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Abstract: In this work, we propose two techniques for accurate and efficient hyperbolic embeddings for real-world
recommender systems. The first technique is regularization. We found that the graphs of various recommendation
datasets exhibit hierarchical or tree-like structures suitable for hyperbolic embeddings, while these structures are not
well modeled by the original hyperbolic embeddings. Hence, we introduce a regularization term in the objective func-
tion of the hyperbolic embeddings for forcibly reflecting hierarchical or tree-like structures. The second technique is
an efficient embedding method, which only updates the embedding of items that are recently added in a recommender
system. In an offline evaluation with various recommendation datasets, we found that the regularization enforcing
hierarchical or tree-like structures improved HR@10 up to +9% compared to hyperbolic embeddings without the reg-
ularization. Moreover, the evaluation result showed that our model update technique could achieve not only greater
efficiency but also more robustness. Finally, we applied our proposed techniques to a million-scale news recom-
mendation service and conducted an A/B test, which demonstrated that even 10-dimension hyperbolic embeddings
successfully increased the number of clicks by +3.7% and dwell time by +10%.

Keywords: recommender systems, hyperbolic embeddings, regularization, news service

1. Introduction

Although recent studies show that embedding-based recom-
mender algorithms have achieved high levels of accuracy, how
to learn embeddings in real-world recommender settings is one
of the remaining challenges [12], [25]. In particular, there are
special requirements for real-time stream recommender systems
with a large number of new items added continuously in short
intervals, such as news applications and social network services:
1) compact embeddings for avoiding performance degradation in
response time [18], [25]; 2) online learning algorithms that can in-
crementally update the embeddings [15]; and 3) sufficiently high
recommendation accuracy to allow users to find what they need
within a large volume of information [17].

To satisfy the above requirements for a real-time stream rec-
ommender system, hyperbolic embeddings are considered as a
reasonable solution, since they have recently been reported to be
compact and able to produce highly accurate embeddings [23].
Hyperbolic embeddings are known to perform well when learn-
ing with hierarchical or tree-like structure data, even in low-
dimensional spaces. However, there remain several questions in
applying hyperbolic embeddings to a real recommender service:
1) whether the existing recommendation datasets have a suitable
hierarchical or tree-like structure to embed an item in a low-
dimensional space; 2) how online learning should be conducted
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without sacrificing the recommendation accuracy; and 3) whether
hyperbolic embeddings actually lead to a better recommendation
accuracy and user satisfaction when they are applied to a real rec-
ommendation service.

In this study, we first investigated whether the graph of recom-
mendation datasets has a hierarchical or tree-like structure. While
they were shown to form such a structure, we also found simple
application of the hyperbolic embeddings did not allow us to learn
embeddings that adequately reflected the hierarchical structure.
Therefore, we introduced a regularization technique to promote
embeddings that reflects a hierarchical structure using graph cen-
trality in the loss function. Next, we proposed a model update
technique for online hyperbolic learning. In this method, we only
update embeddings of the most recently added items while keep-
ing the previously added embeddings unchanged.

We conducted an offline experiment and A/B testing to evaluate
the two proposed techniques. Throughout the offline experiment,
we used both public datasets and a proprietary dataset generated
by a million-scale news service. In the offline evaluation, we con-
firmed that regularization that leveraged the graph centrality im-
proved the ranking metrics. Furthermore, we simulated real-time
stream recommender systems and found that the dynamic model
update improved the learning efficiency and robustness. Finally,
we evaluated the performance of our method in a real-world news
application by conducting A/B testing. The results showed that
the number of clicks rose significantly (+3%), and dwell time also
rose (+10%).

Our Contributions. The key contributions of our work are sum-
marized as follows:
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• Analysis: We investigated the existence of a hierarchical and
tree-like structure in the graphs of various recommendation
datasets. All graphs of the recommendation datasets that we
investigated showed high hierarchical or tree-like structure
metrics.

• Accuracy: We proposed regularization using graph central-
ity for hyperbolic embeddings. By introducing this regular-
ization, we improved the performance of recommender sys-
tems.

• Efficiency: We proposed a dynamic model update strategy
for real-time stream recommender systems. The empirical
simulation results showed that this method achieved not only
greater efficiency but also greater robustness.

• Application: To the best of our knowledge, this is the first
work to deploy a hyperbolic embedding method in a real-
time stream recommender system. We deployed our method
to a million-scale news recommendation service and con-
firmed that the number of clicks and user dwell time in-
creased significantly.

The remainder of this paper is organized as follows. We de-
scribe related works in Section 2, and in Section 3, we report
the results of our analysis of hierarchical or tree-like structure in
the recommendation datasets. We propose a regularization tech-
nique in Section 4 and model update strategy in Section 5. In
Sections 6 and 7, we present the results of the offline experiment
and A/B testing, respectively. In Section 8, we conclude our work
and suggest directions of future work.

2. Related Work

First, we introduce hyperbolic embeddings. Then, we de-
scribe regularization techniques. Finally, we review model update
strategies for real-world recommender systems.

