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Abstract: Adversarial image attack is a well-known attack methodology in the image recognition field
where the input images are purposely modified to make no difference to the human perception but can
fool the image recognition models to classify them incorrectly. Recently, the adversarial attack has drawn
much attention from researchers due to its ability to fool even state-of-the-art and commercial image recog-
nition models. Researching the adversarial attack is crucial to know the potential risk, thus preparing
needed earlier prevention.
In this paper, we investigated an improvement on the Boundary Attack algorithm because of its effec-
tiveness, flexibility and the absent of a direct protection mechanism. Previously, in the randomization
step, the Boundary Attack algorithm randomizes the movement vector from the whole image space. In
this research, we have improved the algorithm by applying a square mask to the space in this step. We
have applied on the CIFAR10 dataset and successfully improved the distance between the adversarial and
the original images without increasing the number of queries. Our work suggests a new possibility of an
attack vector that can exploit the prior knowledge of the model to improve the distance without affecting
the query count.

1. Introduction
Recently, with the rise of computing power, the deep

neural network has achieved impressive performance on
various tasks, surpassing human ability in many aspects
([13]). Among the deep neural network application do-
main, image recognition is truly an attractive field thanks
to its ample range of utilization. Besides the high accu-
racy of recent image recognition models on natural input
samples, the application of those models poses a security
concern when applied in security-or-safety-crucial applica-
tions. Researching the attack method is crucial in under-
standing the potential risk to prepare for necessary pre-
vention ahead of time.

One of the most vulnerable attack vectors is the adver-
sarial image attack([34]), where the input samples are pur-
posely or incidentally slightly modified in a way that makes
no change to the human perception but fools the image
recognition models to classify them incorrectly. Many ad-
versarial image attack methods ([7], [6], [24], etc.) were in-
vestigated and shown that they are efficient against state-
of-the-art models or even many commercial models. This
implies the urge to give serious attention to this type of
attack.

The adversarial attack was initially recognized in ([14])
with the creation of the Fast Gradient Sign Method
(FGSM). FGSM is a method in which the target image
is iterated by a slight move along the sign of the gradient
at the current position. FGSM and the likes are known as
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white-box attack methods because they take the model’s
internal information to calculate the gradient precisely. As
a result, these methods are not feasible if the model’s de-
tail is not available at least in most commercial models.
To compensate for that demerit, researchers investigated
black-box attack methods in which only the output of the
model is required to generate an adversarial image.

1.1 Motivation
We want to investigate the black-box adversarial attacks

in image recognition to reveal its capability before contin-
uing with protection mechanism analysis. Out of various
black-box techniques, we were motivated by the Boundary
Attack method ([5]) because of its outstanding gradient-
free concept, along with its accuracy performance, flexi-
bility and the absence of a direct protection mechanism.
Boundary Attack is a decision-based method that only
requires the label without the associated probability re-
sult from the model. Furthermore, it does not rely on
the gradient calculation, hence being immune to gradient
masking protections such as defensive distillation ([31]).
Subsequently, we observed that the original algorithm in
the Boundary Attack method, in each iteration, random-
izes the next movement vector from the entire space. By
scanning the entire space, the algorithm skips any aggre-
gated information of the target model. On the other hand,
witnessing that most of the image recognition models de-
tecting the image feature in a square area, in this paper,
we proposed an improvement to the Boundary Attack by
restricting the movement vector randomization space in a
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square shape. We have applied our improvement and taken
a benchmark on the CIFAR10 dataset([21]). In 80% of 20
uniformly randomized input samples, we have successfully
reduced the final l2 distance between the original images
and the adversarially generated images.

1.2 Our contributions
In summary, our main contributions are:
• We successfully reduced the l2 distance between the

original image and the adversarial image, thus improv-
ing the original Boundary Attack method.

• Compared to other methods, our proposed method
does not introduce additional queries.

• Our method exploits the statistic information over the
model, suggesting a new direction for future improve-
ment on the Boundary Attack method.

The rest of this paper is organized as follows. In Sec-
tion 2, we list several papers that try to improve the
Boundary Attack and papers related to space dimension
reduction. In Section 3, we explain the detail of our ap-
proach. The succeeding Section, Section 4 depicts our ex-
periment environment before discussing the result in 5 sec-
tion. Finally, Section 6 gives a summarized conclusion and
suggests several ideas for the future development.

2. Related Works
The first well-known paper in adversarial image attack

research was proposed in [14] in 2014. Goodfellow et al. of-
fered a straightforward yet efficient method called Fast
Gradient Sign Method (FGSM) that generates adversar-
ial images by adding a slight vector along the sign of the
gradient of the target model. After that, we have witnessed
a mass number of papers on adversarial image generation
algorithms in diversity approaches. FGSM is one of the ap-
proaches requiring knowledge of the internal information
of the target model (to obtain the exact gradient). These
approaches are classified as white-box attack models.

