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Abstract: To achieve an automatic formal specification-based program fault detection, the open problem of how to automatically 
link the components in the formal specification to the corresponding ones in the implemented code must be addressed. To reduce 
the manpower and time cost, some automated techniques have already been developed but their effectiveness is limited mainly due 
to the over dependency of textual similarity. In this paper, we present an automatic method for constructing the traceability links 
between SOFL formal specifications and Java program code. Unlike the existing work, our method not only considers the semantic 
similarity, but also structural, functional, and relational similarities as the measurement dimensions. It also operates at multiple 
levels of a specification, such as data flows, processes, and modules, to establish fine-grained link relationships between artifacts. 
Further, we conduct a comprehensive empirical evaluation of the proposed method using selected two modules of a critical ATM 
system’s SOFL formal specification and its Java implementation with the size of 951 code of lines and 36 traceability links. The 
result shows that we can establish SOFL-to-Java links with the precision of 97.2% which is close to highest accuracy of existing 
naming convention technique in the situation of consistent identifier and the precision of 88.8% illustrating high performance in 
precision and generality in the situation of inconsistent identifier. 
 
Keywords: Software Traceability Links, Formal Specification, SOFL, Program Verification 

 
 

Introduction     

Our research in this paper focuses on the establishment of fine-
grained traceability links that connect “high-level” SOFL formal 
specification artifact [1] to “low-level” code artifact written in Java 
programing language (SOFL-to-Java). This work stems from a 
subproblem existing both in the specification-based program 
inspection [2] and in software construction monitoring process in 
Human-Machine Pair Programing (HMPP) [3]. When current 
traceability links automatic techniques were adopted in the specific 
SOFL-to-Java trace link recovery, two major shortcomings were 
found: 
1) Limited Measure Dimensions of Artifact Similarity. Existing 

traceability link techniques tend to mainly use a single semantic 
measurement dimension to model relationships between artefacts. 
Here we refer semantic narrowly to name similarity or textual 
similarity. The adoption of this relatively single measurement 
dimension is mainly due to artifacts’ logical abstract gap and the 
amount and types of information extracted from different artifacts. 
The gaps are mainly caused by the fact that various artifacts are 
represented or described in different languages, such as 
requirements written in the SOFL formal language [1] and the code 
written in Java programing language. This is problematic in 
practical application and generality as developers usually use 
inconsistent name or identifiers to implement the requirements. 
When it comes to trace link recovery between a formal 
specification and code, we propose some new similarity measure 
dimensions that includes structural dimension, functional 
dimension, relational dimension that distinguish our work from 
previous work. The explanation of these new measure dimensions 
is given detailly in the following approach section. 
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2) Limited Link Granularity. Some previous work concentrates 
on the establishment of coarse-grained artifact level traceability 
link (e.g., user stories and class files) while some other existing 
work focuses on the building of fine-grained connections between 
components of artefacts (e.g., test-to-code traceability links on 
class level and method level). However, the method level 
granularity is not adequate and more granular traceability links are 
needed to generate a checklist for our specification-based program 
inspection or fault detection purpose. Our work on connecting 
SOFL formal specifications to Java program code focuses on the 
module and class level where the module or class component of 
the SOFL specification is linked to a Java class, the process level 
where the process component of the SOFL specification is linked 
to a Java method or class method, the data flow level where the 
data flow component of the SOFL specification is linked to a Java 
class filed or variable or constant. The expression of “multi-level” 
in the paper title means that we simultaneously address the module 
and class level, the process level, and the data flow level, which 
differs from existing work. 
The limitation discussed above arises from the technical 

limitation of existing traceability techniques and the difference 
between artefacts involved in the problems to be solved. In this 
paper, we present an automatic SOFL-to-Java traceability links 
technique, aiming to overcome the weakness or limitations of 
existing approaches when adopted to support automatic 
specification-based program inspection. The proposed method 
combines a wide range of similarity measurement dimensions and 
extracts corresponding attribute set to produce a single score to 
predict trace links. Our approach is comprehensively evaluated 
using selected two modules of SOFL formal specification of a 
critical ATM system case [14] with the size of 951 code of lines, 
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12 Java classes and 36 traceability links at multilevel. The result 
of the experiment shows that the proposed method with a 97.2% 
precision is close to the naming conventions method [4] with a 
100% precision in the case of using same identifiers. Further, our 
method could also solve traceability links problem with the 88.8% 
accuracy in the situations of using inconsistent identifiers in whole 
programs. The main contributions of this paper are: 