Hyperbolic space has recently been used to model complex
networks. Nickel and Kiela applied hyperbolic distance to model
taxonomic entities and graph nodes [23]. Following this work,
various applications and generalization using hyperbolic embed-
dings have been proposed in the literature. In the information
retrieval field, He et al. proposed a question-answering system
using a hyperbolic space [29]. Hyperbolic models have been also
used for recommendations [6], [11], [30]. Shimizu et al. gener-
alize the fundamental components of neural networks in a sin-
gle hyperbolic geometry model [28]. Nonetheless, there were no
investigations into why hyperbolic models work well for recom-
mendation datasets. Thus, in this work, we investigate whether
recommendation datasets have a hierarchical or tree-like struc-
ture suitable for hyperbolic embeddings.

To improve recommender effectiveness, regularization tech-
niques are frequently used. Matrix factorization (MF) models
have many parameters, and to optimize them, a regularization
term is added to prevent overfitting. The user and item factors
learned through matrix factorization are usually regularized with
the L2-norm. Liang et al. used the item–item co-occurrence ma-
trix for regularization [21]. Rendle and Schmidt-Thieme used
regularization to learn kernel matrix factorization models [27].
However, very few classical regularization methods are directly
applicable or easily generalizable in the Poincaré ball model of

hyperbolic space. For instance, the L2 regularization constraint
degrades recommendation accuracy because it requires that all
nodes remain close to the origin and breaks a hierarchical or
tree-like structure [20]. In this paper, we use a graph property—
specifically, graph centrality–to maintain hierarchical or tree-like
structures for regularization to improve recommender accuracy.

Efficiency is one challenge for real-world recommender sys-
tems. An essential element of a practical recommender system is
handling the dynamic nature of incoming data, for which timeli-
ness is crucial consideration. Because it is prohibitive to retrain
the full model online, various studies have developed incremen-
tal learning strategies for neighbor-based, graph-based, and prob-
abilistic MF methods [15]. In this study, we propose dynamic
model updates for hyperbolic embeddings rather than batch up-
dates inspired by previous incremental learning strategies and aim
to improve efficiency and robustness. We note that previous hy-
perbolic models [6], [11], [30] are difficult to apply to the real-
time stream recommender system because of their computational
resource limitations. Thus, we focused on building a hyperbolic
model for efficient recommendations with dynamic updates.

3. Data Analysis

In this section, we investigate whether recommendation
datasets have a hierarchical or tree-like structure.

3.1 Notation
To represent the user and item interactions in recommender

datasets, we introduce a directed graph G = (V, E), where V is
a set of nodes that represents all of the items, and E is a set
of edges that individually connect one item to another. |V | and
|E| represent numbers of nodes and edges, respectively. In this
work, we constructed edges based on users’ interactions and con-
nected items if they were adjacent in a user’s history of inter-
actions. More formally, letting i = (i1, i2, . . .) be a sequence of
items a user has interacted with, sorted by the interaction time,
E =

⋃
i{(ik, ik+1)|k = 1, 2, . . .}. We use this graph definition

throughout this paper.

3.2 Datasets
In this study, we took datasets from diverse domains, including

movie, news, and e-commerce services, with details as follows:
• MovieLens20M: This is a widely used dataset from Grou-

pLens Research for evaluating recommender algorithms.
This dataset contains ratings of movies *1. For each user,
item IDs with a rating more than 1.2 times the average value
were extracted as positive feedback.

• Online Retail [8]: This is an e-commerce dataset that con-
tains all the transactions occurring between Januaray 12,
2010 and September 12, 2011 for a UK-based and registered
non-store online retail site *2. The company primarily sells
unique all-occasion gifts. Many customers of the company
are wholesalers.

• Amazon Reviews [22]: This dataset contains product re-
views from Amazon. We selected five categories, Sports,

*1 https://grouplens.org/datasets/movielens/
*2 http://archive.ics.uci.edu/ml/datasets/Online+Retail.
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Table 1 Dataset statistics.

|V | |E| Degree Density C(k)
MovieLens 8,026 83,400 20.7 0.00258 0.0717
Online Retail 2,660 23,810 17.9 0.00673 0.0781
Sports 14,576 100,095 13.7 0.000942 0.0412
Cell Phones 26,386 169,920 12.9 0.000488 0.0364
Games 25,026 157,167 12.6 0.000501 0.0303
Automotive 24,771 167,236 13.5 0.000545 0.0334
Clothing 8,597 37,748 8.78 0.00102 0.0495
Lucra 986 23,282 47.2 0.0479 0.491

Fig. 1 Degree distributions.

Cell Phones, Games, Automotive, and Clothing, by consid-
ering the diversity of domains and dataset size *3.

• Lucra: This is a news application service dataset. It is one
of the most popular news application services among female
users in a country served by Gunosy. The news application
dataset is different from the other datasets in that the recom-
mendation items are frequently changed.

