
IPSJ SIG Technical Report

An Improved Approach to Generation and Detection of
Out-of-Domain Texts

BoWang1,a) TsunenoriMine1,b)

Abstract: Many approaches have been proposed to detect Out-of-Domain texts in user intent classification, but most
of them are trained on In-Domain data which cannot utilize the huge potential of unlabeled data, or need many hard-
to-obtain real Out-of-Domain data. Recently, an Out-of-Domain generation framework has been proposed, which
overcame the drawbacks of previous work and got better results. However, the current implementation is far from
practical because of its common but ineffective network implementation and unconsidered potential conflicts in the
GAN training procedure. In this paper, we propose an improved approach to realize a better Out-of-Domain texts
generation, where we modify the Autoencoder for faster learning of context data, and also regularize the output to
decrease the difficulty of GAN imitation afterwards. For GAN, we utilize different activation scheme and a more
moderate training signal to solve the training conflicts. Comprehensive experiments on three datasets and efficiency
measurements show the practicality and efficiency of our new approach.

Keywords: Out-of-Domain detection, text mining, text generation, text classification

1. Introduction
Nowadays, with the development of big data and natural lan-

guage processing, the deep-learning-based Question and Answer-
ing (QA) systems are being widely used. Common QA sys-
tems usually use standard question and answer pairs (i.e., In-
Domain, IND questions) for network training; however, in real-
world applications, unexpected problems (i.e., Out-of-Domain,
OOD questions) often arise. Simply ignoring the OOD questions
will not only cause misidentifications that degrade the service
quality, but can even lead to major problems in some application
scenarios. Therefore, it is meaningful and necessary to determine
whether a question is from IND or OOD before the intent classi-
fication.

Many studies have attempted to build an OOD detector by in-
vestigating and adapting an IND classifier. For example, [3] pro-
posed a simple method by using the softmaxed maximum proba-
bility of the IND classifier’s output as the detection score, while
[5] added an entropy term to the loss function and used OOD ex-
amples to optimize the OOD-sensitivity of the classifier. More-
over, [18], [20] used the ensemble classifiers to obtain an opti-
mal classification model and got a more proper detection score,
and [14], [15] used adversarial training to detect the OOD exam-
ples with the Autoencoder and GAN trained on IND data respec-
tively. Recently, as [4] found that the Transformers performed
better than classic models, there has been a focus on encoding-
and-distance-calculation methods which utilize the large-scale
encoder in OOD detection, where [9], [12], [17] reported good

1 Kyushu Universtiy, Fukuoka City, Fukuoka 819–0395, Japan
a) wangbo.rw@gmail.com
b) mine@ait.kyushu-u.ac.jp

results with fine-tuned BERT and its variations as the encoder.
However, in reality, OOD is usually very difficult to ob-

tain, while an adequate environment for training and maintain-
ing a large-scale network is not always affordable for every-
body. Meanwhile, there are actually huge unlabeled data like
user-input-log generated in daily QA processing, while none of
the previous methods can make better use of them.

In these conditions, [19] obtained sentences by using an Au-
toencoder and a GAN structure, where the encoder maps texts
to latent space and the GAN imitates its distribution. [8] also
used GAN and IND images as inputs, but added a pre-trained
IND classifier as another ‘discriminator’ to the generator that
judges whether the generated image belongs to IND/OOD, which
made OOD images generation available. [21] combined these
two ideas, added an IND classifier to the text generation frame-
work and used the Shannon entropy loss as the secondary training
signal, and finally achieved the generation of fake-OOD texts us-
ing IND and unlabeled data.

Despite the success of work [21], after [10]’s reproduce based
on the description, the result was far lower than the reported.
To solve it, [10] directly abandoned the Autoencoder and used a
Sequence-GAN (Seq-GAN), which got a better result. However,
we believe that the problems were caused by the primitiveness
of [21]’s proposed model. For example, the structure of the Au-
toencoder is too simple and the training strategy zero-knowledge
causes a very slow training process and worsens the decoding ef-
fect. The usage of a raw encoding result that forms an uncertain
and big encoding latent space burdens the subsequent GAN im-
itation. In GAN training, there is a conflict between the added
strong entropy loss and the original GAN loss that causes unsta-
ble procedure.

© 2021 Information Processing Society of Japan 1

Vol.2021-ICS-204 No.4
2021/9/15

IPSJ SIG Technical Report

Bi-direct
Encoder

x

Decoder

IND classifierSecondary G loss
KL loss

�𝒙𝒙

z

Discriminator

Generator

�̃�𝑧

G
-D

 loss

tanh

Fig. 1 Our new OOD question generation implementation
Upper: AutoEncoder Bottom: GAN OOD generation

To remedy these issues, for Autoencoder, we deepen the en-
coder and initialize a pre-trained word embedding to let it gain
some prior knowledge. On the other hand, we formalize the out-
put of the Autoencoder and create a smaller latent space to facili-
tate GAN’s imitation process afterward. For GAN, we mainly use
a softer loss as the signal for the secondary training of generator
to mitigate the conflicts, and also modify the basic structure and
activation scheme for a better performance. The overview of our
new OOD question generation implementation scheme is shown
in Fig. 1.

Finally, by using the data generated with our implementation,
the OOD detector is completed. The experimental results demon-
strate the superiority of our method.

Our contributions of this study are broadly as follows:

(1) We re-explored and solved the unstable training and poor
performance problem of the current adversarial OOD text
generation framework. With comprehensive analyses and
efficiency-orientated redesigns for each part, we propose a
new framework that is truly practical and efficient to be used
in real applications.