The white-box attack method is an interesting sub-
ject and attracted the attention of many researchers in
many works, namely: L-BFGS ([34]), FGSM, Momen-
tum Iterative FGSM (MI-FGSM) ([14]), Basic Iterative
Method (BIM) ([23]), Projected Gradient Descent (PGD)
([26]), Carlini & Wagner ([7]) Adversarial Transforma-
tion Networks (ATN) ([3]) DeepFool ([27]), Jacobian-based
Saliency Map Attack (JSMA) ([30]), Weighted JSMA
(WJSMA) ([11]), Taylor JSMA (TJSMA) ([11]), etc.
Some of these white-box attack methods achieved surpris-
ingly impressive performances against even state-of-the-
art models. However, they all require knowing the target
model’s internal structure and configuration, causing them
to be pointless in practice because, in most available at-
tack scenes, the model’s internal details are not provided
or can be hidden effortlessly.

Opposite to the white-box attack model, there is an
attack method called black-box attack where the attack-
ers do not know the parameters or the structure of the

target models but can query the model and obtain the
output classes with or without the classification proba-
bility. A large number of works extended the concept
founded in many white-box attack approaches of mov-
ing the input samples along the gradient. Various black-
box attack techniques of speculating the model’s gradient
were developed, for instance: Zeroth Order Optimization
(ZOO) ([9]), Autoencoder-Based Zeroth Order Optimiza-
tion Method (AutoZOOM) ([35]), I. Andrew et al. ([17]),
Query-Efficient Hard-Label ([10]), Bhagoji et al. ([4]),
input-free attack ([12]), Bandits and Priors A. Ilyas et
al. ([18]), etc. Nonetheless, there exist various gradient-
masking techniques (e.g., defensive distillation ([31]), mak-
ing the model flat ([29])) that can be used to protect the
model from these gradient-based attack methods by adding
non-differentiable terms. Furthermore, these attack meth-
ods are ineffective against non-differentiable classifiers, for
instance, k-means ([20]).

In 2018, W. Brendel et al. took a creative movement with
a different approach called Boundary Attack in [5]. Bound-
ary Attack is a black-box gradient-free attack method. It
is classified as a decision-based method and only needs the
final label decision from the model, opposed to the score-
based method (e.g., N. Narodytska et al. [28], J. Hayes et
al. [15]), which relies on the probability associated with the
returned label. Besides, Boundary Attack is highly flexi-
ble and can be applied with any distance function. This
implies a broader application domain of the Boundary At-
tack method. The idea of Boundary Attack is to start
from a uniformly random misclassified image (in targeted
attack mode, start from a sample from the target class), it-
erate the sample by walking around the boundary between
the target class and the misclassified class while trying to
reduce the distance in each step. The original proposal
is very simple by only applying geometrical projection in
multidimensional space.

Consequently, Boundary Attack drew researchers’ at-
tention via [6], [8], [25], etc. However, qFool in [25]
and the biased sampling improvement in [6] depend
on the gradient calculation. They can be prevented
with the gradient masking technique. The other
method, called HopSkipJumpAttack in [8], uses Bi-
nary Search to reach the boundary directly. Never-
theless, HopSkipJumpAttack requires additional queries
for the binary search procedure. On the other hand,
M. Andriushchenko et al. ([2]) recently proposed another
gradient-free method called Square Attack. Square Attack
is based on the random search with restricting the move-
ment space in a square shape. It is proved to be efficient
in some untargeted attack scenes, but the approach is not
applicable in a targeted attack.

Through this paper, we propose a method whose idea
is similar to Square Attack but applied on the Boundary
Attack. Our method does not depend on gradient calcu-
lation or negatively affect the query count on the original
algorithm.
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3. Methodology
In this section, we go through several subsections to

cover the fundamental understanding which supports our
study. Whilst details of the original Boundary Attack al-
gorithm is fully explained in [5], we first briefly summarize
it before introducing our proposed improvement.

In this paper, we only discuss the untargeted attack.
However, the method can be straightforwardly generalized
for the targeted attacks. Similarly, the original algorithm
and our modification do not affect the flexibility of dis-
tance function selection. In this paper, we only evaluate
the l2 distance function.

Algorithm 1 illustrates the Boundary Attack algorithm.
The algorithm starts from an initial random adversarial
sample via the function InitialAttack, it then moves
the sample toward the target input image by the returned
vector from OrthogonalPerturbation if the movement
improves the distance and keeps the sample being adver-
sarial.