We filtered out users who had interactions with items less than
three times and only used each user’s last ten interactions in the
analysis. Table 1 shows the statistics of the datasets.

3.3 Metrics
Here, we introduce the graph metrics related to hierarchical or

tree-like structures.
In hierarchical networks, the degree of clustering can be used

as an indicator of a hierarchical structure. Clustering coeffi-

cient [31] is a measure of the degree to which nodes in a graph
tend to cluster together and is defined as follows: C(ki) =
1
|V |
∑|V |

i=1
|{e jk :v j ,vk∈Ni ,e jk∈E}|

ki(ki−1) , where Ni is a set of nodes that are con-
nected to vi, and ki = |Ni|.

Gromov’s hyperbolicity δ was used for the analysis of tree-like
structures [1]. The smaller δ is, the closer the graph is to a tree,
and it becomes a tree when δ = 0 [7]. More formally, Gro-
mov’s hyperbolicity δ is defined as follows [1]. Let u, v, w, and
x be nodes in the graph G. Consider the three distance sums,
dG(u, v)+ dG(w, x), dG(u, w)+ dG(v, x), and dG(u, x)+ dG(v, w).
We denote S 1, S 2, and S 3 that are sorted in non-decreasing or-
der of the three distance sums: S 1 ≤ S 2 ≤ S 3 and denote the
hyperbolicity of a quadruplet u, v, w and x as δ(u, v, w, x) =
(S 3 − S 2)/2. Then, δ-hyperbolicity in the graph G is the max-

*3 Datasets were obtained from http://jmcauley.ucsd.edu/data/amazon/ us-
ing the five-core setting, with the domain names truncated in the interest
of space.

imum hyperbolicity over all possible quadruplets u, v, w, x ∈ V ,
or δ(G) = max δ(u, v, w, x). As the computational time of the δ-
hyperbolicity is O(|V |4), it is not easy to obtain the exact value
of the δ-hyperbolicity. Thus, we approximately computed the δ-
hyperbolicity by sampling 100,000 quadruplet nodes. Note that
we ignored the δ value if a selected quadruplet node was not con-
nected following to a previous work [7].

3.4 Results
Figure 1 shows the degree distributions, which reveal that all

of the datasets had a power law distribution. A network with a
degree distribution that follows a power law is called a scale-free
network [2].

Figure 2 shows the clustering coefficient plots. When a graph
has a scale-free property, it has been empirically shown that
C(k) � k−β if the graph is hierarchical [9], [19], [26]. In Fig. 2,
most of our datasets had linear fittings in which the coefficient of
determination was negative (excluding MovieLens and Lucra),
and thus, the graphs had hierarchical structures.

Table 2 shows the relative frequency of δ-hyperbolicity val-
ues from sampled nodes, which were low for all of the datasets.
More than 98% of the quadruplets had δ ≤ 1, indicating that
all of the graphs were metrically close to trees. In particu-
lar, MovieLens and Lucra had δ-hyperbolicity of 1, meaning
that they had a chordal graph structure. The other two datasets
had δ-hyperbolicity of 1.5. Because k-chordal graphs have hy-
perbolicity at most k/4, the other two datasets were 6-chordal
graphs, which indicates the graph did not contain any chordless
7-cycles [32]. Thus, all the datasets were metrically close to trees.

In summary, the examined recommendation datasets were
found to have hierarchical or tree-like structures in the graph suit-
able for hyperbolic embeddings.
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Fig. 2 Clustering coefficient plots.

Table 2 Relative frequency of δ-Hyperbolicity quadruplets in our graph datasets.

δ-Hyperbolicity MovieLens Online Retail Sports Cell Phones Games Automotive Clothing Lucra
0 6.38e-01 5.92e-01 6.06e-01 6.07e-01 6.09e-01 6.22e-01 6.19e-01 6.79e-01
0.5 3.55e-01 3.92e-01 3.81e-01 3.80e-01 3.79e-01 3.68e-01 3.70e-01 3.18e-01
1 6.58e-03 1.46e-02 1.18e-02 1.11e-02 1.14e-02 8.74e-03 1.04e-02 1.82e-03
1.5 - 1.00e-05 2.18e-05 2.01e-05 1.02e-05 1.02e-05 3.29e-05 -
max δ 1 1.5 1.5 1.5 1.5 1.5 1.5 1

4. Graph-Centralized Regularization

In this section, we propose a regularization technique for hy-
perbolic embedding using graph-central structures.

4.1 Hyperbolic Embeddings
The Poincaré ball model is the Riemannian manifold Pd =

(Bd, gx), in which Bd = {x ∈ Rd : ||x|| < 1} is the open d-
dimensional unit ball that is equipped with the following metric:

gx =
(

2
1−||x||
)2
gE , where x ∈ Bd and gE denotes the Euclidean

metric tensor. The distance between points v, u ∈ Bd is given by
d(u, v) = arcosh

(
1 + 2 ||u−v||2

(1−||u||2)(1−||v||2)

)
.