• A more specific framework for specification-based 
software construction monitoring realization in human-
machine pair programming.  

• An approach to SOFL-to-Java traceability link for 
completed program that combines multiple similarity 
measurement dimensions and achieves multilevel trace 
link.  

• A comprehensive evaluation of proposed approach to 
SOFL-to-Java traceability link for completed programs 
at multilevel. 

Specification-based Software Construction 
Monitoring and Traceability Links Problem  
We describe a more specific framework for software construction 

monitoring (SCM) to be realized in human-machine pair 
programming by properly adding the specification to original 
framework and address the SOFL-to-Java traceability links 
problem. 

1.1 Specification-based SCM 
Programming is the major activity to provide working software 

advocated in the agile development paradigm but lacks effective 
techniques to address the challenges in ensuring software quality, 
productivity, and maintainability. Liu proposed a human-machine 
pair programming (HMPP) methodology to support efficient and 
reliable programming [3]. HMPP is an extension and refinement 
of pair programming by replacing one of the programmers with an 
intelligent machine which can either identify potential software 
defects and violation of standards in the program or predict useful 
program segments for enhancing the robustness and the 
completeness of the program. It can overcome the disadvantages 
of high cost and programmers’ cooperation issue in conventional 
pair programming. 
HMPP includes two key techniques: software construction 

predicting (SCP) for program segments generation automatically 
and software construction monitoring (SCM) for timely fault 
detection and error-free completion which is related to our 
traceability links concern. The technique SCM here refers to the 
automatic and dynamic check of whether the current software 
version satisfies the required properties (e.g., requirements in the 
specification, termination of loop body). The original SCM 
realization framework is shown in the internal rectangle part of Fig. 
1. Specific property to be checked is determined or formed on the 
basis of both the pre-prepared property knowledge stored in the 
knowledge repository and the information of current software 
version through syntactical analysis. 
In order to detect requirements-related semantic faults which 

refers to the ones that are inconsistent with the requirements or the 
developers’ programming intention in software construction  

 

Figure 1. Specification-based framework for software construction 
monitoring. 

 

Figure 2. Components’ corresponding relationships between SOFL and 
Java program. 

monitoring, we introduce specification data and the specification 
analysis activity into original software construction monitoring 
realization framework as shown in Fig. 1. We call it specification- 
based software construction monitoring. By taking advantage of 
specification, this realization framework can benefit specification-
based programing in terms of ensuring its quality by utilizing 
specification-based inspection technique and specification-based 
testing [5]. It should be pointed out that the specification-based 
framework for specification-based programming is a more specific 
one as original SCM realization framework is proposed for general 
programming and they have an inclusive relationship. 

1.2 Traceability Links for Completed Program Problem 
There is a challenge involved in the realization of specification-

based SCM, which is to identify what subset of the specification 
has been implemented, what properties in the specification are 
implementing and what subset of specification is unimplemented. 
Fault detection could be done once an appropriate subset of 
specification has been chosen or determined. 
Since the identification of the appropriate subset of the 

specification that has been implemented by the program under 
construction is a very difficult task, we actually first explore a 
solution that maps the specification to the completed program in 
this paper and then make a solution to the mapping from the 
integral specification to the partial program as our future work. As 
for the specification, we choose SOFL (Structured-Object-based-
formal Language) [1] which generates accurate and unambiguous 
requirements description like other formal languages such as Z and 
VDM [6]. The chosen of SOFL is mainly based on its successful 
application to modeling software systems in the collaboration with 
industry and on our familiarity with it as it was developed by the 
second author [7]. Further, the Java programming language is 