There are multiple choices of the algorithms for Ini-
tialAttack. The selection of the initial attack does not
affect our comparison result, thus, any initial attack al-
gorithm can be used. In the algorithm in this paper, an
input is uniformly randomized until its label classified by
the target model M is not equal to the target label M(X).
Subsequently, the Binary Search algorithm is used to find
the nearest point toward the target image X in the line
connecting X and the randomized sample.

Algorithm 1 Boundary Attack
Input X: target input image
Output A: an adversarial image whose distance d(A,X) is

minimal
1: function BoundaryAttack(X)
2: A← InitialAttack(X)

3: repeat
4: η ← OrthogonalPerturbation(X,A)

5: if A+η is adversarial, and, d(A+η,X) < d(A,X) then
6: A← A+ η

7: end if
8: until d(A,X) < ϵ, or, number of loops reaches the limit
9: return A

10: end function

Algorithm 2 Original Orthogonal Perturbation
Input X: target input image
Input A: current adversarial image
Output η: the next movement

1: function OriginalOrthogonalPerturbation(X)
2: η ← sample from Gaussian distribution N (0, AdaptiveSize)

3: Update η by projecting A+ η onto a sphere around X

4: Update η by moving A+ η nearer toward X

5: Update η by clipping A+ η within the input range [0, 255]

6: return η

7: end function

After the initial attack is initialized with InitialAt-
tack, a perturbation is generated via OrthogonalPer-
turbation. This function is where we made our optimiza-
tion for the algorithm. Algorithm 3 describes the original
algorithm for the perturbation generation. In the origi-
nal algorithm, the perturbation is generated from an in-
dependent and identically distributed Gaussian distribu-
tion N (0, AdaptiveSize) before being scaled and clipped
to make it nearer to the target image and to satisfy the
requirement of the image domain. Although this simple
heuristic implementation works surprisingly well([5]), we
noticed that the Gaussian distribution over the whole im-
age space is too large and could drop important statistic
information of the model. Therefore, we propose our im-
provement of the OrthogonalPerturbation which is
discussed in the next Subsection.

3.1 Our Proposed Orthogonal Perturbation Algo-
rithm

Observing that in most image recognition models, the
image features are usually detected by a square shape fil-
ter, we hypothesized that if the perturbation returned from
OrthogonalPerturbation is generated within a square
shape, we might have a higher chance to seize the image
features and the movement might be more robust. Even-
tually, we proposed an alternative OrthogonalPertur-
bation algorithm. Our proposed algorithm is outlined in
Algorithm 3. Instead of randomizing the whole space (in
Algorithm 2, line 2), we restrict the perturbation within
a square shape whose corner is uniformly randomized and
the square size is determined by the GetSquareSize func-
tion (in Algorithm 3, line 2 to line 5). The rest of the
algorithm is kept the same.

Algorithm 3 Proposed Orthogonal Perturbation
Input X: target input image
Input A: current adversarial image
Output η: the next movement

1: function ProposedOrthogonalPerturbation(X)
2: SquareSize← GetSquareSize
3: SquareCornerX ← uniformly random sample from

[0, ImageSize− SquareSize]

4: SquareCornerY ← uniformly random sample from
[0, ImageSize− SquareSize]

5: η ← sample from Gaussian distribution
N (0, AdaptiveSize) within the rectangular whose corners are
(SquareCornerX, SquareCornerY ) and (SquareCornerX +

SquareSize, SquareCornerY + SquareSize)

6: Update η by projecting A+ η onto a sphere around X

7: Update η by moving A+ η nearer toward X

8: Update η by clipping A+ η within the input range [0, 255]

9: return η

10: end function

4. Experiment
In the experiment, we built and trained a ResNet ([16])
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Table 1: Distance between the target image and the ad-
versarial image by the original and proposed algorithms.
Difference: positive means better

Sample
Number

Original
algorithm

Proposed
algorithm Difference

Percentage
(%)

1 0.329 0.299 0.030 9.108
2 0.164 0.140 0.024 14.879
3 0.632 0.567 0.065 10.220
4 0.582 0.486 0.096 16.565
5 0.518 0.458 0.060 11.637
6 0.503 0.422 0.081 16.158
7 0.007 0.006 0.001 13.825
8 1.312 1.612 −0.301 −22.947
9 0.397 0.828 −0.431 −108.619

10 0.751 0.681 0.070 9.330
11 0.891 0.924 −0.034 −3.765
12 0.549 0.353 0.196 35.655
13 1.123 1.033 0.090 8.039
14 0.470 0.335 0.135 28.750
15 0.943 0.890 0.053 5.634
16 0.329 0.280 0.049 14.985
17 0.454 0.364 0.090 19.768
18 0.526 0.505 0.021 4.032
19 0.063 0.061 0.002 2.416
20 0.973 0.986 −0.013 −1.335

model on the CIFAR10 ([22]) dataset using the Tensor-
Flow framework ([1]). We followed the implementation of
ResNet from [19]. The trained model is then used as the
target model. 20 images were uniformly selected from the
CIFAR10 dataset to be employed for the untargeted attack
measurement.