Poincaré embedding determines the embedding Θ = {θi}ni=1 ∈
R

n×d, where n is the number of all the nodes and d is the embed-
ding size by solving the following optimization problem:

arg min
Θ

L(Θ) s.t. ∀θi ∈ Θ : ||θi|| < 1.

Here, θi corresponds to each node in V . We use the same loss
function as Ref. [23], which uses the negative samples N(u) ⊂
{v : (u, v) � E, v � u} to maximize the distance between the em-
beddings of unrelated objects:

L(Θ) = −
∑

(u,v)∈E

log
e−d(u,v)

∑
v′∈N(u) e−d(u,v′) .

Hyperbolic embeddings work for the graphs of hierarchical or
tree structure because of the following two properties. 1) Hyper-
bolic space expands as one moves from the center of the sphere
to the boundary. 2) The number of nodes at the top of the hierar-
chical structure or near the tree’s root is fewer than the nodes at
the bottom of the hierarchical structure or the tree leaves. Thus,
nodes higher in the hierarchy or closer to the tree’s root are ex-
pected to be embedded near the center of the sphere, while nodes
lower in the hierarchy or closer to the leaves of the tree are ex-
pected to be embedded near the boundary.

Fig. 3 2D item embedding visualization with and without regularization.
The top 25% high-degree nodes are plotted as red dots and the re-
mainder as blue dots.

4.2 Regularization
As we confirmed that the graphs of recommendation datasets

had hierarchical or tree-like structures in Section 3, we investi-
gated how each node was embedded by the hyperbolic embed-
dings method. It can be seen that nodes with high graph-centrality
are embedded near the boundary as well as those with a low de-
gree in Fig. 3.

Inspired from the related work [24], we hypothesize that a node
that is similar to many other nodes should be embedded near the
center of the ball. In this recommendation dataset, a node that
is similar to many other nodes is the same as the node degree is
large. The graph in the recommendation dataset is constructed
by connecting the nodes interacted by a user, i.e., nodes are con-
nected according to the similarity of the user’s interests. How-
ever, without the regularization, the large degree nodes are em-
bedded near the boundary in Fig. 3.

Thus, we introduce the L2-based regularization termLR to em-
bed the large degree nodes near the center of the ball:

LR(Θ) =
∑

u∈V
wu||θu||2,

where wu represents the graph-centrality metric of node u. We
used the L2-based regularization because the embedding accu-
racy might be decayed if we use the geometrically defined regu-
larization, such as the distance in the hyperbolic space. Due to
the structure of the Poincaré ball model, the distance of points in-
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creases exponentially the closer they are to the boundary. The
ideal embedding in hyperbolic space is a situation where the
nodes at the top of the hierarchical structure are placed at the cen-
ter of the space, and the nodes at the bottom of the hierarchical
structure are placed near the boundary away from the origin [23].
When we use the geometrically defined regularization, all nodes
might be closer to the origin rather than the boundary because the
penalty of nodes at the boundary is too high. Then, the hierarchi-
cal structure can not be fully reflected that the recommendation
dataset has. We note that the standard L2 regularization is not
also enough to improve embedding accuracy because all nodes
are enforced to be close to the origin and can impair the benefit of
hierarchical structures. On the contrary, the weighted L2 regular-
ization term increases the penalty for distance from the center of
the sphere for nodes with higher graph centrality. In other words,
nodes with a high graph-centrality move closer to the origin, and
nodes with a low graph-centrality move closer to the boundary.

The overall loss function is L̂(Θ) = L(Θ) + hLR(Θ), where h

is a hyper-parameter for regularization.
Although there are multiple graph-centrality metrics, such as

closeness, degree, and eigenvector centrality, we used the degree
centrality. Because real-world recommender systems have large
graphs, the computational cost for calculating graph centrality
needs to be low. Another reason is the following. The ideal em-
bedding in hyperbolic space is that the highly general nodes at
the top of the hierarchy are placed near the origin, while the less
general nodes at the bottom of the hierarchy are placed near the
boundary [24]. For example, in the case of a graph embedding
for the sending relationship of employees’ e-mails, the engineer-
ing manager is embedded near the origin, and the staff engineers
are placed near the boundary. In this paper, we approximate the
generality in the recommendation dataset by the node degree. For
example, it is natural to think that a movie with a large degree that
many users watched (e.x., Titanic) has a high generality, while a
niche movie with a small degree has a low generality.

Additionally, by using the degree for weight w = win + wout

(with win denoting the in degree and wout the out degree), a sin-
gle embedding update for each edge (u, v) ∈ E can be calculated
without wu by using the following relationship:

LR(Θ) =
∑

u∈V
wu||θu||2

=
∑

u∈V
(wu,in + wu,out)||θu||2

=
∑

u∈V
(|{i : (i, u) ∈ E}| + |{i : (u, i) ∈ E}|)||θu||2

=
∑

(u,v)∈E

(||θu||2 + ||θv||2)

The transformation from the third to the fourth line of the formula
is calculated by rounding out the common edges that appear in the
first and second terms.

