can estimate the body joint positions with sufficient
accuracy to identify the body parts by the proposed method.

For each joint, Table 4 shows the evaluation result in MAE and

Table 4 Evaluation result of each joint in MAE.

Pattern r-ankle r-knee r-hip l-hip

PNCF
000 15.82 ± 3.63 14.46 ± 4.55 7.24 ± 1.55 7.55 ± 1.69

PNCF
100 10.05 ± 3.00 7.45 ± 2.16 6.40 ± 1.45 6.56 ± 1.29

PNCF
010 19.14 ± 3.67 18.74 ± 3.72 8.98 ± 1.44 8.96 ± 1.37

PNCF
001 14.40 ± 3.86 12.85 ± 4.39 6.96 ± 1.27 7.23 ± 1.39

PNCF
110 7.41 ± 1.73 5.71 ± 1.60 6.02 ± 0.85 6.14 ± 0.97

PNCF
101 9.21 ± 2.72 6.77 ± 1.83 6.22 ± 1.02 6.28 ± 0.99

PNCF
011 18.51 ± 4.24 17.51 ± 4.06 8.93 ± 1.65 8.92 ± 1.30

PNCF
111 7.27 ± 1.70 5.58 ± 1.51 6.02 ± 0.87 5.98 ± 0.95

Pattern l-knee l-ankle pelvis thorax

PNCF
000 14.04 ± 4.03 16.45 ± 3.84 4.83 ± 0.58 4.29 ± 0.87

PNCF
100 7.29 ± 2.06 10.10 ± 2.82 4.40 ± 0.61 3.93 ± 0.70

PNCF
010 15.74 ± 3.79 18.25 ± 3.71 5.62 ± 0.87 5.05 ± 1.08

PNCF
001 12.86 ± 4.22 14.96 ± 3.76 4.87 ± 0.72 4.49 ± 1.02

PNCF
110 5.91 ± 1.80 7.19 ± 1.84 4.24 ± 0.61 3.60 ± 0.46

PNCF
101 6.59 ± 1.78 9.13 ± 2.41 4.51 ± 0.81 4.01 ± 0.82

PNCF
011 14.64 ± 3.87 17.86 ± 4.05 5.82 ± 1.22 4.91 ± 1.01

PNCF
111 5.85 ± 1.94 7.11 ± 1.88 4.25 ± 0.62 3.62 ± 0.47

Pattern upper neck head top r-wrist r-elbow

PNCF
000 4.95 ± 1.49 5.94 ± 1.56 18.72 ± 3.46 13.55 ± 4.62

PNCF
100 4.66 ± 1.23 5.72 ± 1.02 15.48 ± 3.62 9.54 ± 2.76

PNCF
010 5.52 ± 1.65 5.98 ± 1.42 21.79 ± 5.02 16.25 ± 4.64

PNCF
001 5.14 ± 1.66 6.00 ± 1.69 16.08 ± 3.73 10.80 ± 3.81

PNCF
110 4.24 ± 0.72 5.40 ± 0.59 14.88 ± 3.89 8.98 ± 2.37

PNCF
101 4.80 ± 1.34 5.78 ± 1.09 14.47 ± 3.27 8.69 ± 2.24

PNCF
011 5.34 ± 1.59 5.96 ± 1.42 20.30 ± 5.52 14.91 ± 4.55

PNCF
111 4.29 ± 0.78 5.48 ± 0.61 14.57 ± 3.94 8.77 ± 2.49

Pattern r-shoulder l-shoulder l-elbow l-wrist

PNCF
000 7.93 ± 2.53 8.14 ± 2.62 11.77 ± 3.36 16.72 ± 3.12

PNCF
100 7.43 ± 2.51 7.18 ± 2.46 9.24 ± 2.48 15.2 ± 3.87

PNCF
010 9.29 ± 2.26 9.71 ± 2.39 16.06 ± 4.19 21.91 ± 4.58

PNCF
001 7.48 ± 2.40 7.45 ± 2.33 10.27 ± 3.12 14.91 ± 3.05

PNCF
110 6.61 ± 1.88 6.60 ± 2.10 8.39 ± 2.21 14.32 ± 3.59

PNCF
101 6.72 ± 2.10 6.74 ± 2.26 8.36 ± 2.07 14.43 ± 3.45

PNCF
011 8.91 ± 2.31 9.23 ± 2.31 15.06 ± 4.41 21.78 ± 5.76

PNCF
111 6.53 ± 1.88 6.43 ± 2.06 8.36 ± 2.35 14.35 ± 3.73

Table 5 shows it in PCK-AUC@2-20cm. We describe the ac-
curacy improvement effects of each additional proposed method
with NS, CA, and FW. When NS was used, the accuracy im-
proved at all the joints in both indexes from CPM alone. When
CA was used, the accuracy decreased at all the joints. When FW
was used, the accuracy improved at the limbs and decreased at the
other joints. When NS and CA were used, or when NS and FW
were used, the accuracy improved at all the joints. When CA and
FW were used, the accuracy decreased at all the joints. When all
three methods were used, eleven joints were the most accurate in
both indexes out of sixteen joints. Especially, eleven joints were
the most accurate in MAE, and ten joints were the most accurate
in PCK-AUC@2-20cm out of twelve joints of the limbs.