(2) We provide not only the framework, but a clear and de-
tailed implementation solution from latent space mapping,
to OOD question generation, and to the final OOD detector
training, which is not available in previous works.

(3) The proposed framework is straightforward and concise,
which does not require large-scale networks as the founda-
tion, but can effectively utilize the unlabeled data commonly
found in daily application scenarios. With a fast training
and detection speed, our model achieves comparable results
among state-of-the-arts.

2. The Out-of-Domain generation and detec-
tion framework

In this section, we will introduce our proposed framework part
by part. First is the OOD question generation part, which consists
of two components: an Autoencoder structure to map discrete text
sequences into a continuous latent space, and a GAN structure to
imitate these textual latent codes. Different from [19], the normal
adversarial text generation model, in the GAN training, we use a
pre-trained IND question classifier as the second ‘discriminator’
to supervise the generator: when the generator generates various
sentences, the usual discriminator is responsible for real/fake data
discrimination, while the IND classifier is expected to ‘catch’ the
grammatically qualified, but more OOD-like generated sentences,
and pass the secondary training signal to the generator.

Once the GAN is trained, we obtain fake-OOD questions by

decoding the generated latent codes back with the decoder. By
utilizing both IND and OOD texts to optimize the classifier from
two aspects, we finally complete the OOD detector.

The important assumption that this approach works is that in
reality, IND and OOD usually behave similarly in linguistic and
grammar, e.g., for an intelligent home assistant, ‘what is the
hottest TV show at the moment’ is an IND question, while ‘what
is the hottest stock at the moment’ is more inclined to an OOD
question. We believe these nuances can be captured by our ap-
proach. (We will also provide experimental evidence in Sec. 4.2)

2.1 Autoencoder Training
The Autoencoder part consists of an encoder and a decoder.

The role of the encoder is to map the discrete text sequences
{x1, x2, ..., xn} into a continuous latent space Rn so that the GAN
can imitate the distribution afterward, while the decoder recon-
structs the words in a sentence given the latent code z.

{x1, x2, ..., xn}
encoder
−−−−−→ z ∈ Rn decoder

−−−−−→ {x′1, x
′
2, ..., x

′
n, }

The main structure of our Autoencoder can be seen in Fig. 2.

<sos>

0 0(,)h c

weather

z

0 0(,)h c

z

z

Encoder

Embedding

… <sos> weather…

Decoder
<sos> … weather

…

tanh

Fig. 2 The structure of autoencoder

In actual implementation, work [19], [21] both used the com-
mon single layer, unidirectional RNN (GRU and LSTM *1 re-
spectively) structure as the Autoencoder. To ‘encourage better
generalization’, during the training procedure, they additionally
put an isotropic Gaussian noise I to the latent code z.

However, this noise I is complex as the variance setting is dif-
ficult to determine. In our tests, with the effect of the noise, the
training procedure of the Autoencoder on such implementations
is still not very effective, as the network takes a long time to
converge and the decode effect is also not good. For example,
we stopped the Autoencoder training with a benchmark of 0.2 or
less reconstruction loss on both IND and unlabeled data, whereas
with the past models, the loss was still 0.27/0.23 after 40 training
rounds, while our improved model could reach this standard after
only 23 epochs *2. In addition, the correct rate of token decoding
is only 62.3% on the validation set, which expresses a bad effect
on the imitation of GAN.

We located the main reason for the problem as a too simple
network structure and the difficulty for the network learning from

*1 RNN: Recurrent Neural Network, GRU: Gated Recurrent Units, LSTM:
Long Short-Term Memory

*2 measured on CLINC dataset, which we will introduce in Sec. 3.1, the
symptoms and comparison in the following sections are also obtained on
this dataset.

© 2021 Information Processing Society of Japan 2

Vol.2021-ICS-204 No.4
2021/9/15

IPSJ SIG Technical Report

zero-knowledge. Therefore, we made the following efforts to
keep the Autoencoder training stable and efficient, and also re-
duce some burdens for the following GAN training:

a. Modification on network complexity: since the typical text
lengths of questions are usually of medium size, we deep-
ened the former network into a bi-directional LSTM. *3

b. Giving network a prior knowledge: to make the encoder gain
some prior knowledge of the vocabulary and thus easier to
train, we used a pre-trained word embedding when load-
ing the sequences into the encoder.

c. Regularization & learning difficulty reduction: we added a
fully-connected layer and a tanh activation function at the
end of BiLSTM layer. The aim is not only to conduct dimen-
sion reduction to fit the decoder’s input size, but regularize a
smaller latent space to reduce the burden of the decoding and
GAN imitation.

d. Others: as the problem was solved with the above methods,
we removed the complex but ineffective isotropic Gaussian
noise I.

In formula, suppose the input sequence is x = {x1, x2, ..., xT }.
At each time step t, the current word xt first obtains its embedding
through the embedding layer of the encoder ENC, and then goes
through both forward and backward directions of ENC along with
the previous hidden state (ht−1, ct−1) to get the next state:

(ht, ct) = ENC(e(xt), ht−1, ct−1) (1)

When the last word xT was input, the final hidden state (hT , cT)
is obtained. As the decoder is uni-directional, we used a fully-
connected (fc) layer to reduce the dimension to half and a tanh
function to activate it, which is used as the first state of decoder,
and also the latent code z that will be later imitated by GAN:

(h′0, c
′
0) = z = tanh(f c((

−→
hT ,
−→cT), (

←−
hT ,
←−cT))) (2)

Next, with the initial hidden state (h′0, c
′
0) and the beginning

word x′0 = 〈sos〉, the decoding procedure starts. The decoder
DEC decodes out the next word and state, and uses them cycli-
cally until the signal of ‘end of the sentence’ x′T = 〈eos〉 appears.

