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Abstract: To maintain the availability of industrial control systems (ICS), it is important to robustly detect malware
infection that spreads within the ICS network. In ICS, a host often communicates with the determined hosts; for
instance, a supervisory control host observes and controls the same devices routinely via the network. Therefore, a
communication request to the unused internet protocol (IP) address space, i.e., darknet, in the ICS network is likely to
be caused by malware in the compromised host in the network. That is, darknet monitoring may enable us to detect
malware that tries to spread indiscriminately within the network. On the other hand, clever malware, such as malware
determining target hosts of infection with reference to host lists in the networks, infects the confined hosts in the net-
works, and consequently evades detection by security sensors or honeypots. In this paper, we propose novel deception
techniques that lure such malware to our sensor, by embedding the sensor information continuously in the lists of hosts
in the ICS networks. In addition, the feasibility of the proposed deception techniques is shown through our simplified
implementation by using actual malware samples: WannaCry and Conficker.

Keywords: industrial control system (ICS), malware detection, darknet monitoring, honeypot, server message block
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1. Introduction

1.1 Background and Motivation
Recently, security incidents related to malware infections have

been occurring at manufacturing factories, e.g., automotive and
semiconductor factories. These infections often hinder daily op-
erations at the factories and cause monetary losses for the com-
panies. The targeted attacks using malware on critical infras-
tructures have also occurred, destroying equipment and stopping
systems [1]. The most important thing about industrial control
systems (ICS), including for manufacturing factories and crit-
ical infrastructures, is that these systems often cannot be eas-
ily stopped [2]. Namely, we must maintain the availability of
the control systems, including human machine interfaces (HMI),
programmable logic controllers (PLC) and networks connecting
these hosts in ICS.

It was believed that ICS networks related to supervisory con-
trol were not susceptible to malware since they are often not con-
nected to enterprise networks and the Internet, i.e., there are air
gaps between ICS networks and these networks. It is, however,
difficult to completely prevent malware intruding into ICS net-
works because there are malware entry routes that can bypass the
air gaps *1:
• A personal universal serial bus (USB) can be connected to

the hosts in ICS networks.
• An employee can connect their personal smartphone to the

hosts for the sake of recharging.

1 FUJITSU LABORATORIES LTD., Kawasaki, Kanagawa 211–8588,
Japan

a) m-takanori@fujitsu.com

• A digital camera for recording a situation on the factory pro-
duction line also can be connected.

• A vendor connects a computer to the network for mainte-
nance of ICS devices.

If these devices are infected with malware, it can intrude into the
ICS networks via the entry routes. Furthermore, malware can
spread easily after the intrusion into the ICS networks. That
is because the hosts in ICS networks are often based on legacy
operating systems (OS) *2 such as expired Windows XP; there-
fore, malware can exploit the known vulnerabilities remaining
in the legacy OS. Once a malware infection spreads to most of
the host in ICS, the host might not work and the ICS might be
stopped, i.e., its availability is decreased. Consequently, malware
activity related to the spread of an infection should be robustly
detected, which is the preparation for the respond and recover
phases described in the National Institute of Standards and Tech-
nology (NIST) Cybersecurity Framework [3].

A host on ICS networks often receives and sends almost the
same messages from and to the same hosts regularly on the ICS
networks [2]. For instance, a supervisory control host such as an
HMI receives the monitoring traffic from and sends the control
commands to the determined hosts such as PLCs. Therefore, it is
known that whitelist-based anomaly detection is effective in ICS,
which identifies anomalous communications whose characteris-
tics such as sources and destinations, payload formats and inter-

*1 The main reason why malware might bypass the air gaps is that ICS
networks are sometimes not managed compared to enterprise networks;
therefore, the following entry routes can be opened.

*2 The reason why ICS hosts are equipped with legacy OS is that the life cy-
cle of these devices is generally long term and the devices do not support
the latest OS [2].
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vals are not configured in the whitelists. Many researchers have
discussed the ICS whitelist using not only these network charac-
teristics [4] but also physical process features of ICS devices by
directly measuring process variables, e.g., sensor reading and ac-
tuator states [5], [6]. Although a high accuracy can be expected in
whitelist detection, it is difficult to define and update the whitelist
because it varies depending on environments and by time of day.
In this paper, we focus on darknet-monitoring-based (blacklist-
based and network-based) detection that can be performed with
comparatively simple operations and would be effective to some
extent.

Darknet monitoring is basically for surveying malware
trends [7], [8], [9] in the Internet and is based on the assump-
tion that traffic directed toward an unused internet protocol (IP)
address, darknet, would be generated by malware. One or mul-
tiple darknet addresses are allocated to a decoy server, and the
traffic whose destination is the decoy server is aggregated and
analyzed. Otherwise, traffic whose destination is a part of the
darknet addresses is aggregated from the mirror ports of network
switches or from routers with altered forwarding rules. For get-
ting additional intelligence of threats, a honeypot for deceiving
attackers is deployed as a decoy server. Many researchers discuss
honeypot techniques not only on general networks such as en-
terprise networks but also on ICS networks [10], [11], [12]. The
authors of Ref. [10] designed a virtual machine (VM)-based high-
interaction honeypot that represents a water treatment plant based
on Ethernet and transmission control protocol (TCP). The authors
of Ref. [11] developed a full system simulator where realistic re-
actions could be observed on HMI exposed to the Internet by ref-
erence to a real system. The authors of Ref. [12] also focused on
ICS that could be accessed from the Internet, and their honeypot
returned response packets based on TCP-based S7 communica-
tions protocol, a dedicated protocol of Siemens PLC.

Although darknet monitoring, for example, using a honeypot
is often demonstrated in the Internet as explained above, some
research is on local area networks (LAN) for detecting lateral
movement of malware. The authors of Ref. [13] reported that
darknet monitoring in LAN is effective for identifying the in-
fected hosts, i.e., detecting malware, which can be found in Sec-
tion 2.2 in detail. We believe that darknet-monitoring-based mal-
ware detection in LAN of ICS is effective compared to general
networks and the Internet since normal communications on ICS
networks are static compared to general networks. In this paper,
we install a sensor, a low-interaction honeypot, that has a darknet
address of the ICS networks and generates an alert when detect-
ing access to itself in the ICS networks.