5. Dynamic Model Updates

In this section, we introduce a dynamic model update tech-
nique to apply the hyperbolic embedding method to real-time
stream recommender systems.

5.1 Problem Definition
In this problem setting, new items and their relationships are

provided at every time step. Letting Gt = (Vt, Et) represent the
items and relations that appear at time t, our problem is to learn
the node embedding Θt ∈ Rn×d based on the data available up to
time t. Our goal is to find an efficient and robust solution to this
problem.

A straightforward approach for this problem is to learn the em-
bedding Ωt ∈ Rn×d by using the complete set of data up to time
t (i.e., G1,G2, · · · ,Gt). We call this approach the oracle. This
approach can be effective but could be infeasible for real-time
stream recommender systems that regularly update the embed-
dings.

In order to clarify the goal of this work, we introduce an effec-
tiveness measure for embedding, f : Rn×d → R. This function
takes the embedding and measures its effectiveness at a specific
task. For example, it can be nDCG@10 in a recommendation
task. The robustness of the solution can be considered the close-
ness to the effectiveness of the oracle embedding even when the
entire set of data is not used for the embedding learning. Hence,
the robustness is measured by 1/(1+ f (Ωt)− f (Θt)). In the follow-
ing subsections, we propose techniques to close the gap between
Ωt and Θt and increase robustness.

5.2 Dynamic Model Update
We propose a dynamic model update strategy for real-time

stream recommender systems. Since new items are added reg-
ularly in real-time stream recommender systems, it is necessary
to obtain an embedding of new items as soon as they arrive.
However, it is infeasible to use all of the data up to time t (i.e.,
G1,G2, · · · ,Gt), at every time step (i.e., the oracle embedding),
but it can be less effective than oracle to use only the data ob-
tained at time t (i.e., Gt) for training the embedding of Vt. This
batch learning approach using only Gt can result in a consider-
able inconsistency of embeddings between different time steps;
for example, similar items that appear at different time steps may
be embedded very differently. These problems imply low effec-
tiveness of batch learning relative to oracle embedding, and this
accounts for its low robustness.

In contrast, our dynamic model update strategy utilizes only
the latest data from multiple time steps and keeps updating re-
cently learned embeddings until they become stable. The key
idea of our solution is to update only the embeddings of items
that appear within window size τ by using items and their rela-
tionships within the same window, as well as those necessary to
learn the embeddings for the new items. More precisely, at time
t, we only update the embeddings of Vt−τ,Vt−τ+1, · · · ,Vt, with the
data obtained between time t − τ and t. In addition, we incor-
porate existing embeddings of nodes connected by the relation-
ships within the time window. These nodes and edges are for-
mally defined as Gt−τ:t = (Vt−τ:t, Et−τ:t), where Vt−τ:t = ∪t

t′=t−τVt′

and Et−τ:t is a set of edges that appear within the time window
[t − τ, t] and consist of at least a node from Vt−τ:t. In other words,
Et−τ:t = {(u, v) ∈ ∪t

t′=t−τEt′ : u ∈ Vt−τ:t ∨ v ∈ Vt−τ:t}. By these
means, we ensure the consistency of embeddings between new
items and existing items.
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Algorithm 1: Dynamic Model Updates
Input: Gt = (Vt , Et) for t = 1, 2, . . ..

1 Randomly initialize Θ0

2 V0 ←− ∅, E0 ←− ∅
3 V0:τ ←− ∅, E0:τ ←− ∅
4 for t = τ + 1, τ + 2, . . . do
5 Vt−τ:t ←− (Vt−τ−1:t−1 \ Vt−τ−1) ∪ Vt

6 E′t ←− {(u, v) ∈ Et : u ∈ Vt−τ:t ∨ v ∈ Vt−τ:t}
7 Et−τ:t ←− (Et−τ−1:t−1 \ Et−τ−1) ∪ E′t
8 Θt ←− Θt−1

9 Θt ←− UpdateEmbedding(Gt−τ:t ,Θt)
end

In practice, the embeddings are learned through Algorithm 1.
Lines 1–3 initialize the variables used in this algorithm. Lines 5–
7 update nodes Vt−τ:t and edges Et−τ:t to learn the embeddings at
time t. Line 8 copies the embedding from the previous time step
to that at time t for initialization. Line 9 learns the embeddings
with Gt−τ:t = (Vt−τ:t, Et−τ:t) based on the initialized embedding
Θt. In the embedding learning process, nodes in Vt−τ:t are up-
dated based on their initialized embedding and edges Et−τ:t, while
nodes that are not in Vt−τ:t remain unchanged.

6. Offline Experiments

In this section, we describe how we conducted experiments to
answer the following research questions:
RQ1 Is our regularization effective at improving evaluation ac-

curacy of recommendation?
RQ2 How efficient and robust is our dynamic embedding?
We called the first task answering RQ1 the accuracy evaluation

and the second task answer RQ2 the efficiency evaluation.