(h′t , c
′
t) = DEC(e′(x′t), h

′
t−1, c

′
t−1) (3)

Here, in fact, the decoder does not directly output the next
word x′t , but generates a probability distribution at each time step,
where we simply applied the maximum likelihood strategy, i.e.,
we select the words that have received the highest probability as
the result and the next word input:

x′t = max(so f tmax(f c(h′t−1, c
′
t−1))) (4)

Finally, we train the ENC and DEC by calculating the recon-
struct loss of the original sentence x and decoded sentence x′ on
both IND and unlabeled data, and update the parameters:

LENC/DEC = Ex∈IND&unlabel
[
Ei=1∼T − log(PDEC(x′i))

]
(5)

*3 The BiGRU has also been experimented, but the encoding effect is
slightly inferior to BiLSTM.

2.2 In-Domain Classifier Training
In order to discriminate whether the generated sentences by

the generator are now more inclined to IND or OOD during sub-
sequent GAN training, we need to train an IND classifier in ad-
vance.

[21] used a very complex IND classifier (3-MLP plus 4-kernel,
128 feature map for each kernel TextCNN [6] *4) to extract the
text features more precisely and thus trying to give the generator
a more accurate training signal, which put much burden on the
full-model operation. As for our solution, because we solved the
core problems of the main network, we have vastly streamlined
the structure of this part by using a 3-kernel, each kernel 16 fea-
ture map TextCNN, so that it can serve as the ‘auxiliary’ rather
than a burden.

This can significantly improve the model efficiency. Tak-
ing the floating point operations (FLOPs) computation for one
16-sentence-batch input as an example, the computation needed
based on our model (18.39M FLOPs) is reduced by 84.4% com-
pared to their model (117.75M FLOPs), not to mention the hun-
dreds of epochs that GAN training typically goes through.

Finally, in formula, given the sentence x and corresponding in-
tent label y from IND dataset, the IND classifier IDC is trained
with a common cross-entropy loss:

LIDC = Ex∈IND
[
−x log(PIDC(y = y|x)

]
(6)

In the later GAN training, the parameter of IDC will be kept
fixed for the secondary supervision to the generator.

2.3 Adversarial Training with In-Domain Classifier Dis-
crimination

After the preceding set-ups, we finally come to the core part
of the adversarial OOD text generation, where we utilize GAN
structure with only IND and unlabeled data to produce fake-
OODs.
2.3.1 Main Framework

Firstly, let us shortly introduce the GAN’s basic structure. A
GAN consists of two components: a generator G and a discrimi-
nator D. The generator generates fake latent code z̃ from random
Gaussian noise e, i.e., z̃ = G(ε), while the discriminator discrim-
inates the true z (in this study z comes from encoded IND and
unlabeled data) from fake z̃, as shown in Fig. 1 middle part. This
competitive learning cycle of G and D constitutes the adversar-
ial learning process. When these two networks finally converge,
the generator is expected to generate fake z̃ that is of a similar
distribution with z.

The competitive learning and training process of D and G are
achieved through Wasserstein distance [2], that is:

LD = E ε∈N(0,1)
z∈IND&unlabel

[
log D(z) + log(1 − D(G(ε))

]
(7)

LG = Eε∈N(0,1)
[
log(1 − D(G(ε))

]
(8)

However, it is obvious that such a GAN can only produce sen-
tences similar to the input, i.e., IND and unlabeled texts, but our
generation target is the OOD texts. So following the idea of

*4 MLP: Multi Layer Perceptron, TextCNN: the Convolutional Neural Net-
work for Text

© 2021 Information Processing Society of Japan 3

Vol.2021-ICS-204 No.4
2021/9/15

IPSJ SIG Technical Report

[8], [21], we added an auxiliary IND classifier (IDC) to conduct
secondary training to G during GAN training. At this time, the
original discriminator is mainly responsible for checking whether
the generated latent code is similar to the original distribution,
which may be interpreted as a normal semantic check. On the
other hand, (after the decoder temporarily decodes the latent code
back into a sentence, as shown in Fig. 1 right part) the IDC, as the
second ‘discriminator’, checks whether the generated text in real-
time is more like an IND/OOD text, and passes the classification
confidence result as the training signal to the generator, to rein-
force it generate more ‘boundary’ but grammar-certified samples
around the IND and unlabeled area in latent space.

Briefly, in formula, in addition to the original training signal
from D, we use the output of IDC as the secondary training sig-
nal for G training:

L′G = LG +LG−IDC(DEC(̃z)) (9)

2.3.2 Implementation
Up to this point, the idea sounds straightforward and effec-

tive, but there are many aspects to consider when it comes to ac-
tual implementation. In our pre-experiments, we found that vari-
ous problems occurred when reproducing existing similar works
[8], [21]. The main symptoms are the unstable fluctuation of cur-
rent L′G and LD, the low confidence of D for G’s generated fake
data (we could only get D(G(z)) of 3%˜4% after training with
former implementation), etc., which are far from practical and
efficient. For these problems, we conducted the corresponding
analysis and solution respectively.

a. Choice of loss as IND classifier training signal LG−IDC :
The reason why the previously described ‘IND classifier as

a second discriminator’ should work is mainly from the phe-
nomenon found in study [3]: when the (generated) input text
is more biased towards OOD, the IND classifier will show a
lower ‘confidence’, i.e., the probability output distribution is
closer to a uniform distribution.

However, with this property, there comes another problem
about the choice of loss that could express this ‘lack of confi-
dence’. In work [10], [21], they used a Shannon Entropy loss
as the LG−IDC in eq. (9). However, in pre-experiments, we
found that this entropy loss grew significantly as the number
of categories increases (sometimes may be several times to
original G-D lossLG), which we believe it leads to a learning
objective conflict during training and thus making the train-
ing procedure unstable.