Next, we made compared the accuracy under the bedding and
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Table 5 Evaluation result of each joint in PCK-AUC@2-20cm.

Pattern r-ankle r-knee r-hip l-hip

PNCF
000 0.524 0.622 0.705 0.692

PNCF
100 0.666 0.768 0.751 0.743

PNCF
010 0.448 0.512 0.619 0.622

PNCF
001 0.563 0.665 0.718 0.705

PNCF
110 0.734 0.811 0.767 0.760

PNCF
101 0.692 0.789 0.757 0.757

PNCF
011 0.467 0.541 0.623 0.632

PNCF
111 0.739 0.814 0.766 0.768

Pattern l-knee l-ankle pelvis thorax

PNCF
000 0.627 0.515 0.831 0.857

PNCF
100 0.770 0.659 0.854 0.876

PNCF
010 0.578 0.471 0.788 0.818

PNCF
001 0.661 0.550 0.827 0.847

PNCF
110 0.806 0.734 0.861 0.892

PNCF
101 0.793 0.686 0.846 0.872

PNCF
011 0.597 0.478 0.780 0.826

PNCF
111 0.807 0.736 0.861 0.890

Pattern upper neck head top r-wrist r-elbow

PNCF
000 0.826 0.780 0.486 0.614

PNCF
100 0.838 0.787 0.513 0.670

PNCF
010 0.793 0.773 0.436 0.549

PNCF
001 0.813 0.773 0.511 0.663

PNCF
110 0.862 0.802 0.498 0.674

PNCF
101 0.831 0.783 0.523 0.685

PNCF
011 0.804 0.775 0.455 0.576

PNCF
111 0.858 0.798 0.504 0.680

Pattern r-shoulder l-shoulder l-elbow l-wrist

PNCF
000 0.695 0.684 0.636 0.504

PNCF
100 0.718 0.730 0.676 0.517

PNCF
010 0.634 0.609 0.540 0.438

PNCF
001 0.707 0.706 0.664 0.525

PNCF
110 0.741 0.745 0.688 0.514

PNCF
101 0.742 0.740 0.692 0.525

PNCF
011 0.650 0.629 0.561 0.442

PNCF
111 0.747 0.753 0.689 0.514

method conditions shown in Table 6. We used original CPM as a
camera-based scheme. In this experiment, we call the method for
estimating body joint positions using original CPM from camera
images, the “CPM-Camera” method. Table 6 shows the evalua-
tion results of four types of pressure image datasets with/without
the pillow and the blanket by the proposed method, and two types
of sleeping posture camera image datasets with/without bedding
by CPM-Camera.

First, we describe the evaluation results by the proposed
method from the four datasets: with a pillow and a blanket, with
neither a pillow nor a blanket, with a blanket and without a pil-
low, with a pillow and without a blanket. In both the MAE and
PCK-AUC@2-20cm indexes, only with the pillow and only with
blanket, the accuracy was reduced compared to without bedding.

Table 6 Evaluation result between bedding conditions and methods.

Method Blancket Pillow MAE (cm) PCK-AUC

@2-20cm

Ours OFF OFF 7.15 ± 1.25 0.745

ON OFF 7.56 ± 1.26 0.732

OFF ON 8.57 ± 1.34 0.685

ON ON 8.52 ± 1.39 0.690

CPM-Camera OFF OFF 4.42 ± 1.34 0.874

ON ON 13.61 ± 2.22 0.576

With the pillow and the blanket, the accuracy decreased compared
to only with the blanket, but it was almost the same compared to
only with the pillow.

Next we describe the evaluation results by the proposed
method using pressure images or CPM-Camera. Without bed-
ding, the accuracy by CPM-Camera outperformed that of the pro-
posed method. However, with bedding, the proposed method
performed better. The accuracy with bedding by the proposed
method was 8.52 cm in MAE, which is a 37.4% improvement,
and 0.690 in PCK, which is a 11.4% improvement compared to
CPM-Camera.

4.4 Discussion
First, we describe the noise suppression using the body areas

(NS). In some cases, the pressure of the limbs was confused with
noise, and we failed to estimate the limb positions just by using
CPM. Then we hypothesize that the estimation accuracy of the
limb joints could probably be improved by noise suppression us-
ing the body areas. From the evaluation results, the accuracies
of all the joints improved, especially the limbs. Therefore, noise
suppression by body area effectively improved the accuracy of
the joint position estimation.