Since previous vulnerabilities that are overcome in the latest
OS remain in ICS due to legacy OS [2], there is a serious risk
that prevalent and widely distributed malware will infect the ICS
based on IP, which is an often-used configuration in previous re-
searches, e.g., Refs. [10], [11], [12]. Therefore, we believe that
previous malware with well-known and IP-based infection strate-
gies should be detected first in ICS networks. The previous mal-
ware often spreads indiscriminately within networks, and it can
be detected with high probability since the sensor also becomes
a target of infection by the malware. In contrast, there is a clever

type of malware, “clever malware”, that tries to evade detection
by infecting the confined hosts not including sensors, which does
not spread indiscriminately, and it is difficult for the sensors to
detect. For instance, malware can limit the target hosts by us-
ing a browse list, where the names of in-service servers in the
networks are described, and by using an address resolution pro-
tocol (ARP) table where used IP addresses in the networks are
described on the infected host. Note that conventional honeypots
such as Refs. [10], [11], [12] cannot detect these malware, which
is discussed in Section 6.

1.2 Our Contributions
• We propose novel deception techniques based on darknet

monitoring that lure the clever malware to our sensor. The
sensor information including the host name and the IP ad-
dress is embedded in host lists, i.e., the browse list and the
ARP table, respectively. A small amount of traffic for em-
bedding the information is sent actively and continuously to
the ICS networks by the sensor. That is because, in ICS, it is
often not acceptable to install an agent software embedding
the information passively in ICS hosts since it might prevent
the availability of the hosts.

• Our first evaluation based on the simplified implementation
of the proposed deception techniques clarifies that they are
feasible and can detect an actual malware sample, Conficker,
that uses browse lists for discovering targets for infection.

1.3 Organization of This Paper
The organization of this paper is as follows. Section 2 de-

scribes well-known reference models of ICS and previous work
on malware detection based on darknet-monitoring in LAN. In
Section 3, we introduce taxonomies of malware for the spread
of infection and clarify the positioning of our detection targets.
In Section 4, our proposed deception techniques are explained
in detail. Section 5 gives the first evaluations of the proposed
techniques. In Section 6, we discuss the difference between the
proposed and conventional techniques and the limitations of our
proposal. Finally, the conclusion and future work are presented
in Section 7.

2. Related Work

2.1 Reference Model on ICS
The “Purdue Enterprise Reference Architecture” (Purdue

Model) [14], which was put forward by T.J. Williams from Pur-
due University in 1992, has been often used as a reference model
for ICS. Another model based on the Purdue Model was ac-
cepted as the international standard related to enterprise control
systems: International Society of Automation (ISA)95 [15]. The
international standard related to ICS security, ISA99 [16], was de-
veloped using ISA95. As in ISA99, an ICS consists of five layers,
from Level 0 to Level 4.
Level 4 Enterprise Systems (Business Planning & Logistics)

including financial systems
Level 3 Operations Management including production

scheduling systems
Level 2 Supervisory Control including HMI and historians
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Level 1 Local or Basic Control including PLC, distributed
control systems (DCS) and remote terminal units (RTU)

Level 0 Process (Equipment under Control) including sen-
sors and actuators

Firewalls are put in the boundaries between Level 2 and Level 3,
and/or Level 3 and Level 4. In some situations, demilitarized
zones (DMZ) that prevent direct communication among them are
also set up. We focus on IP-based networks between Level 1
and Level 2. That is because most previous malware has targeted
IP-based networks and Level 0, which is the most important com-
ponent of ICS, cannot work if its networks are infected with mal-
ware.

2.2 Darknet-Monitoring-Based Malware Detection on LAN
The authors of Ref. [13] demonstrated darknet monitoring in

LAN. Unused IP addresses in their campus networks were de-
fined as darknet. They monitored and analyzed traffic whose des-
tination was the darknet by forwarding it to their server via routers
with altered forwarding rules. The research only focused on traf-
fic whose destination ports corresponded to TCP 445, i.e., related
to server message block (SMB), and that was related to internet
control message protocol (ICMP). As the result of the monitoring
over a month, they clarified that thirty-one hosts were suspected
to be infected with malware and four Windows XP hosts out of
the thirty-one hosts were actually infected with malware. As just
described, this shows that darknet monitoring in LAN is effective
for detecting malware.

3. Malware Strategies for Spread of Infection

In this section, we introduce taxonomies of worm malware that
self-propagates in networks, which is based on previous research.
The worm strategies for spread of infection are organized in order
to clarify the positioning of our detection targets.

The authors of Ref. [17] dissected the worm mechanism into
the following five components, which was originally based on
Ref. [18].
Reconnaissance Component, which discovers new targets that

can be compromised with known vulnerabilities in the net-
work, e.g., by active scanning.

Intelligence Component, which inspects the infected host and
gets its location and capability such as a host name, an IP ad-
dress and a file list for smoothly communicating with other
infected hosts or a central server.

Communication Component, which communicates the infor-
mation about vulnerabilities obtained by the reconnaissance
component and about location and capability obtained by the
intelligence component with other infected hosts or a central
server.

Command Component, which executes OS commands.
Attack Component, which launches attacks using vulnerabili-

ties, e.g., direct hosting of SMB, and duplicates itself to the
targeted hosts.

Simply put, new targets identified by the reconnaissance com-
ponent are attacked by the attack component; therefore, worms
are basically discussed in terms of these two components. Mean-
while, a sensor not identified as a new target by the reconnais-

sance component is not attacked by the attack component. Even
in this situation, the sensor can sometimes notice the worm by
scanning traffic of the reconnaissance component. However, the
reconnaissance components of some worms discover new targets
stealthily, i.e., these worms can evade detection by the sensor.
Therefore, we focus on the reconnaissance component.

The authors of Ref. [19] also dissected the worm mechanism
into five factors: target discovery, carrier, activation, payloads,
and attackers. The target discovery factor, corresponding to the
reconnaissance component in Ref. [17], was further broken down
into the following five strategies.
Scanning: Worms probe a set of addresses for identifying new

targets to infect. The scanning is often performed sequen-
tially or randomly, i.e., a set of hosts that have ordered
addresses or have randomly chosen addresses are scanned.
They scan not only global addresses but also local addresses.
The bandwidth or speed of scanning is sometimes limited in
order to evade detection.