Program
Syntactical Analysis

Form Specific 
Properties

Check Properties

Current version 
of software

Information of the 
current software Specific properties

Property-related 
knowledge base

Fault report

Specification Specification
Analysis

Basic framework for SCM

Specification-based framework for SCM

<java_program> := <class> | <java_program> <class>
<class> := <class_modifiers> ‘class’ <identifier> 

[super-declaration][interface-declaration] 
‘{‘

[basic-type-field-declarations]
[enumeration-type-field-declarations]
[list-type-field-declarations]
[set-type-field-declarations]
[map-type-field-declarations]
[final-field-declarations]
[method-declarations]
[…]

‘}’    

<specification> := <module> | <specification> <module>
<module> :=     ‘Module’ <module-name1> [module-name2, cp-name]

[‘Type’]
[composite-type-declarations’;’]
[product-type-declarations’;’]
[basic-type-declarations’;’] 
[enumeration-type-declarations’;’]
[sequence-type-declarations’;’]
[set-type-declarations’;’]
[map-type-declarations’;’]

[‘Const’]
[const-declarations]

[‘Variable’]
[variable-declarations‘;’]

[‘Inv’]
[invariant-declarations’;’]

<process-definitions>
[function-definitions]

‘End Module’
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selected to implement specifications for two reasons. One is that it 
is still popular for decades since its birth and the other one is the 
availability of the relatively rich functional and non-functional bug 
dataset, such as NFBugs, MUBench, DEFECT4J, and iBUGS [8]. 
These bug datasets will be used as a basis to extract fault pattern 
in our future work of common programming fault detection which 
is not requirement specific. 
Before defining the SOFL-to-Java traceability link for both 

completed programs, a brief introduction to SOFL is given. SOFL 
offers a formal and rigorous language to describe requirements in 
an unambiguous manner. The SOFL language is mainly comprised 
of the following components: class, module, data flow, data store, 
process, and function. More information about the structure of 
SOFL is detailed in [1]. Fig. 2 shows the usual components’ 
corresponding relationships in the transformation from SOFL 
specification to Java program implementation. Data flows which 
could be defined with a basic type (e.g., int type in SOFL) or 
compound type (e.g., set type in SOFL) or user-defined type (e.g., 
composite type in SOFL) are understood as data item that need to 
be taken in and out by the required functions. Data flows except 
composite and product type usually are implemented as the fields 
of Java class. Data stores corresponding to the variable part in Fig. 
2 are variables that hold data in rest for use by processes 
(equivalent to operations or functions in general term) and are 
usually implemented as fields of a Java class. Processes express or 
describe a specific function or operation via pre-condition and 
post-condition based on predicate logic and are usually 
transformed into the methods in Java class. The module containing 
data flow and processes could be interpreted as the functional or 
behavioral abstract of the object and usually implemented as a Java 
class. 
SOFL-to-Java Traceability Links for Completed Program 

Definition. Our goal is to make a solution for capturing 
meaningful information regarding the transformative relationships 
between components of SOFL specifications and the ones of Java 
program and for establishing their trace links. More specifically, 
given a SOFL formal specification S such that S = {S_component1, 
…, S_componentn} and a completed Java program P implementing 
specification S such that P = {P_component1, …, P_componentm}, 
we aim to discover whether a trace link L exists between all 
possible pairs of components in S and P such that L = {(s, p) | s ∈ 
S, p ∈ P, s ↔ p} where each pair of components s and p are said to 
be the transformative links. 

Approach  

We present the proposed multilevel SOFL-to-Java trace links 
establishment approach here from the main aspects of 
measurement dimensions, its workflow, various components’ 
attributes design, used similarity measurement techniques, 
respectively. To ensure the comprehensibility of our discussion, a 
money-box example is given in Fig. 3. The money-box has three 
required functions: save money, check money and purchase toy 
with a fixed price of 1000 Japanese yen. 