We followed the implementation provided in [32] for the
main algorithm (Algorithm 1), in order to compare the re-
sult. We set the maximal number of iterations of the loop
at line 8 of Algorithm 1 be 5000.

The implementation of the InitialAttack function,
is picked from [19], an implementation for the Hop-
SkipJumpAttack algorithm([8]). Besides, to achieve a fair
comparison, we store the initial adversarial point for each
target image, and restore them in each run.

Accordingly, the square sizes returned by the Get-
SquareSize are 32, 28, 24, 20, 16, 4, 2 for the iteration
number from range [0, 50], [51, 200], [201, 500], [501, 2000],
[2001, 3000], [3001, 4000], [4001, 5000], respectively.

5. Results and Discussion
In this section, we show and discuss the result of our

experiment.
Table 1 displays the numeric result of our experiment.

The second and third columns depicts the distance be-
tween the final adversarial image and the target image in
the original algorithm and our proposed algorithm, respec-
tively. The fourth column (Difference) is the difference,
it indicates the improvement made by our proposed al-
gorithm, followed by the last column (Percentage) repre-
senting its ratio to the distance produced by the original
algorithm. From the table, we figure out that our proposal
improves the Boundary Attack algorithm in 16 cases over
total 20 cases.

We recorded the distance changes in each iteration and
plotted them in Figure 1 and Figure 2. Figure 1 draws
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Fig. 1: Distances between the target image and the adver-
sarial image by iteration (lower is better)

the changes of distances between the target image and the
adversarial image in each iteration, of the first 4 samples.
Figure 2 draws the same measurement for the 4 negative
samples (samples numbered 8, 9, 11, and 20). In the ma-
jority of the cases, our algorithm improves the distances.
Especially, the distances was improved more in the middle
of the loop, around steps between 2000 and 4000. This in-
dicates that there is possibility to tune our algorithm’s pa-
rameters such as the square size strategy in GetSquare-
Size.

On the other hand, Figure 3 combines and visualizes the
results of all 20 samples in our experiment. In Figure 3,
there are 20 groups of 3 images, associated with 20 sam-
ples in our experiment, arranged from left to right, top to
bottom. In each group of 3 images, the left image is the
initial image (i. e., the result from InitialAttack) the
middle image is the final image returned by our algorithm,
the right image is the target image. The demonstration
video of the algorithm’s progress is also available in [33].
The similarity of the middle and the right images indicates
that our algorithm produces an acceptable result, even in
the negative cases (cases numbered 8, 9, 11, and 20).

6. Conclusion and Future Works
We have improved the Boundary Attack algorithm by

introducing a new strategy of randomizing the movement
vectors. In which, we restricted the randomization space
to a square shape helping the algorithm to capture more
features from the image. Via this approach, we made use
of the useful statistic information over the image recogni-
tion models. Hence, we improved the algorithm without
carrying out any additional queries. This opens a very
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Fig. 2: Distances between the target image and the adver-
sarial image by iteration (negative cases) (lower is better)

Fig. 3: Result images of the attack algorithm. For each
group 3 horizontal images, left: initial image, center: final
adversarial image, right: original image

promising opportunity of future improvement such as us-
ing other patterns (like oval shapes, triangular, etc.), or
investigating more efficient square sizing strategies, etc.

Besides, we conducted a comparison experiment on 20
samples from the CIFAR10 dataset and observed that our
modification improved the algorithm in 16 over 20 cases.
The similarity of the generated image and the target im-
age in the visualization result indicated that our algorithm
produced acceptable result even in negative cases. In the
future, we will investigate the experiment on more sam-
ples, also considering other datasets. Especially, we are
going to evaluate other Boundary Attack-based methods
and make the comparisons. Moreover, in the experiment
we observed that the time for the adversarial image gen-
eration was quite long. In the next study, we want to im-
prove the speed performance of the algorithm by various
methods such as migrating the calculation from CPU to
GPGPU, parallelizing the calculation whenever possible,
etc.

Via this work, we can understand the possibility of
the adversarial attack via boundary movement techniques.
This is an important step for us to continue with the inves-
tigation on protection, preventing image recognition mod-
els from the similar risks.
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