Pre-generated Target Lists: Worms have target lists in ad-
vance.

Externally Generated Target Lists: Worms get target lists
from command and control (C&C) servers dynamically.

Internal Target Lists: Worms obtain lists of hosts that have
been used in the networks from local information, e.g., the
network information service (NIS) that manages system con-
figurations such as user and host names distributed in multi-
ple Linux-based hosts in LAN.

Passive: Worms wait until hosts in the networks access them,
or passively observe the behaviors of legitimate users. Al-
though the speed of infection with this strategy is potentially
slow, it can be performed stealthily since additional traffic to
the networks is not generated.

Worms with an internal target list can get a set of operating
hosts in the networks without sending traffic to all or almost all
hosts in the networks. Therefore, they might evade detection by
sensors since the attack component launches attacks only to the
listed hosts. That is, worms with an internal target list can po-
tentially infect new hosts with both high stealth and high speed,
whereas passive worms are only high stealth. Since these worms
not only rapidly prevent the availability of ICS but are also un-
detected by sensors, they are serious threats to ICS and need to
be detected. Another example of local information for internal
target lists is an ARP table that provides a list describing pairs of
an IP address and a media access control (MAC) address of hosts
that have been communicated in the networks. Worms can also
obtain host names of in-service servers in networks as local infor-
mation by acquiring browse lists. The details of target discovery
using browse lists can be found in Section 3.1. In addition, some
worms get and use a list of IP addresses leased by a dynamic host
configuration protocol (DHCP) server.

3.1 Target Discovery Using Browse List
In networks where hosts are mainly based on Windows OS,

the computer browser service manages a list of host names of
in-service servers in the networks [20] without users being aware
of it. As shown in Fig. 1, in-service servers broadcast host an-
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Fig. 1 Computer browser service.

Fig. 2 Limited spread of malware based on target discovery using a browse
list.

nouncement automatically and continuously. A master browser
elected from among the servers according to certain criteria re-
ceives the announcements and manages their host names as a
browse list. The browse list is provided with users that send re-
quest commands such as net view. Note that authentication is
not performed when providing the list, i.e., anyone in the net-
works can obtain the browse list. Consequently, malware such as
worms that infect a host in a network can easily get the list. This
enables malware to prevent non-essential access to hosts that are
not usually used in the network, e.g., sensors, as shown in Fig. 2.

4. Novel Deception Techniques for Detecting
Malware on ICS

In this section, we propose novel deception techniques that en-
able a sensor to detect the clever types of malware introduced in
Section 3 on ICS. An unused IP address in an ICS network is
allocated to our sensor. When the sensor detects TCP-based or
user datagram protocol (UDP)-based traffic whose destination is
itself, the allocated address, it generates an alert *3 with the source
IP address of the traffic as an IP address of an infected host. If the
malware that infects a host in the ICS network uses the scanning
strategy, which probes hosts in the network indiscriminately for

*3 Another criteria for generating an alert is signature matching based on
communications between the sensor and a suspected host. Although a
sensor with signature matching can detect malware with low false pos-
itives, it cannot detect various other types of malware compared to our
criteria.

Fig. 3 Simple implementation of Proposal 1.

target discovery, the sensor can detect the scanning traffic *4. That
is, the sensor can detect malware with high probability since it
can be one of the scanning targets. In contrast, malware using the
internal target list strategy for target discovery cannot be detected
by the sensor since it infects the limited hosts that have been used
in the network, as discussed in Section 3. Although there are var-
ious types of local information that can be used in the internal
target list strategy, this paper focuses on the following two types
over the others for the described reasons.
Browse List: The computer browser service is based on SMB

version 1 (SMBv1) that is enabled in legacy OS, e.g., Win-
dows XP, by default. Malware using browse lists for target
discovery remains a serious threat in ICS networks with the
legacy OS, whereas the latest OS disables SMBv1 by de-
fault.

ARP Table: An ARP table is commonly used even in a simple
network that is sometimes employed in ICS, e.g., no DHCP
or domain name service (DNS) server.

In this paper, we propose two novel techniques that enable a sen-
sor to detect malware using browse lists and ARP tables for target
discovery by embedding the sensor information in browse lists
and ARP tables.

4.1 Proposal 1: Deception Technique for Detecting Malware
Using Browse List

In this section, our deception technique that enables our sensor
to detect malware using browse lists (Proposal 1) is introduced.

Our sensor with a straightforward solution, corresponding to
simple implementation of Proposal 1, only sends a host an-
nouncement with its host name or dummy name continuously,
e.g., every twelve minutes. It is not necessary to install a server
service, which leads to an increase in attack surface on the sensor,
for joining the browser service. As a result, the name of the sen-
sor also appears on the browse list managed by a master browser
in the network, as shown in Fig. 3. The spread of malware that
infects a host in the network is as follows.
( 1 ) The malware identifies the master browser by using the

*4 Our sensor can only not detect the timing when the scanning is based
on ARP request or ICMP request. However, because our sensor sends
replies to the requests, as explained in Section 5, it can finally detect
malware whose attack component launches an attack based on TCP or
UDP.
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Fig. 4 Browser service with multiple domains or workgroups.

Fig. 5 Proposal 1 for detecting malware using browse lists.

browser protocol.
( 2 ) The browse list is obtained from the master browser.
( 3 ) The malware resolves the host names described in the list,

i.e., gets IP addresses of the hosts including the sensor.
( 4 ) Its attack component launches attacks to the hosts and dupli-

cates itself in them.
The sensor can detect traffic generated by the attack component
since it is usually based on TCP or UDP. Consequently, an alert
is generated that identifies the IP addresses of the host infected
with the malware.

Meanwhile, we discuss false positives of the simple implemen-
tation of Proposal 1. Host names in a network are displayed with
graphical user interface (GUI) by the Windows Explorer appli-
cation, i.e., the host name of our sensor is also provided. Since
users of a host not infected with malware can see them easily, they
might click the sensor name. This results in a false positive based
on the access from the host. The full implementation of Pro-
posal 1 provides low false positives. Suppose that the number of
accesses by legitimate users with legitimate purposes, including
the aforementioned Windows Explorer, is low within a defined
period of time. Proposal 1 forces the malware to perform multi-
ple accesses to our sensor so that it can distinguish the accesses
of the malware from those of the legitimate users.