After experiments and trials, we finally determined to uti-
lize the KL divergence loss, which does not grow hugely
along with the categories, but can more moderately ex-
press the distance between current (IDC’s output) distribu-
tion and target (the uniform) distribution as the training sig-
nal LG−IDC , that is,

L′G = LG + Ez̃∈ f ake−code
[
KL(U||PIDC(DEC(̃z)))

]
(10)

b. Network structures:
In order to make the GAN learn the features of latent code

z as quickly as possible, [19], [21] utilized 5 and 4-MLP net-

works for D and G respectively, and used LeakyRelu to acti-
vate each layer by default.

However, in our experiments, we found that merely piling-
up the network depth can neither achieve a learning speed-up
nor make the network training more stable. Therefore, we
simplified the D and G to both 3-MLP, but utilized Relu to
activate the middle layer of G, which is inspired by DCGAN
[13]. On the other hand, as a correspondence to the setting of
the Autoencoder (eq. (2)) to lower the imitation difficulty for
the generator, we also put tanh at the final layer of G. These
strategies together guarantee a faster and better convergence
process.

c. Auxiliary techniques and other modifications:
In order to offset the above conflicts and instabilities, work

[21] used a ‘soft-embedding’ technique. This method retains
a complete word decoding probability result of the decoder’s
output, and calculates the average embedding as the embed-
ded input to the decoder, which brings a huge amount of
computation and is also space consuming. They also used
‘temperature scaling’ to ‘sharpen’ the output of the decoder.
But for a similar reason that as the core problems have been
largely solved through our proposed improvements, we re-
moved these two redundant auxiliary methods. Instead, as
mentioned in Sec. 2.1, we continued to use maximum-
likelihood to reconstruct the words in a sentence, which also
improves the efficiency.

Other performance and stability issue includes the fact that
[19], [21] enabled a complex gradient penalty item for GAN
as default, which is reported in [2] to be effective in general
GAN training. But in our experiments, we found that this
term also has a tendency to conflict with current LG−IDC , so
we removed it.

2.4 Out-of-Domain Detector Training
After the GAN finishes training, we are able to generate a large

number of fake OOD latent codes. By decoding them with the de-
coder, the fake OOD sentences can be obtained:

x̃ = DEC(̃z) = DEC(G(ε))

In order to train the Out-of-Domain Classifier (ODC), we used
a similar strategy as [5], i.e., we used both the IND and fake-OOD
texts to optimize the ODC in two aspects: the IND data are used
to ensure a basic and necessary prior semantic knowledge, while
the OOD data focus on reinforcing the detector to give a more
uniformed output when encountering suspected OOD examples,
specifically:

LODC = LODC−IND +LODC− f akeOOD

= Ex̃∈IND
[
−xi log (PODC(y = yi|x)

]
+ Ex̃∈ f ake−OOD

[
KL(U||PODC (̃x)))

] (11)

Note that in work [5], the authors utilized the entropy loss as
the LODC− f akeOOD, the input data for this part are also real OOD
texts, while we continued to utilize a softer KL loss and use only
our own network-generated fake OOD examples to train ODC.

Finally, following [3]’s approach, we passed the probabilistic

© 2021 Information Processing Society of Japan 4

Vol.2021-ICS-204 No.4
2021/9/15

IPSJ SIG Technical Report

output of ODC through a softmax layer, and took the maximum
value as the final detection score. It is expected that the reinforced
OOD detector will output a lower score when encountering real
OOD sentences.

3. Experiments
To demonstrate the generality and efficiency of our model, we

select three public datasets and a series of highly competitive
methods as the baselines to conduct experiments.

3.1 Datasets
Here are the datasets used in our experiments. Since we found

only one dataset called CLINC specifically designed for OOD de-
tection, we additionally adapted the other two IND user-intention
classification datasets into OOD detection. In addition, because
there exists no dataset providing the corresponding unlabeled
data, we mixed a large amount of IND data and a small por-
tion of OOD data to simulate unlabeled data. The composition
and partition information is shown in Table 1.

Table 1 Data composition and partition details

CLINC SNIPS FB-Multi

Vocab. size 7,259 10,335 2,517
IND intent num. 150 6 10
IND train rec. 18,000 11,237 12,003
OOD intent original ‘play music’ ‘show reminder’
OOD train rec. 350 250 250
Mixdata comp. ind9,900+ood350 ind6,000+ood250 ind6,000+ood250
Test data rec. 5,500 1,400 4,395

Test data comp.
ind 4,500 ind 1,214 ind 3,829
ood 1,000 ood 186 ood 566

CLINC dataset[7]: it has 22,500 IND data in 150 intents and
1,200 OOD data, balanced in each category. They also provide
a complementary dataset with 150 additional OOD training data
— OOD+, which we use this time.
SNIPS dataset[1]: collected from the Snips voice platform,
which contains a balanced 15,000 texts in 7 intents. We manually
choose ‘play music’ as the OOD category because of its similar
but different nature to another ’add to playlist’ category. We be-
lieve this will make the OOD detection task even more difficult
and can better reflect the superiority of our model.
FB-Multi dataset[16]: allocated from the Facebook multilingual
database which we only use its English part. It contains over
35,000 data in 12 intents and the distribution is unbalanced. Be-
cause the quantity of ‘weather find’ category is huge (over 10K
records), which not only causes data imbalance, but contains
many noises as the place names around the world, we remove this
category. As there exist very similar categories ‘set reminder’ and
‘cancel reminder’, we select ‘show reminders’ as the OOD cate-
gory.