6.1 Metrics
We used the normalized discounted cumulative gain

(nDCG@10) and hit ratio (HR@10) as the primary evalua-
tion metrics. Both are well-established ranking metrics for
recommendation. We evaluate the methods with user sessions.
A session in this context means an event that a user visits a
recommendation service and clicks on one of the items in the
recommended list. Let S be the set of sessions for the evaluation,
cs,i be 1 when the item at position i is clicked, and 0 otherwise.
Each metric is formulated as:

nDCG@k =
1
|S |
∑

s∈S

∑k
i=1 cs,i/ log2(i + 1)

maxπ
∑k

i=1 cs,π(i)/ log2(π(i) + 1)

HR@k =
1
|S |
∑

s∈S
min(|{i|cs,i = 1, i ≤ k}|, 1)

where π is an arbitrary permutation of positions.
We constructed a ranking for a user by selecting a positive sam-

ple item that the user clicked on and 20 negative sample items that
the user did not click on.

6.2 Accuracy Evaluation
6.2.1 Settings

For all the datasets, the test sets were composed of the last item
on which the user clicked, and these items were excluded from the
train and validation sets for each user. We split the dataset into

train : validation : test = 80 : 10 : 10. The models were trained
with the training set for 20 epochs and then evaluated with the
test set. We used the following common parameter settings: vec-
tor dimension (10, 100, and 300), learning rate (0.001, 0.01, 0.1,
and 1.0), batch size (128, 256, and 512), and negative sampling
size (5, 10, 15, and 20). Hyper-parameters were tuned with the
validation set.

We compared the results using models as follows:
• Item-KNN [4]: A traditional collaborative filtering (CF) ap-

proach based on k-nearest-neighbor (KNN) and item–item
similarities. Regularization was also included to avoid coin-
cidental high similarities of rarely visited items. This base-
line is one of the most common item-to-item solutions in
practical systems. This model recommends items using pre-
vious item interactions of users. The method contains the
following parameters: neighborhood size (50, 100, and 200)
and regularization term (16, 32, and 64) that discounts the
similarity of rare items [10].

• Item2vec [3]: A model derived from word2vec. This model
uses the interaction of items as word co-occurrences. We
used the skip-gram negative sampling model for training,
which was conducted in Euclidean space. The method con-
tains the following parameters: vector dimension, learning
rate, negative sampling size, and window size (3, 7, 12, and
15) [5].

• GRU4REC [16]: A sequence prediction model can predict
the next item using recurrent neural networks when given the
items a user has interacted with in the past. This model can
capture long-term user preferences, unlike the other base-
line models. The method contains the following parameters:
the parameter vector dimension, learning rate, and batch
size [16].

• Neural collaborative filtering (NCF) [14]: A well-known
recommendation algorithm that generalizes the matrix fac-
torization problem with a multi-layer perceptron. The
method contains the following parameters: vector dimen-
sion, hidden layers for MLP, learning rate, and batch size.
We set low vector dimensions (8 and 16) to avoid overfitting
and employed three hidden layers for MLP ([32, 16, 8] and
[64, 32, 16]) as described in Ref. [14].

• Light graph convolution network (LightGCN) [13]: A
simple, linear, and neat graph convolution network (GCN)
model for recommendation. The method contains the fol-
lowing parameters: vector dimension, layers (1, 2, and 3),
learning rate, and batch size.

• Poincaré [23]: We used the original poincaré model to get
item embeddings. Because of the time and computational
resource limitations of real-time stream recommender sys-
tems, we cannot embed users when there are much more
users than items. Thus, we did not use the other hyper-
bolic embedding models [11], [30]. We ranked the items by
the distance from the second latest item the user previously
clicked. The method contains the following parameters: vec-
tor dimension, learning rate, negative sampling size. We set
these parameters the same as common parameter settings.
We used the burn-in process for five epochs at the beginning
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Table 3 nDCG@10 and HR@10. In this table, L2 means the the L2 regularization and GL2 means the
graph-centralized L2 regularization. Poincaré-10 means a 10-dimension Poincaré embedding.

nDCG@10
MovieLens Online Retail Sports Cell Phones Games Automotive Clothing Lucra

Item-KNN 0.427 0.462 0.293 0.290 0.275 0.304 0.658 0.600
Item2vec 0.383 0.337 0.539 0.294 0.335 0.326 0.659 0.674
GRU4REC 0.333 0.271 0.371 0.330 0.350 0.345 0.538 0.627
NCF 0.378 0.364 0.328 0.293 0.309 0.318 0.603 0.759
LightGCN 0.341 0.269 0.533 0.395 0.431 0.424 0.678 0.502
Poincaré 0.459 0.481 0.587 0.418 0.415 0.438 0.674 0.764
Poincaré L2 0.467 0.485 0.587 0.422 0.416 0.442 0.675 0.765
Poincaré-10 GL2 0.462 0.490 0.607 0.434 0.425 0.450 0.686 0.776
Poincaré GL2 0.470 0.490 0.608 0.435 0.433 0.457 0.696 0.779