For the preliminary introduction of Proposal 1, the behaviors
of computer browser service with multiple Windows domains
or workgroups and of malware under the environment are intro-
duced in this paragraph. As shown in Fig. 4, each master browser
manages each browser list that describes each set of hosts in
each domain or workgroup even in the same network. A mas-

ter browser writes the host name of a host announcement in its
browse list when the domain or workgroup field in the host an-
nouncement corresponds to the workgroup or domain of the mas-
ter browser [20]. Each master browser also manages the names
of domains or workgroups in the network. Malware obtains all
the browse lists by the following procedure for widely spreading
the infection. Actually, we confirmed such malware samples, as
explained in Section 5.
( 1 ) The malware that infects a host in the network obtains all the

names of domains or workgroups by requesting to the master
browser that belongs to an identical domain or workgroup to
that of the infected host.

( 2 ) The requests for acquiring the host names of master browsers
in the domains or the workgroups are broadcast using the
browser protocol.

( 3 ) The malware resolves each host name of the master browser,
and requests each browse list.

Proposal 1 utilizes the aforementioned behavior of malware in
the environment with multiple domains or workgroups. The sen-
sor in Proposal 1 duplicates the host announcement and alters the
domain or workgroup name in the duplicated announcement to
another domain or workgroup name in the network. As shown
in Fig. 5, the duplicated and altered announcement is broadcast
continuously. As a result, the sensor name is written in multiple
browse lists in the same network. When malware obtains them
and tries to attack them sequentially, multiple accesses to the sen-
sor are generated as shown in Fig. 5.

Proposal 1 specifically runs in the following five steps, which
reduces additional traffic that might prevent the availability of ICS
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Fig. 6 Simple implementation of Proposal 2.

networks.
Step 1: The sensor obtains names of domains or workgroups

in the network by measuring broadcast packets such as host
announcement.

Step 2: The host announcement is duplicated and the domain or
workgroup name described in the duplicated announcement
is altered to the name obtained in Step 1.

Step 3: The duplicated host announcement is broadcast contin-
uously, e.g., every twelve minutes *5. The sending intervals
are managed for every domain or workgroup.

Step 4: When the sensor receives a broadcast packet of network
basic input output system (NetBIOS) name resolution re-
quest related to the sensor name, it sends a reply with its IP
address to the source address of the request, i.e., the sensor
has a NetBIOS name resolution function. The alert is gen-
erated when multiple direct accesses from the same source
address within a short period are detected after the name res-
olution.

Step 5: If the packets related to the domain or the workgroup
that is known by the sensor are not observed for a certain
period, e.g., thirty-six minutes *6, the sensor determines that
the domain or the workgroup has been removed and stops
the Step 3 broadcasting to reduce unnecessary traffic.

Note that if there is a single domain or workgroup in the network,
Proposal 1 cannot be used. However, the improved version of
Proposal 1 that writes multiple dummy names in a single browse
list can be used, whose detail is not described in this paper due to
limitations of space.

4.2 Proposal 2: Deception Technique for Detecting Malware
Using ARP Table

This section introduces the deception technique that enables
our sensor to detect malware using an ARP table (Proposal 2).

In a Proposal 2 scenario, a pair of an IP address and MAC ad-
dress of the sensor needs to be embedded in ARP tables of all
hosts in the ICS network, whereas the sensor name is embedded

*5 The browser service specification defines the interval time for sending a
host announcement as twelve minutes.

*6 The browser service specification defines the expiration time for keeping
a host name in a browse list as thirty-six minutes.

in one or several browse lists in the Proposal 1 scenario. Since an
agent software often cannot be installed in hosts in ICS networks
as discussed in Section 1, the sensor in Proposal 2 accesses all
the hosts in the network as shown in Fig. 6. When the hosts used
in ICS networks are managed, e.g., there is an IP address list of
hosts used in ICS networks, the sensor sends a packet such as ping

only to the IP addresses of the managed hosts to reduce additional
traffic. However, hosts in ICS are sometimes not managed. Pro-
posal 2 can also be used in environments where the IP addresses
and OS of hosts are unknown.

Since the ARP cache is cleared after a certain period of time,
the sensor accesses the hosts continuously. The default cache ex-
pirations are different depending on the OS.
• Windows: A random value between 15 seconds and 45 sec-

onds [21]
• Linux: 30 seconds [22]
• Network Equipment: 20 minutes or more (depending on

model and vendor)
We define two metrics related to continuous access for discussion
of Proposal 2.
Coverage: Regardless of the type of OS running in hosts, the

periods where the IP address of our sensor is not cached in
the ARP tables of the hosts need to be reduced, i.e., the next
access should be performed by cache expirations. That is
because, if the clever malware using an ARP table infects a
host when the sensor address is not cached in the ARP table,
the malware can evade access to the sensor, i.e., the sensor
cannot detect the malware.

Additional Traffic: The additional traffic produced by continu-
ous accesses needs to be reduced as much as possible. That
is because it might prevent the availability of ICS networks,
e.g., a huge amount of additional traffic would lead to net-
work congestion that prevents normal communication in the
ICS network and would increase computer loads that induce
a false operation.

The straightforward implementation that keeps high coverage ac-
cesses all the hosts every 15 seconds, which is the minimum expi-
ration, as shown in Fig. 6, since the sensor does not know the OS
type of the host in the network or its IP address. However, this
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Fig. 7 Example of state transition in Proposal 2.

Table 1 States used in Proposal 2.

MAC Address OS
State 0 (Initial state) Unknown Unknown
State 1 Unknown Unknown
State 2 Known Unknown
State 3 Known Known

produces a huge amount of additional traffic. In contrast, the full
implementation of Proposal 2 keeps high coverage along with ad-
equate additional traffic by optimal accesses not only whose inter-
val is dynamically defined but also whose protocol is dynamically
defined.

Proposal 2 utilizes a combination of an ICMP echo re-
quest (ping) that can be used for OS fingerprinting and an ARP
request that is lightweight, which can embed an entry to a target
ARP table. A value of time to live (TTL) contained in an ICMP
echo reply enables us to identify the type of OS in the host.
• Windows: 128
• Linux: 64
• Network Equipment: 255

The sensor in Proposal 2 accesses each host in the network us-
ing an ICMP echo request and an ARP request depending on the
previous reply from each host and the state of each host. Each
host is managed in four states by the sensor, as shown in Table 1.
Depending on the previous reply from a host, its state is transited.
The optimal state is State 3 where the host is accessed at an op-
timal interval for the host using a lightweight ARP request. The
sensor makes each host State 3 at the earliest opportunity through
the actions listed below that are defined for every state.