3.2 Baselines
We apply these competitive methods as our baselines, where

a)˜d) belong to the classifier-output-based methods, e), f) belong
to the encoding-and-distance-computing methods, g), h) repre-
sent the other two adversarial-based methods, and i), j) are two
simple methods for generating fake-OODs.

a) IDC-MSP[3]: the output of a pre-trained IND classifier (IDC)
is activated by so f tmax function, and the maximum value of the
output probability is used as the detection score.
b) BERT-MSP[12]: a similar method to IDC-MSP, but the IND
classifier is utilized with a BERT network, which is fine-tuned
with IND data in advance.
c) IDC-Entropy: the output of IDC is activated by so f tmax func-
tion, and the negative value of the entropy on this output is used
as the detection score.
d) IDC-KL Dist.: a similar method to IDC-Entropy, but the KL
divergence between the output and the uniform distribution is cal-
culated as the detection score.
e) BERT-Euclid: firstly a BERT is fine-tuned with IND training
set, then the vectors on [CLS] position (i.e. the sentence vector)
of all texts from the BERT’s output are extracted. The negative
value of shortest Euclidean distance between test texts and IND
training texts is used as the detection score.
f) BERT-Maha[12]: a similar method to BERT-Euclid, but the
Mahalanobis distance is calculated.
g) GAN-DIS [15]: a GAN structure is trained only on IND data
and the discriminator is extracted. The output value of the dis-
criminator on the test set is used as the detection score.
h) En/De Recons. [14]: an AutoEncoder is trained only on IND
data. After training, the negative value of reconstruction loss on
the test set is used as the detection score.
i) Del N as fOOD: a simple OOD oversampling method that re-
moves all the nouns from training data and treats the rest as fake
OOD data.
j) Del V as fOOD: all the verbs in the sentences are removed this
time and the rest is used as fake OOD data.

In actual implementation, we used the same TextCNN as de-
scribed in Sec. 2.2 as the base IND classifier for methods a), c),
d). To represent the on-trend BERT-based methods while con-
sidering the reproduce difficulty, we used the simplest pre-trained
BERT network ‘bert-base-uncased’ *5 as the base network to con-
duct b), e), f), where we would like to show (in Sec 4.3) that
although some of the strengthened BERT-based models may ex-
ceed our results in some metrics, we have a substantial advantage
in terms of efficiency over even the simplest implementation. We
use the same Autoencoder and GAN structure described in Sec.
2.1 and 2.3 as the base networks for methods g), h), respectively.

In addition, as the two similar adversarial OOD text generation
works [10], [21] also used the CLINC dataset, we add them to
our baselines as well.

3.3 Metrics
Most OOD detection methods follow a detection score (e.g. in

Fig. 4) - threshold judgment approach, that is,

this question is an

 IND, i f dscore ≥ thres.
OOD, i f dscore < thres.

However, once the threshold changes, the results/accuracy
will also vary. Coupled with the imbalanced quantity fact of

*5 https://huggingface.co/transformers/pretrained_models.

html

© 2021 Information Processing Society of Japan 5

Vol.2021-ICS-204 No.4
2021/9/15

IPSJ SIG Technical Report

IND/OOD data in the test set, we use four metrics that are nei-
ther affected by the threshold nor the data balance.
AUROC and AUPR: i.e., Area Under the Receiver Operating
Characteristic curve and Area Under Precision-Recall curve. For
AUROC, the area enclosed by the false positive rate (FPR)- true
positive rate (TPR) curve under different threshold is calculated,
while for AUPR it is the area enclosed by the Precision-Recall
curve. Both of them are able to effectively measure the model
performance even when the test data are not balanced. Both are
the higher the better.
FPR95 and FPR 90: to show the practical performance of the
model, we also apply FPR95 and FPR90, which denote the FPR
values when the TPR reaches 95% and 90%, respectively. Both
are the smaller the better.

3.4 Implementation
Here we introduce our detailed implementation method follow-

ing the description order in Sec. 2. First, for the Autoencoder
part, we used a BiLSTM-LSTM structure, both of them contain
one hidden layer of 300 units. Before training, we used a fasttext
[11] English 300-dimensional pre-trained word vector to initial-
ize the embedding layer of the encoder. In addition, at the end
of BiLSTM layer, we used a fully connected layer to reduce the
dimension by half for the final hidden state and activated it with
tanh.

For the IND classifier, we used a [3,4,5] kernel size, 16 feature
maps for each kernel TextCNN. Note that the final OOD classifier
(ODC) also shares this structure, but is optimized from both sides
with IND and fake-OOD input. Finally for GAN, we used two 3-
MLPs as the generator and discriminator, the dimensions of each
layer are 600. For G, we used Relu function to activate the middle
layer, and also added tanh in the final layer corresponding to the
encoder setting. For D, we used LeakyRelu activation function
throughout the layers.

4. Results and discussion
In this section, we demonstrate the effectiveness of our pro-

posed method using various datasets. Due to the space limitation,
we will mainly make discussions on the CLINC dataset after re-
porting all experiment results, for it is the most commonly used
dataset in OOD detection works.