HR@10
MovieLens Online Retail Sports Cell Phones Games Automotive Clothing Lucra

Item-KNN 0.652 0.660 0.533 0.527 0.516 0.542 0.776 0.809
Item2vec 0.640 0.639 0.689 0.584 0.591 0.589 0.769 0.888
GRU4REC 0.644 0.535 0.687 0.623 0.660 0.657 0.806 0.937
NCF 0.694 0.658 0.625 0.625 0.575 0.620 0.773 0.954
LightGCN 0.628 0.537 0.773 0.676 0.685 0.685 0.827 0.780
Poincaré 0.744 0.721 0.761 0.680 0.639 0.664 0.784 0.943
Poincaré L2 0.749 0.726 0.761 0.685 0.644 0.668 0.786 0.942
Poincaré-10 GL2 0.759 0.726 0.804 0.734 0.690 0.710 0.827 0.967
Poincaré GL2 0.769 0.733 0.812 0.734 0.699 0.714 0.834 0.968

of the learning phase. This burn-in technique was introduced
in Ref. [23] to get a good initial angular layout that can be
helpful to find good embeddings.

• Poincaré with regularization: We utilize the regularization
to the Poincaré method in addition to the baseline settings.
Hyper-parameter of proposed graph-centralized regulariza-
tion term h is ∈ {0.5, 0.75, 1} in Poincaré embedding method.

6.2.2 Results
Table 3 shows the evaluation accuracy of nDCG@10 and

HR@10. For each of the obtained results shown in Table 3,
the best result is in boldface, while the best in the baselines is
underlined. Overall, the hyperbolic embedding model with our
regularization outperformed the other baseline methods in both
nDCG@10 and HR@10. Regarding the baselines, the hyper-
bolic method without our regularization outperformed the other
methods in nDCG@10. LightGCN also performed well in Ama-
zon datasets. In contrast to the LightGCN results, NCF worked
well for Lucra with a dense graph structure. Item-KNN per-
formed well in nDCG@10 about the MovieLens and Online Re-
tail dataset. As reported in Ref. [10], a deep neural network model
does not always have more permanence, and a tuned item-KNN
model worked well.

To break down the regularization effects, we also show the re-
sults of the standard L2 regularization and graph-centralized L2
regularization in Table 3. We can see that the graph-centralized
regularization leveraging hierarchical graph structures had more
uplift in accuracy up to 8.5%, than the standard L2 regularization
and had 9% more uplift than without regularization in HR@10.
In the beginning of the learning phase, we used the burn-in tech-
nique [23] to improve the angular layout without moving too far
towards the boundary. This technique might have a regularization
effect. Even though we used the burn-in process, the evaluation
accuracy could be further improved by the regularization. This
means that our proposed regularization had another effect on ac-
curacy in addition to the burn-in technique.

To see the effectiveness of extremely low-dimensional hyper-

Fig. 4 2D item embedding visualization with and without regularization.
The upper side of each dataset shows the results without any regular-
ization. The lower side shows results with graph-centralized regular-
ization.

bolic embedding, we also explicitly describe the result of 10-
dimensional hyperbolic embedding in Table 3. Despite the low
embedding dimension (10 dimensions), graph-centralized regu-
larization can maintain the hierarchical structure in the embed-
ding space and showed that high accuracy compared with other
baselines.

Figure 4 shows the 2D-item embedding visualization with
and without regularization. We plotted the top 25% high-degree
nodes as red dots and the remainder as blue dots. Using graph-
centralized regularization, the high-degree nodes tended to be
closer to the origin, while the low-degree nodes tended to be far
from the origin. Without regularization, we see that the items
tended to be embedded in the Poincaré ball’s boundary. These re-
sults demonstrate that we can maintain the graph structure when
we use regularization.

Regarding RQ1, the hyperbolic embedding model with our
regularization outperformed the other baseline methods in both
nDCG@10 and HR@10 and effect was more positive than stan-
dard L2 regularization.
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Fig. 5 Efficiency of the dynamic and batch model updates in stream settings.

Fig. 6 Robustness of oracle, batch, and dynamic model updates in setting
(T = 20).

6.3 Efficiency Evaluation
6.3.1 Settings

To simulate a real-time stream recommender setting, we gen-
erated a dynamic data stream. We first sorted all of the data by
timestamp and split items into 20 sets. Next, we used each split
set for training. Assuming many new items are added sequen-
tially at short intervals, we trained the model by one epoch for
each data stream. Thus, we did not use the burn-in process [23]
in the Poincaré embedding in this efficiency evaluation setting.
We set the window size τ to 10, started building trained data from
time t = 1, and trained from time t = 10 to t = 20. In each test-
ing phase for time t = 10 to t = 20, we filtered the ground truth
items to be included in the current data stream. The ground truth
was re-ranked with 20 negative sampling items; the performance
was judged based on the ranked list. We measured nDCG@10
for ranking metrics averaged over 20 evaluations.
6.3.2 Results

Figure 5 shows the performance of the dynamic update model
strategy, where the x-axis represents the number of input stream
datasets, and the y-axis represents the nDCG@10. The dynamic
model outperformed batch training on all datasets. By using
dynamic updates, the training proceeded more efficiently and
achieved higher accuracy. The difference in improvement was
small in Lucra probably because of the density of the Lucra,
which tended to have more edges in the streaming data, and one
epoch was enough to learn the embeddings.