The sensor has a table for managing the states along with MAC
addresses and OS for every IP address in the network, i.e., an
IP address associated with no host is also managed, as shown in
Fig. 7.
State 0: This state is an initial state associated with all

IP addresses in the network, e.g., from 192.168.10.1 to
192.168.10.254, in the management table when the sensor in
Proposal 2 is booted, as shown in Fig. 7 (a). The booted sen-

sor sends ARP requests to all the IP addresses. If a host with
an IP address returns an ARP reply, its MAC address is ex-
tracted from the ARP reply and written in the MAC address
entry corresponding to its IP address in the table, and the
state entry is rewritten to State 2, as also shown in Fig. 7 (a).
Since an IP address with no reply is an unused address, the
state entry corresponding to the unused IP address is rewrit-
ten to State 1 for preparing when the IP address is allocated
to a new host.

State 1: This state is for observing the IP addresses that are con-
firmed as unused in State 0 or State 3. The sensor sends ARP
requests to the IP addresses continuously with a long inter-
val. When an ARP reply is returned from an IP address of
the unused IP addresses, i.e., the IP address is allocated to a
new host, the MAC address and the state entries are written
in the same way as State 0, as shown in Fig. 7 (b).

State 2: This state is for OS fingerprinting of hosts whose pres-
ence is confirmed in State 0 or State 1. The sensor sends an
ICMP echo request to the host and identifies the OS from the
TTL value contained in the ICMP echo reply. The identified
OS is written in the OS entry corresponding to the IP address
in the management table, and the state entry is rewritten to
State 3, as shown in Fig. 7 (c). An OS entry corresponding
to an IP address allocated to a host with no reply, i.e., the OS
in the host cannot be identified, is filled with Linux OS as it
has the fastest ARP cache expiration of all the OS and the
sensor gives priority to coverage over additional traffic.

State 3: This state is for sending a lightweight ARP request
with the optimal interval for the OS identified in State 2,
as shown in Fig. 8. At the same time, the MAC address ex-
tracted from the ARP reply is compared to that in the MAC
address entry of the table. If they do not match, the state
entry corresponding to the IP address is rewritten to State 2
since the host with the IP address is presumably exchanged
to a new host. In the case of no ARP reply, the state entry is
rewritten to State 1 since the IP address has become unused.
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Fig. 8 Proposal 2 for detecting malware using an ARP table.

Fig. 9 Experimental environment.

5. First Evaluation of Our Deception Tech-
niques

This section provides the first evaluation of our sensor with the
proposed techniques. For the preliminary experiment, we con-
firmed that darknet-monitoring-based detection, which was an
essential part of our sensor, worked by using an actual sample
of ransomware, WannaCry, that spread indiscriminately within a
network. After the experiment, we verified the effectiveness of
the simple implementation of Proposal 1 (Fig. 3) by using actual
samples of the worm malware Conficker that might use browse
lists for target discovery. Furthermore, the fundamental part of
Proposal 1, as shown in Fig. 5, was implemented and its feasibil-
ity was examined. The evaluation of Proposal 2 is future work
because we were not able to obtain an actual sample using ARP
tables for target discovery. However, we also implemented the
fundamental part of Proposal 2 and confirmed its feasibility.

5.1 Experimental Environment
The block diagram of our experimental environment is shown

in Fig. 9. The experimental factory network was created using
multiple VMs based on Windows XP OS that was sometimes
used in the actual factory networks [23], which was the isolated
LAN with 192.168.10.0/24. The specification of our physical

Table 2 Server specification.

Hardware Fujitsu Server PRIMERGY RX2530 M1
Hypervisor VMware vSphere 6.5.0

CPU Intel Xeon Processor E5-2460 v3
(2.60 GHz, 8 Cores)

RAM 128 GB
Storage 24 TB

Table 3 Size of memory allocated for VMs.

RAM Storage
Windows XP VMs 2 GB 8 GB

Windows 7 VM 4 GB 16 GB

server where these VMs were launched is shown in Table 2. We
analyzed traffic using an open-source packet analyzer on a VM
that was also connected to our factory network and was based
on Windows 7 OS, which was confirmed not to be infected with
WannaCry and Conficker in advance. The size of allocated mem-
ory for each VM is shown in Table 3. The sensor program based
on Python was implemented in a Linux-based single-board com-
puter. The alerts that the sensor program generated were stored
in the local file system, and we checked them directly in the ex-
periment. The sensor did not return TCP SYN ACK against TCP
SYN, and returned ARP reply and ICMP echo reply against ARP
request and ICMP echo request, respectively.
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5.2 Preliminary Evaluation Using WannaCry
The experiment that confirmed the effectiveness of darknet-

monitoring-based detection was demonstrated with three Win-
dows XP VMs, one Windows 7 VM, and the sensor whose
IP addresses were 192.168.10.3, 192.168.10.4, 192.168.10.5,
192.168.10.13, and 192.168.10.50, respectively, as shown in
Fig. 9. Their host names were XP-1, XP-2, XP-3, Win7,
and SENSOR, respectively. We executed a WannaCry sample
in XP-1. The WannaCry performed sequential ARP scanning
in ascending order in the network, i.e., from 192.168.10.2 to
192.168.10.254. Subsequently, it tried to infect the hosts that re-
turned an ARP reply. As a result, our sensor detected the first
packet, TCP SYN, of the infection procedure, i.e., our sensor
based on darknet monitoring was able to detect WannaCry that
spread indiscriminately. Since the sensor did not return TCP SYN
ACK, the infection procedure was not completed and the sensor
was not infected with WannaCry. XP-2 and XP-3 were infected
with WannaCry, and Win7 was not infected.

5.3 Proposal 1 Evaluation Using Conficker
A variant of Conficker is known to use NetBIOS share prop-

agation [24]. We obtained three samples that were identified as
Conficker by several antivirus software in recent days and were
based on a portable executable (PE) format. Accordingly, all the
samples used browse lists for target discovery, which was based
on a similar method as Section 3.1.