4.1 Results and Analysis
The results of each method for OOD detection on the three

datasets can be seen in Tables 2,3,4 respectively, where our ap-
proach achieved the best results on all datasets among the other
baselines. Although work [21] reported a good result, after our
(and also [10]’s) best effort to reproduce, it only achieved an AU-
ROC of 88.87. On the other hand, it can be seen that with our
new implementation, this framework shows its real strength. At
the same time, some simple methods such as directly calculating
the KL distance have also obtained good results. Meanwhile, the
method BERT-Euclid showed great strength and achieved almost
tie results with us on CLINC and FB-Multi datasets. However,
this baseline took a long time calculating distances, whose ef-
ficiency may be lower in real applications (we will discuss this

again in Sec. 4.3). In addition, on the FB-Multi dataset, the
BERT-Maha obtained much worse results compared to BERT-
Euclid. We consider the main reason as the unbalanced data com-
position of FB-Multi, which may cause a higher error in calculat-
ing the covariance matrix.

Table 2 Results on CLINC dataset in %

Method AUROC↑ AUPR↑ FPR95↓ FPR90↓

IDC-MSP 92.83 98.30 38.3 20.6
BERT-MSP 93.73 98.18 22.9 14.7
IDC-Entropy 93.98 98.55 27.1 16.2
IDC-KL Dist. 94.12 98.54 24.9 13.4
BERT-Euclid 95.70 98.89 17.4 10.0
BERT-Maha 94.41 98.56 24.0 13.4
GAN-DIS. 53.04 84.11 94.6 89.5
En/De Recons. 83.40 95.97 71.5 54.8
Del N as fOOD 91.86 97.82 30.1 21.1
Del V as fOOD 93.77 98.38 26.0 14.8

Old impl. reported[21] 95.83 99.05 23.7 9.5
Our reproduce of [21] 88.87 97.29 53.9 30.6
[10]’s reproduce of [21] 88.79 58.22 36.5 26.9
Seq-GAN [10] 91.24 97.79 26.1 19.3

ODC-MSP(ours) 96.17 99.09 16.8 8.9

Table 3 Results on SNIPS dataset in %.

Method AUROC↑ AUPR↑ FPR95↓ FPR90↓

IDC-MSP 91.96 98.78 47.8 22.6
BERT-MSP 92.52 98.85 47.3 24.2
IDC-Entropy 92.10 98.79 45.7 22.6
IDC-KL Dist. 94.09 99.10 32.3 14.5
BERT-Euclid 96.63 99.47 11.3 3.8
BERT-Maha 94.48 99.17 26.9 8.1
GAN-DIS. 68.31 92.64 81.7 73.1
En/De Recons. 69.69 94.00 84.4 73.7
Del N as fOOD 94.78 99.20 25.3 14.0
Del V as fOOD 74.78 95.77 91.4 80.1

ODC-MSP(ours) 98.74 99.83 4.3 1.8

Table 4 Results on FB-Multi dataset in %.

Method AUROC↑ AUPR↑ FPR95↓ FPR90↓

IDC-MSP 93.69 99.01 29.2 11.5
BERT-MSP 84.97 97.65 77.4 53.0
IDC-Entropy 93.87 99.03 30.2 11.0
IDC-KL Dist. 94.71 99.18 30.0 14.5
BERT-Euclid 98.07 99.69 24.7 19.4
BERT-Maha 89.41 98.42 66.1 42.8
GAN-DIS. 70.88 97.47 88.0 72.3
En/De Recons. 59.97 96.79 94.0 89.2
Del N as fOOD 90.66 98.34 40.1 22.4
Del V as fOOD 92.70 98.85 36.9 15.7

ODC-MSP(ours) 98.15 99.71 5.8 3.2

Fig. 3 shows the ROC curve patterns for different methods
(whose enclosed area is the AUROC), which can confirm again
that our model outperforms all baselines. Although the IDC-MSP
method had a strong start, it performed worse later. In addition,
BERT-Euclid, a strong competitor, performed slightly worse than
our model in the beginning but caught up afterward.

Next, Fig. 4 shows the distribution of detection scores for the
baselines, where we can clearly observe the different detection
styles of each method (Note that a lower score indicates the clas-
sifier considered the example more tends to be OOD): The IDC-
MSP had strong confidences in classifying IND data and out-
put high detection scores, but it gave relatively average scores to
OOD data, while BERT-Eucild tried to keep giving higher scores

© 2021 Information Processing Society of Japan 6

Vol.2021-ICS-204 No.4
2021/9/15

IPSJ SIG Technical Report

0.0 0.1 0.2 0.3 0.4 0.5 0.6
False Positive Rate (FPR)

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Tr
ue

 P
os

iti
ve

 R
at

e
(T

PR
)

IDC-MSP
BERT-Euclid
IDC-KL Dist.
ODC-MSP(Ours)

Fig. 3 ROC curves on CLINC dataset

for IND data and scored lower for OOD, which is a good pat-
tern. The IDC-KL Dist. method, which directly utilized the KL
divergence as scores, exhibited a nearly opposite pattern to BERT-
Euclid, i.e., more focusing on detecting and giving low scores to
OOD data. Finally, as for our model, although probably no longer
suitable to serve as an IND classifier, exhibited a strong sensitiv-
ity to OOD examples and output very low detection scores for
almost all OOD data. We believe this is what makes our model
outperformed the others.

0.0 0.2 0.4 0.6 0.8 1.0
detection score

0

5

10

15

20

25

30

35

de
ns

ity

IND
OOD

(a) IDC-MSP

0.0 0.2 0.4 0.6 0.8 1.0
detection score

0

1

2

3

4

5

de
ns

ity

IND
OOD

(b) BERT-Euclid

0.0 0.2 0.4 0.6 0.8 1.0
detection score

0

1

2

3

4

5

6

de
ns

ity

IND
OOD

(c) IDC-KL Dist.

0.0 0.2 0.4 0.6 0.8 1.0
detection score

0

5

10

15

20

de
ns

ity

IND
OOD

(d) ODC-MSP(Ours)

Fig. 4 Detection score distribution on CLINC dataset

4.2 Case Study and Generated Data Analysis
Here are some examples of the text generated by our adversar-

ial framework on the CLINC dataset, as Table 5 shows.