Second, we describe the channel addition using the classified
posture information (CA). When CA was used without NS, the
accuracy decreased more than with CPM only. When CA was
used with NS, the accuracy improved more than when only NS
was used. When only CA was used, the noise seemed to be added
to the sleeping-body pressure images. That decreased the estima-
tion accuracy. When CA was used with NS, the effect of noise
addition by CA was suppressed, and the accuracy improved by
adding posture information.

Third, we describe the feature weighting using the classified
posture information (FW). When FW was used, the accuracies
improved in all the conditions compared to those without FW.
Therefore, feature weighting effectively improved the accuracy.
In addition, the accuracy when NS, CA, and FW were used ex-
ceeded that when NS and CA were used. Although CA and FW
added the same posture information, a synergistic effect was cre-
ated when they were used together. Perhaps the effect of adding
posture information was different between CA and FW.

With our proposed methods, noise suppression, channel addi-
tion, and feature weighing, each individually improved the accu-
racy.

Next we describe the effects from bedding on the accuracy.
With the pillow, the accuracy decreased with or without a blan-
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Fig. 10 Sample: (a) Camera image without blanket, (b) Estimated result
by CPM from camera image with blanket, (c) Estimated result by
proposed method from pressure image.

ket. The decrease in accuracy was caused by pressure noise near
the head and from changes in the pressure that were applied to
the bed surface. Without the pillow, the accuracy with the blanket
decreased more than without the blanket. On the other hand, with
the pillow, the accuracy with the blanket was almost the same as
without the blanket. The effect provided by the blanket is smaller
than that of the pillow. However, we can estimate the body joint
point positions without significantly decreasing the accuracy even
when using bedding by the proposed method.

Finally, we describe the result of our proposed method and
CPM-Camera. Figure 10 shows an example of the result of esti-
mating body joint positions with bedding. With the blanket, the
joint positions estimated by CPM-Camera were significantly dif-
ferent from the correct position. However, joint positions could
be estimated by the proposed method from the pressure images.
Our proposed method is useful in actual bed environments with
pillows and blankets.

5. Weight Parameter Investigation for Noise
Suppression

In this section, we describe the weight parameter investigation
for noise suppression. As described in Section 3.2, we used the
0.2 weight for outside of the body area because the accuracy of
estimating body areas by U-Net is not perfect and there is also
the possibility that the pressure appeared in out of the body area
make some contributions for body joint estimation. However, the
weight parameter “0.2” was selected manually from a small pre-
liminary trial. We then searched for a suitable weight parameter
for our method.

5.1 Investigation Method
We searched for a suitable weight parameter by two method.

In this investigation, we used the dataset without the pillow and
the blanket shown in Section 4.1, and the model added the three
proposed method shown in Section 3. The accuracy evaluation
method is the same as that shown in Section 4.2.

First, we investigated weight parameters by setting manually.
We checked the results in the case of using the weight parame-
ter every 0.1 from “0” to “0.5” by the whole data and proposed
methods.

Second, we checked the cases of DNN based auto weighting.

Fig. 11 Overview of DNN based auto weighting.

Table 7 Weight parameter investigation result.

Method MAE (cm) PCK-AUC

@2-20cm

0 7.36 ± 1.27 0.744

manually 0.1 7.13 ± 1.22 0.746

selected 0.2 7.15 ± 1.25 0.745

parameter 0.3 7.10 ± 1.24 0.747

0.4 7.07 ± 1.25 0.747

0.5 7.12 ± 1.26 0.746

DNN based 12.89 ± 2.85 0.576

Figure 11 shows the overview of this method. We added a 1×1
kernel size convolution layer after the U-Net part. The out of per-
son area estimated by U-Net was passed through the convolution
layer and then multiplied by the input pressure image. We as-
sumed the weight parameter for noise suppression could be tuned
by this layer.

5.2 Investigation Result
We show the result of investigation in Table 7. The first

method, manual parameter setting, the result of “0” was the worst
and that of “0.4” was the best. This result shows that the pressure
outside of the body area estimated by U-Net make some con-
tributions to body joint estimation. In the second method using
DNN-based auto weighting the accuracy become worse.

In this investigation the “0.4” weight parameter proved best in
this study. However, it may prove possible to find a more optimal
parameter.

6. Conclusion

We examine a method to estimate body joint positions from
sleeping-body pressure images. Our method, which suffers from
fewer privacy or occlusion issues, identifies areas where pressure
ulcers might be progressing in bed-ridden patients.

We improved the accuracy of estimating the body joint point
positions by proposing three approaches to modify CPM: noise
suppression using estimated body areas, channel addition using
classification posture information, and feature weighting using
classification posture information. With these proposed meth-
ods, we obtained the following accuracy measurements in esti-
mating body joint positions from sleeping-body pressure images:
7.15 cm in MAE, which is a 33.7% improvement, and 0.745 in
PCK, which is an 8.3% improvement compared to CPM alone.
Our proposed methods improve the accuracy of joint position es-
timation.

Future work will expand this method to 3D joint position esti-
mation and apply it to use in actual hospitals and long-term care
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facilities.
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