The experiment that verified the effectiveness of the simple im-
plementation of Proposal 1 was demonstrated with the same setup
with Section 5.2. All VMs belonged to a workgroup WORK-
GROUP. Firstly, the sensor without the simple implementation
of Proposal 1 was connected to our factory network. That is, al-
though the sensor could detect TCP-based accesses from the hosts
within the network, it did not broadcast a host announcement with
its host name. Win7 also did not broadcast a host announcement
by default. Therefore, after a certain period of time, since the
sensor was connected and the VMs were launched, the browse
list managed by the master browser, XP-2 in this case, described
XP-1, XP-2, and XP-3. Subsequently, we executed the Conficker
sample in XP-1. The spreading procedure that was measured on
Win7 is as follows.
( 1 ) Conficker obtained the browse list from the master browser.
( 2 ) One of the host names described in the browse list was re-

solved by using NetBIOS name service protocol.
( 3 ) Conficker sent an ARP request whose destination was the

resolved IP address.
( 4 ) ICMP echo requests were sent to the IP address.
( 5 ) Conficker tried to infect the host with the IP address.
( 6 ) The steps ( 2 ) to ( 5 ) were performed on all hosts whose

names were described in the browse list alphabetically.
As a result, the steps ( 2 ) to ( 5 ) were performed on XP-2 and
XP-3 *7, and SENSOR and Win7 did not receive any packets, i.e.,
the sensor without the simple implementation of Proposal 1 was
not able to detect Conficker.

*7 The infection of the step ( 5 ) to XP-2 and XP-3 was not completed and
the infection trial was repeated as denial of service (DOS). The reason
why the trials had failed was not able to be specified.

Secondly, the sensor with the simple implementation of Pro-
posal 1 was connected to the network, after the environment was
returned to its original state, i.e., the state before launching Con-
ficker. The sensor broadcast a host announcement with its name
SENSOR every twelve minutes. When receiving NetBIOS name
resolution requests related to the sensor name, the sensor returned
its IP address as a name resolution reply. In this situation, the
browse list of the master browser, XP-2 in this case too, described
XP-1, XP-2, XP-3, and SENSOR. When the Conficker sample
was executed in XP-1, the steps ( 2 ) to ( 5 ) were performed on
SENSOR as well as XP-2 and XP-3. The sensor detected the first
packet, TCP SYN, of the steps ( 5 ) *8. Consequently, we clarified
that the sensor with the simple implementation of Proposal 1 was
able to detect the infection spread of Conficker using browse lists,
whereas the sensor without it was not able to detect.

Finally, we examined the feasibility of Proposal 1. This ex-
periment was demonstrated with six Windows XP VMs whose
host names were XP-1, XP-2, XP-3, XP-4, XP-5, and XP-6,
along with Windows 7 VM Win7 and the sensor SENSOR. XP-1,
XP-2, and XP-3 belonged to workgroup WORKGROUP1. XP-
4, XP-5, and XP-6 belonged to WORKGROUP2. We imple-
mented only the function that sent host announcements with the
host name SENSOR and the workgroup names WORKGROUP1
and WORKGROUP2, i.e., Step 2, Step 3 and Step 4 of Pro-
posal 1 shown in Section 4.1, as the fundamental part of Pro-
posal 1. After a certain period of time since the sensor with the
function was connected and the VMs were launched, we observed
that the browse lists managed by the master browsers of WORK-
GROUP1 and WORKGROUP2, XP-2 and XP-5 in this case, de-
scribed XP-1, XP-2, XP-3 and SENSOR, and XP-4, XP-5, XP-6
and SENSOR, respectively. The spreading procedure of the Con-
ficker sample that was executed in XP-1 is as follows.
( 1 ) Conficker obtained names of the workgroups in the network

from the master browser of the workgroup of the infected
host, i.e., WORKGROUP1.

( 2 ) Conficker obtained the browse list managed by the master
browser of one of the workgroups included in the obtained
workgroup names.

( 3 ) One of the host names described in the browse list was re-
solved.

( 4 ) Conficker sent an ARP request whose destination was the
resolved IP address.

( 5 ) ICMP echo requests were sent to the IP address.
( 6 ) Conficker tried to infect the host with the IP address.
( 7 ) The steps ( 3 ) to ( 6 ) were performed on all hosts whose

names were described in the browse list alphabetically.
( 8 ) The steps ( 2 ) to ( 6 ) were performed on all workgroups ob-

tained in the step ( 1 ) alphabetically.
As a result, the steps ( 3 ) to ( 6 ) were performed on SENSOR
twice, whereas they were performed on XP-2, XP-3, XP-4, XP-5
and XP-6 once. Therefore, twice as many TCP SYN packets as
those to XP VMs were detected by the sensor. Consequently, we
clarified that Proposal 1 forced the Conficker sample to perform

*8 Since the sensor did not return TCP SYN ACK, not only was the step ( 5 )
not completed but also the infection trial was not repeated, whereas it was
repeated to XP-2 and XP-3.
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multiple accesses to the sensor.

6. Discussion

6.1 Differences Between Proposed and Conventional Tech-
niques

Honeypot: Suppose that malware selects a server as its in-
fection target, and it initially accesses the server (initial access),
for example, by ARP request and TCP SYN. In this case, the
malware might notice that the server is a decoy, e.g., a honey-
pot, by inspecting responses to the initial access from the server
and might stop the infection. That is, we cannot obtain the ad-
ditional information related to the malware since the honeypot
cannot capture the packets from the malware between the initial
access and the final access when the spread of infection is com-
pleted. Conventional high-interaction honeypot techniques such
as Refs. [10], [11], [12] resolve the problem by generating realis-
tic responses so that the malware misidentifies as a real server in
order to complete the spread of the infection. On the other hand,
we discuss how to lure an initial access to our sensor from clever
malware that evades non-essential initial access, e.g., by using a
browse list, whereas conventional honeypots that only focus on
after the initial access cannot lure, i.e., cannot detect the clever
malware. This paper does not discuss techniques for generating
realistic responses, and our sensor is based on a low-interaction
honeypot for simplifying its implementation. Conventional hon-
eypot techniques can be combined with our sensor, which is fu-
ture work.