Table 5 Generated examples on CLINC dataset

Good OOD-like sentences
teach me how to book the chicken in happiness
where the i lost my mastercard
use the gas amount to get my gas bill

IND-like sentences please check and see why my card was declined at amazoncom
Noise (meaningless) what time is the wait to change pizza

Real IND
can you help me understand why my card got declined
what time will i get to the beach taking the bus

Real OOD
tell me the steps as to how to begin a career as a journalist
where can i find the best divorce lawyer

We could notice that not all generated texts are perfect fake-
OODs, some are more like IND texts, while some others may
look like noise. Although only a subset of good fake-OOD texts

was generated, we convince it is because this subset, which suc-
cessfully captured a similar pattern with real OOD questions,
contributes to the better result. We believe the quality of gen-
erated text will be even better as we apply more real unlabeled
data in the future.

To quantitatively indicate the quality of the generated texts, we
put 18K IND, 350 real OOD texts from the training dataset and
generated 54K fake-OOD texts into the IND classifier trained in
Sec. 2.2 respectively, and calculated their KL divergence to the
uniform distribution. The result is shown in Fig. 5.

0 6 12 18 24 30 36 42
KL distance with Uniform dist.

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

de
ns

ity

IND
real OOD
fake OOD

Fig. 5 KL distance analysis on CLINC dataset

Remember the phenomenon reported by [3] that, if an example
is closer to OOD, the output of IND classifier should be closer
to a uniform distribution, i.e., the KL distance should be smaller.
As it happens, we can observe from the figure that the fake-OOD
examples generated by our model, though which may still be not
as good as the real OOD, have had a significantly smaller KL dis-
tance than the IND examples, which also demonstrates that the
sentences generated with our method are transforming towards a
more OOD-like direction.

4.3 Efficiency Comparison
Finally, we compare the efficiency of the models with the

parameters and time costed during training and predicting on
CLINC dataset. The results are summarized in Table 6.

Table 6 Efficiency comparison on parameter and time

Method Total Para. Pred Para. Train Time Pred Time AUROC
IDC-Based 2.24M 18s avg 0.90s best 94.12
BERT-MSP

110M 2min20s

2.48s 93.73
BERT-Euclid 12min 95.70
BERT-Maha 45min 94.41
GAN-DIS 1.80M 0.72M 1min43s 0.28s 53.04
En/De Recons. 9.06M 3min38s 0.94s 83.40
Work [21] 16.06M 5.63M 1h31min 1.38s 88.87
Our model 15.34M 2.24M 11min27s 0.93s 96.17
Note: the train time of BERT denotes the costed time of 4-epoch finetuning,
the pred time includes both encoding and distance calculation steps.

The efficiency advantage of our model can be clearly seen in
this table. Although the GAN-DIS model had the least parameters
and overall time, it also obtained the worst result. The finetuning
time of BERT-Euclid was relatively short, also it only took 5.06s
to encode 5,500 test sentences, the results are also very com-
petitive; however, it spent huge time on the 768-dimension dis-
tance calculation and comparison with all the data in the database
when making predictions, which is not very practical in real ap-
plications. The original implementation of [21] spent much time
on training, especially on the GAN training with over 1h16min

© 2021 Information Processing Society of Japan 7

Vol.2021-ICS-204 No.4
2021/9/15

IPSJ SIG Technical Report

costed, where we consider the reason as the usage of big aux-
iliary IDC network and ‘soft-embedding’ along with huge extra
computations. Our method, on the other hand, although required
slightly more parameters and training time compared to classi-
cal methods, improved significantly in terms of final result and
prediction speed. In conclusion, we believe our model is well-
balanced and maintains the best efficiency.

5. Conclusion and future work
In this paper, we re-explored and solved the unstable training

and poor performance problem of the current adversarial OOD
text generation framework, and proposed a new implementation
scheme. For Autoencoder, we deepened the encoder and added
a tanh for a normalized latent space to release some difficulties
of GAN imitation. For the unstable training problem of GAN,
as a replacement of conflicting entropy loss, we used a softer KL
divergence loss to transmit the signal from IND classifier to the
generator, and we refined the basic structure for a quicker grasp
of the input distribution. The results of experiments and compar-
isons demonstrated the practicality and efficiency of our model.

As future work, we present a challenge and a refinement di-
rection: the challenge is that due to the natural limitations of the
GAN, if IND and OOD are very different, our OOD generation
model may lose its advantage. In addition, as for the most impor-
tant part of the generation framework, the use of new, large-scale-
network encoders has become a trend. But as we analyzed, this
will greatly reduce the efficiency. We consider using the latest,
simplified networks as a pure-encoder in the future to get better
coding space distributions but keep a good efficiency. Finally, we
would also like to evaluate our model utilizing the real unlabeled
data when it becomes available in the future.

Acknowledgment
This research was partially supported by JSPS KAKENHI No.

JP20H04300 and JP21H00907. We also thank Seita Shimada and
Yoshiaki Matsukawa, Rakuten Card Co. ltd. for their helpful
comments on this research.

References
[1] Alice Coucke, Alaa Saade, Adrien Ball, Théodore Bluche, Alexan-

dre Caulier, David Leroy, Clément Doumouro, Thibault Gisselbrecht,
Francesco Caltagirone, Thibaut Lavril, Maël Primet, and Joseph
Dureau. Snips Voice Platform: An embedded Spoken Language
Understanding system for private-by-design voice interfaces. arXiv,
2018.