 

Figure 3. A money-box example of the transformation from SOFL 
specification to Java implementation. 

 

Figure 4. Attributes’ dimensions of SOFL components. 

1.3 Measurement Dimensions 
Formal specifications like SOFL are different from other artefacts 

like the informal requirement documents written in natural 
language. We observe that each component of a SOFL 
specification has its own attributes including semantics, structure 
and function, and correlation attributes during its interaction with 
other components as shown in Fig. 4. Although there are some 
variants, these four different kinds of attributes of the SOFL 
specification will always be remained in their implementation in a 
programming language. This is the principle that supports the 
proposed traceability links method. 
Semantic Dimension. By semantics we mean that the identifiers 

assigned in components of SOFL may be semantically similar or 
be kept in their corresponding Java implementation by developer. 
For instance, the process name “Save_Money” in SOFL is still 
used in the corresponding “save_money” method of Java class 
“Money_Box” as shown in Fig. 3. 
Structural Dimension. Here we refer structure mainly to type 

and the type of component in different level of SOFL 
specifications. The structure of data flow component is directly its 
defined type. The structure of a process or function in SOFL is 
represented by a list of its input data flows and output data flows. 
The structure of a module or class in SOFL is the type list of the 
data flows in its const part, types part and var part.  For instance, 
the structure of “money_box” data flow is “int” type, the input 
parameter structure of process “Save_Money” is “int” type, the 
field structure of “Money_Box” module is “const, int” as shown in 
Fig. 3. The structural attributes are still kept in its Java 
implementation. 
Functional Dimension. Here we mean the function of different 

which refers to the purpose of it could be revealed by the dynamic 

Component I Component J

Relationship between SOFL components

semantics

structure

function

semantics

structure

function

module Money_Box
const 
toy_price = 1500
var
money_box: int
process Save_Money(amount: int)

ext wr money_box
pre amount > 0.0
post money_box = ~money_box + amount

end_process;
process Check_Money() total: int

ext rd money_box
post total = money_box

end_process;
process Purchase_Toy() expense: int | warning: string

ext wr money_box
post ~money_box >= toy_price and expense = 

toy_price and money_box = ~money_box – toy_price 
or 
~money_box < toy_price and warning = "the shortage 

of the money in the money_box, failed transaction"
end_process;

end_module;

public class Money_Box {
public static final int toy_price = 1500;
private int money_box = 0;
void save_money(int amount) {

if (amount >0) {
money_box += amount;

} }
int check_money() {

return money_box; }
int purchase_toy() {

int expense;
if (money_box >= toy_price) {

money_box -= toy_price;
expense = toy_price;
return expense;

} else {
System.out.println("the shortage of the money in the 

money_box, failed transaction");
expense = 0;
return expense;

} }
public static void main(String args[]) {

Money_Box ljd = new Money_Box();
System.out.println(ljd.check_money());
ljd.save_money(2000);
int cost = ljd.purchase_toy();
System.out.println("cost is " + cost);
System.out.println(ljd.money_box);

}
}
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testing based on the test data generated by it and the function of 
component in different level of SOFL specification are different. 
For instance, the function of the “money_box” data flow is to store 
data of int type, the function of “Save_Money” process is to 
deposit money and “Money_Box” module has three functions: 
“Save_Money”, “Check_Money” and “Purchase_Toy” as shown 
in Fig. 3. These attributes of functional dimension are actually not 
extracted and used in our following experiment as SOFL-to-Java 
traceability linked could be effectively established without it and 
the extraction procedure requires test data date generation and 
dynamic testing that leads to low time efficiency. 
Relational Dimension. Here we refer relation to the interactions 

between different components in SOFL. Different data flows work 
together to be the input data flows of a process. One data flow type 
may be used as one input of a process or interact with the body of 
a process or be used as the return type of a process.  One data 
flow or data store is constituted element of a process. A module 
usually includes several processes. For instance, the constant 
“toy_price” is used in the body of process “Purchase_Toy”, the 
data store “money_box” is used as read mode in the body of 
“Check_Money” process and as write mode in two other processes, 
the “Money_Box” module has two data flows and three processes 
as shown in Fig. 3. 