Whitelist-based Detection: We discuss the advantages and
the disadvantages of the proposed detections and whitelist-
based (whitelist-based and network-based) detections that iden-
tify anomalous communications whose characteristics such as
sources and destinations are not predetermined in a whitelist.
Whitelist-based detections can sometimes not detect clever mal-
ware trying to infect the confined hosts with whom the infected
host has previously communicated, for example, using an ARP
table of the infected host, which is introduced in Section 1. That
is because communications from the infected ICS host to the con-
fined ICS hosts would be allowed by the whitelist, i.e., the com-
munications for the spread of infection are not detected as an
anomaly. However, a whitelist-based detection whose whitelist
defines payload values and intervals of communication packets as
well as sources and destinations would detect not only the clever
malware but also advanced malware such as based on forgery and
stealth attacks. Therefore, whitelist-based detections would de-
tect various types of malware compared to our detections. On the
other hand, whitelist-based detections require high-performance
hardware since they inspect all packets in the ICS network, which
is a disadvantage of whitelist-based detections because resources
of ICS devices are often constrained [2]. Furthermore, whitelist-
based detections involve a lot of time and effort to define and
update various characteristics of all regular communications in
the ICS network. In contrast, our sensor does not require high-
performance hardware since it inspects only the received packets
and hardly requires its maintenance since it can be used simply by
connecting to an ICS network. Consequently, our sensor has the
advantages of the efficiency related to hardware and human costs,

which can be innovated easily even in an ICS with low budget for
security.

VLAN, Firewall and Hardening: Virtual local area net-
work (VLAN) techniques that divide a network into multiple seg-
mentations can limit the extent of spread of malware infection in
ICS networks. Firewall techniques that stop unused ports and
hardening techniques that stop or uninstall unused services are
especially effective at preventing clever malware using a browse
list spreading in ICS networks as well as other types of mal-
ware. However, managers of ICS networks sometimes lack secu-
rity skills and these security techniques are often not introduced
in such networks. Furthermore, it is difficult to introduce these
techniques later into ICS devices and/or ICS networks already
in operation because they might prevent the availability of these
devices and/or networks. Our sensor can be used simply by con-
necting to even these networks.

Previous Work of ARP-based Deception [25]: The authors
of Ref. [25] proposed a framework for building deception net-
works and ARP-based and ICMP-based deception techniques that
returned fake replies to ARP and ICMP requests whose destina-
tions were unused IP addresses in the deception networks, respec-
tively. Malware that scans the deception network indiscriminately
using ARP and/or ICMP requests for target discovery would re-
ceive the fake replies and would send non-essential packets to
their unused IP addresses for the spread of infection. Therefore,
these deception techniques enable us to detect the malware as
well as darknet-monitoring-based detection in a LAN. Suppose
that clever malware using an ARP table for target discovery in-
trudes the deception network and infects a host in the network.
The malware, subsequently, tries to infect other hosts whose IP
addresses are described in the ARP table of the infected host
without sending ARP requests including unused IP addresses in
the deception network. Because the ARP-based deception tech-
nique that responds to ARP requests of unused IP addresses does
not received any ARP requests, the clever malware does not send
packets for the spread of infection to unused IP addresses and is
not detected by the technique. Our sensor with Proposal 2 writes
its IP address to ARP tables of all hosts in a network, as intro-
duced in Section 4.2. The clever malware that infects the host
whose ARP table contains the IP address of the sensor in the net-
work sends packets to the sensor for the spread of infection and
is detected by the sensor.

Previous Work of ARP-based Detection [26]: The authors of
Ref. [26] proposed an anomaly detection technique that identifies
ARP-based scanning of worm malware in enterprise networks.
They introduced an anomaly score based on peer list, ARP activ-

ity and internal network dark space. Peer list was a set of hosts
that a host communicated in a network during a training phase.
ARP activity was an average number of ARP requests that a host
sent in the network during the training phase. Internal network
dark space was a set of IP addresses that were not used in the net-
work during the training phase. In the detection phase, anomaly
scores were derived for each host in the network and an alert was
generated when the score exceeded a predefined threshold. Al-
though the ARP-based detection technique would enable us to
detect various types of malware, it might not detect clever mal-
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ware introduced in this paper. That is because the clever malware
would not send ARP requests whose destination IP addresses are
not in internal network dark space, which lowers the anomaly
score. Furthermore, the ARP-based detection technique requires
comparatively high-performance hardware because it inspects all
ARP-based packets in the network. Our sensor can robustly de-
tect the clever malware with a low cost, as discussed in the com-
parison with whitelist-based detections in this section.

6.2 Limitations of Proposed Techniques
Basically, an attacker who knows the details of our techniques

can create malware that evades them. In this section, we discuss
several approaches for the evasion and clarify the limitations of
our techniques. We also mention techniques that hinder the eva-
sion.

Evade a host that does not often communicate with other
hosts: Our sensor does not often communicate directly with other
ICS hosts compared to among ICS hosts, whereas it sends the
broadcast packets such as the continuous host announcements
from Proposal 1 and the continuous ARP requests from Pro-
posal 2. Suppose that malware using packet capturing inspects
packets in the ICS network and measures the frequencies of di-
rect communications from each host to other hosts. It can evade
detection by infecting the confined hosts with the low frequency
of direct communications, i.e., not infecting hosts with the high
frequency including our sensor.

Evade a host whose name resolutions are rarely requested:
Since ICS hosts would not need to communicate with our sensor,
they would not need to request the name resolution of our sen-
sor. Suppose that malware with packet capturing measures the
frequencies of resolution requests of each host name in the ICS
network, e.g., name resolution requests of DNS, Windows Inter-
net naming service (WINS) and NetBIOS. It can evade detection
by infecting the confined hosts whose name resolutions are re-
quested with high frequency, i.e., not infecting hosts whose name
resolutions are requested with low frequency including our sen-
sor.

Reduce the frequency of infection trials: Our sensor with
Proposal 1 generates an alert when multiple TCP/UDP-based
packets from the same source address are received within a short
period, i.e., when the received frequency exceeds the predefined
threshold, as described in Section 4.1. Malware that tries to infect
other hosts with lower frequency than the predefined threshold
can evade detection.