Figure 6 shows the results for robustness. The oracle model
used all the data to train the embeddings, while the dynamic
and batch models trained the embeddings in a window size of
τ = 10. After finishing all the training phases, we used the latest
embeddings to measure the nDCG@10. The oracle model was
the highest-scoring, followed by the dynamic model. The dy-
namic model had much better accuracy than the batch model due
to its dynamic update embeddings and successfully maintained
the embeddings’ consistency even if they were not contained in
the training data. We note that the oracle mode needed t/τ times
the computational cost to get the results for each time t.

Therefore, RQ2 can be answered as follows: The dynamic
model update could achieve much better efficiency and robust-
ness than the batch training.

7. A/B Testing

This section reports the results of the A/B testing. We as-
sessed the impact on a real-world news service when the proposed
method was deployed. We aimed to improve the online metrics
by building compact hyperbolic embedding into the current rec-
ommender system.

7.1 Experimental Setup
From February 5, 2020, to February 10, 2020, we conducted

A/B testing on the news service Lucra. We applied 5% traffic to
the proposed method so as not to degrade the user experience.

We deployed our method to a related article component. This
component displays related articles after a user reads an article.
The existing logic for finding related articles uses title similar-
ity and the click-through rate of the article. In this testing, we
referred to the existing logic as the control and the logic using
similarity of Poincaré embedding in addition to existing logic as
the treatment.

We trained 15 epochs every 15 minutes while the user interac-
tions accumulated sequentially with the 10-dimension Poincaré
embedding. We set τ at three days to retain embeddings in the
model. In Lucra, approximately 10,000 articles emerged in one
day, and all of the articles from the three days were candidates for
the recommendation.

7.2 Online Metrics
We used four online metrics to evaluate the impact of the pro-
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Table 4 Treatment vs. Control.

Metrics Percent Lift
Clicks +3.79%
Click-Through Rate +2.58%
Clicks/Unique Users +3.92%
Dwell Time/Unique Users +10.2%

posed methods [25].
Clicks The total number of user clicks.
Click-Through Rate The total number of user clicks divided

by the number of user article views. If this value is low, the
user is more engaged in searching articles than browsing ar-
ticles.

Clicks/Unique Users The total number of user clicks divided
by the number of unique users. It is divided by the number
of unique users to remove the bias of the number of users.

Dwell Time/Unique Users Total reading time of the user’s re-
lated articles divided by the number of unique users. The
article viewing total time refers to the time spent reading an
article after clicking on a related article.

7.3 Results
Table 4 provides a summary of the A/B test results, showing

that the treatment bucket value was significantly improved for all
metrics. Not only did the number of clicks increase, but dwell
time per user also improved significantly. The difference came
from whether we used CF-based Poincaré embeddings. The con-
trol bucket used only the title and click-through rate, while in the
treatment bucket with CF-based Poincaré embeddings, there was
an increase in average dwell time. Due to the Poincaré embed-
dings, the articles that did not contain similar titles but would be
pertinent for the user became easier to recommend. As a result,
the average article dwell time increased. In the treatment bucket,
96.34% of responses could be returned with trained Poincaré em-
beddings. In this experiment, the Poincaré embedding was 10-
dimensional. Therefore, there was no degradation of system per-
formance when we conducted A/B testing. Our response time
was kept less than 50 milliseconds. Thus, Poincaré embedding
is promising as a recommender component that requires few re-
sources.

8. Conclusion

One of the key challenges of a real-time stream recommender
system is how to learn compact and accurate embedding repre-
sentations efficiently. In this work, we first determined that the
graphs of various recommendation datasets had a hierarchical
or tree-like structure suitable for hyperbolic embedding. Then,
we proposed a regularization method that uses graph-centrality.
Next, we proposed a model update technique for learning hyper-
bolic embeddings by online learning rather than by batch learn-
ing.

In the offline evaluation, we confirmed that the regularization
leveraging of the hierarchical or tree-like structures improved
HR@10 up to 9% when compared with a hyperbolic embedding
method without regularization. In the offline experiments in real-
time stream recommender settings, we confirmed that the pro-
posed model update technique achieved more efficient and robust

updates than batch updates. Finally, we deployed our method to a
million-scale news recommendation service for A/B testing. The
results showed that the number of clicks improved (+3.7%) and
the dwell time also improved (+10%) when 10-dimension hyper-
bolic embeddings were used.

In this study, we focused on CF-based Poincaré embedding
employing user interactions. In the future, we plan to realize the
content and a CF-based hybrid recommender system using com-
pact hyperbolic embeddings.
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