[2] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin,
and Aaron Courville. Improved training of wasserstein gans. In Pro-
ceedings of the 31st International Conference on Neural Information
Processing Systems, pages 5769–5779, 2017.

[3] Dan Hendrycks and Kevin Gimpel. A baseline for detecting misclas-
sified and out-of-distribution examples in neural networks. 5th Inter-
national Conference on Learning Representations, ICLR 2017 - Con-
ference Track Proceedings, 2017.

[4] Dan Hendrycks, Xiaoyuan Liu, Eric Wallace, Adam Dziedzic,
Rishabh Krishnan, and Dawn Song. Pretrained transformers im-
prove out-of-distribution robustness. In Proceedings of the 58th An-
nual Meeting of the Association for Computational Linguistics, pages
2744–2751, Online, July 2020. Association for Computational Lin-
guistics.

[5] Dan Hendrycks, Mantas Mazeika, and Thomas Dietterich. Deep
anomaly detection with outlier exposure. In International Conference
on Learning Representations, 2018.

[6] Yoon Kim. Convolutional neural networks for sentence classification.

In Proceedings of the 2014 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1746–1751, Doha, Qatar,
October 2014. Association for Computational Linguistics.

[7] Stefan Larson, Anish Mahendran, Joseph J. Peper, Christopher Clarke,
Andrew Lee, Parker Hill, Jonathan K. Kummerfeld, Kevin Leach,
Michael A. Laurenzano, Lingjia Tang, and Jason Mars. An evaluation
dataset for intent classification and out-of-scope prediction. In Pro-
ceedings of the 2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP), pages 1311–1316,
Hong Kong, China, November 2019. Association for Computational
Linguistics.

[8] Kimin Lee, Honglak Lee, Kibok Lee, and Jinwoo Shin. Training
confidence-calibrated classifiers for detecting out-of-distribution sam-
ples. In International Conference on Learning Representations, 2018.

[9] Jeremiah Zhe Liu, Zi Lin, Shreyas Padhy, Dustin Tran, Tania Bedrax-
Weiss, and Balaji Lakshminarayanan. Simple and principled uncer-
tainty estimation with deterministic deep learning via distance aware-
ness. arXiv, 2020.

[10] Petr Marek, Vishal Ishwar Naik, Vincent Auvray, and Anuj Goyal.
OodGAN: Generative Adversarial Network for Out-of-Domain Data
Generation. arXiv preprint arXiv:2104.02484, 2021.

[11] Tomas Mikolov, Edouard Grave, Piotr Bojanowski, Christian Puhrsch,
and Armand Joulin. Advances in pre-training distributed word rep-
resentations. In Proceedings of the Eleventh International Con-
ference on Language Resources and Evaluation (LREC 2018),
Miyazaki, Japan, May 2018. European Language Resources Associa-
tion (ELRA).

[12] Alexander Podolskiy, Dmitry Lipin, Andrey Bout, Ekaterina Arte-
mova, and Irina Piontkovskaya. Revisiting Mahalanobis Distance
for Transformer-Based Out-of-Domain Detection. arXiv preprint
arXiv:2101.03778, 2021.

[13] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised rep-
resentation learning with deep convolutional generative adversarial
networks. 4th International Conference on Learning Representations,
ICLR 2016 - Conference Track Proceedings, 2016.

[14] Seonghan Ryu, Seokhwan Kim, Junhwi Choi, Hwanjo Yu, and
Gary Geunbae Lee. Neural sentence embedding using only in-domain
sentences for out-of-domain sentence detection in dialog systems. Pat-
tern Recognition Letters, 88:26–32, 2017.

[15] Seonghan Ryu, Sangjun Koo, Hwanjo Yu, and Gary Geunbae Lee.
Out-of-domain detection based on generative adversarial network. In
Proceedings of the 2018 Conference on Empirical Methods in Natural
Language Processing, pages 714–718, Brussels, Belgium, October-
November 2018. Association for Computational Linguistics.

[16] Sebastian Schuster, Sonal Gupta, Rushin Shah, and Mike Lewis.
Cross-lingual transfer learning for multilingual task oriented dialog. In
Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pages 3795–3805,
Minneapolis, Minnesota, June 2019. Association for Computational
Linguistics.

[17] Yilin Shen, Yen-Chang Hsu, Avik Ray, and Hongxia Jin. Enhancing
the generalization for intent classification and out-of-domain detection
in slu. arXiv preprint arXiv:2106.14464, 2021.

[18] Lei Shu, Hu Xu, and Bing Liu. DOC: Deep open classification of
text documents. In Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pages 2911–2916, Copen-
hagen, Denmark, September 2017. Association for Computational
Linguistics.

[19] Sandeep Subramanian, Sai Rajeswar, Alessandro Sordoni, Adam
Trischler, Aaron Courville, and Christopher Pal. Towards text gener-
ation with adversarially learned neural outlines. In Advances in Neu-
ral Information Processing Systems, volume 2018-December, pages
7551–7563, 2018.

[20] Apoorv Vyas, Nataraj Jammalamadaka, Xia Zhu, Dipankar Das,
Bharat Kaul, and Theodore L Willke. Out-of-distribution detection
using an ensemble of self supervised leave-out classifiers. In Proceed-
ings of the European Conference on Computer Vision (ECCV), pages
550–564, 2018.

[21] Yinhe Zheng, Guanyi Chen, and Minlie Huang. Out-of-domain detec-
tion for natural language understanding in dialog systems. IEEE/ACM
Transactions on Audio, Speech, and Language Processing, 28:1198–
1209, 2020.

© 2021 Information Processing Society of Japan 8

Vol.2021-ICS-204 No.4
2021/9/15