Although our sensor has the aforementioned limitations, there
are techniques that hinder attackers from discriminating the sen-
sor from other ICS hosts, for instance, multiple sensors that com-
municate with one another and request a name resolution of one
another in an ICS network. Furthermore, we believe that our sen-
sor has a value as the first security enhancement of an insecure
ICS since it can detect well-known and widely distributed mal-
ware with low cost, as discussed above.

6.3 Others
What is the impact of Proposal 2 on ICS?: The additional

traffic from our sensor with Proposal 2 might lead to network con-

gestion that prevents normal communication among ICS devices
and might increase computer loads that induce a false operation
on ICS devices. However, since an Ethernet frame size of ARP
request and reply messages is 64 bytes, the amount of additional
traffic caused by the sensor in an ICS network, for example, with
/24 subnet mask is at most 2.2 KB per second, 64 bytes × once
per 15 seconds × 256 destination addresses × 2 (request and re-
ply). A size of packets that an ICS device additionally receives
and sends is at most 64/15 bytes per second, respectively. Fur-
thermore, IP-based ICS networks where our sensor is deployed
between Level 1 and Level 2 of the Purdue Model are not sen-
sitive to delays compared to Level 0 networks. Therefore, we
believe that Proposal 2 has only a small impact on the availability
of ICS networks and devices. As future work, we evaluate using
real ICS networks and devices.

Why ICS defenders should implement preparations for
clever malware introduced in this paper?: ICS hosts are of-
ten equipped with a legacy OS that has known vulnerabilities,
as introduced in Section 1. We believe that the most credible
and critical threat in IP-based ICS networks on which this pa-
per focuses is the intrusion of well-known and widely distributed
malware that exploits the known vulnerabilities and it should be
detected first in the ICS networks for improving their security.
In fact, the white paper of Ref. [23] reported that worm malware
and Conficker were significantly detected in manufacturing in-
dustries. The well-known and widely distributed malware that
spreads indiscriminately in networks can be detected by conven-
tional techniques such as darknet-monitoring-based detections.
On the other hand, to our best knowledge, no techniques can ro-
bustly detect malware using clever strategies for the spread of
an infection in order to evade detection, e.g., malware infecting
the confined hosts by using a browse list. Therefore, we pro-
pose that ICS defenders introduce our sensor that can also detect
such clever malware for detecting various types of well-known
and widely distributed malware.

Why Proposal 2 is still important although we were not able
to obtain an actual sample using ARP tables for target discov-
ery?: ARP is surely used in IP-based ICS networks on which we
focus even if the networks are simple, e.g., no DHCP or DNS
server, and ICS hosts in the networks have ARP tables. Although
we were not able to obtain an actual sample using ARP tables for
target discovery, such malware is known to exist, Olympic De-
stroyer enumerates the ARP table of the infected host for target
discovery [27]. Because malware including Olympic Destroyer
would be able to use the ARP table of the infected ICS host for
target discovery in any IP-based ICS network, we believe that
Proposal 2 that can detect such malware is still important.

7. Conclusion and Future Work

In this paper, we proposed novel deception techniques that en-
able our sensor to detect clever malware using browse lists and
ARP tables for discovery of infection targets. The host name and
IP address of the sensor were embedded in browse lists and ARP
tables, respectively, by actively sending appropriate packets at ap-
propriate intervals from the sensor. Our techniques produced only
a small amount of additional traffic to maintain the availability of
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ICS networks. Our first evaluation based on the simplified im-
plementation of the proposed techniques clarified that they were
feasible and were able to detect an actual malware sample, Con-
ficker, that used browse lists.

The future work is to implement the full version of Proposal 1
and Proposal 2 and to evaluate them. We also aim to evaluate the
false positives of our sensor on a real ICS environment.

References

[1] ICS-CERT: Alert (IR-ALERT-H-16-056-01), Cyber-Attack Against
Ukrainian Critical Infrastructure (2016), available from 〈https://us-
cert.cisa.gov/ics/alerts/IR-ALERT-H-16-056-01〉 (accessed 2021-03-
29).

[2] National Institute of Standards and Technology: Guide to Industrial
Control Systems (ICS) Security, NIST Special Publication 800-82,
Revision 2 (2015).

[3] Barrett, M.P.: Framework for Improving Critical Infrastructure Cyber-
security, Technical Report Version 1.1, National Institute of Standards
and Technology (2018).

[4] Formby, D., Srinivasan, P., Leonard, A., Rogers, J. and Beyah, R.A.:
Who’s in Control of Your Control System? Device Fingerprinting for
Cyber-Physical Systems, 23rd Annual Network and Distributed Sys-
tem Security Symposium (NDSS 2016) (2016).

[5] Chen, Y., Poskitt, C.M. and Sun, J.: Learning from Mutants: Using
Code Mutation to Learn and Monitor Invariants of a Cyber-Physical
System, 2018 IEEE Symposium on Security and Privacy (S&P 2018),
pp.648–660 (2018).

[6] Feng, C., Palleti, V.R., Mathur, A. and Chana, D.: A Systematic
Framework to Generate Invariants for Anomaly Detection in Indus-
trial Control Systems, 26th Annual Network and Distributed System
Security Symposium (NDSS 2019) (2019).

[7] Bailey, M., Cooke, E., Jahanian, F. and Nazario, J.: The Internet
Motion Sensor – A Distributed Blackhole Monitoring System, Net-
work and Distributed System Security Symposium 2015 (NDSS 2005)
(2005).

[8] Inoue, D., Suzuki, M., Eto, M., Yoshioka, K. and Nakao, K.:
DAEDALUS: Novel Application of Large-Scale Darknet Monitoring
for Practical Protection of Live Networks, 12th International Sym-
posium on Recent Advances in Intrusion Detection (RAID 2009),
pp.381–382 (2009).

[9] Bou-Harb, E., Debbabi, M. and Assi, C.: A Time Series Approach
for Inferring Orchestrated Probing Campaigns by Analyzing Darknet
Traffic, 10th International Conference on Availability, Reliability and
Security (ARES 2015), pp.180–185 (2015).

[10] Antonioli, D., Agrawal, A. and Tippenhauer, N.O.: Towards High-
Interaction Virtual ICS Honeypots-in-a-Box, 2nd ACM Workshop
on Cyber-Physical Systems Security and Privacy (CPS-SPC@CCS
2016), pp.13–22 (2016).
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