1.4 Workflow 
Our approach reckons which component of Java program 

implements which component of SOFL specification. The 
establishment process of these trace links is illustrated in Fig. 5.  
The process consists of four major steps: attributes extraction for 
specification and program components respectively, similarity 
measurement and ranking. Each step that stands for an operation is 
represented by a diamond and each data item is represented by a 
box. An arrow from a box to an operation means that the data item 
of the box is an input to the operation, and an arrow from an 
operation to a box means that the data item of the box is an output 
of the operation. An arrow from one operation to another shows a 
control flow. 
In general, our approach starts by extracting the attributes about 

each component in SOFL specification and Java program. It then 
creates candidate links between SOFL specification components 
and Java program components. It then calculates the similarity 
scores through some similarity measurement techniques based on 
the extracted attributes and assigns similarity scores to the 
candidate links. These similarity scores are the basis to rank the 
candidates and identify which of them is the true traceability links. 
The identified traceability links are used for program verification 
and fault detection purpose. 
It should be pointed that specification need to be preprocessed 

like functional scenario derivation and specification purification. 
Both of them are for the purpose of extracting more accurate 
attributes for each component. Specification purification here 
refers to separating the composite type and product type data flow 
from the module in which they are declared. According to our 
specification to program transformation experience, we find that 
composite and product type data flow are usually implemented as 
class in Java programming language and not implemented as field 

of the class which implements the corresponding module. 
Functional scenario is mainly used to solve one-to-many 
traceability links situation introduced in the later 3.6 section. 
Besides, we introduce component type grouping trace link trick for 
reducing computation cost and improving trace link accuracy 
which is shown in our experimental and evaluation section. 
Component type grouping trace link means that we only calculate 
the similarity score for SOFL specification components and Java 
program components pairs which has consistent type. For example, 
the component pair which has constant data flow of SOFL 
specification and the method of Java class is invalid. Before 
similarity score calculation, type substitution should be done in 
advance based on some prior SOFL-to-Java data type 
transformation knowledge and class dependence graph. The class 
type data will be replaced by the type list of its constitutive fields. 

1.5 Attributes Extraction of Multilevel Components 
We design and extract different attributes for different 

components of the SOFL specification from the perspectives of 
semantics, structure, function and interactive relationships as 
described in section 3.1. The reason is that one kind of component 
has some unique attributes that can distinguish itself from other 
kinds of components. The 33 designed and extracted attributes for 
these components of SOFL specification is presented in Table 1. 
We marked the name, explanation of each attribute and type of 
corresponding attribute value. The attributes combination for 
constant type data flow, basic type data flow, set type data flow, 
map type data flow, sequence type data flow, enumeration type 
data flow, composite type data flow, product type data flow, 
process, function and module are shown in Table 2. 
The unique attribute for data flow of constant type is its value 

attribute. The unique and different attributes for data flow of map 
type are its domain type and its range type. The attribute that 
distinguishes the data flow of enumeration type from others is its 
enumeration value. The distinguishable attribute that is extracted 
for data flow of set and sequence type is the data type of its element. 
If a data flow is also a data store, then the unique attributes for it 
also include the information of processes that read or write the data 
store. A process or function has unique attributes related to its own 
input parameters (data flow) and return data flow type. Besides, its 
interaction with the data flows that are declared in constant part, 
type part and var part of the module in specification and the call 
relations between itself and other functions or process could also 
be extracted. The data flows of composite type and product type 
have own attributes like associated fields’ type and amount while 
the module has additional attributes about associated and 
constitutive processes or functions.  
The above description is about the attribute extraction for the 

multilevel components of SOFL specification. The designed and 
extracted attributes for different components of Java program is 
actually the same as the ones extracted from the SOFL 
specification as shown in Table 2. 
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Table 1.  EXTRACTED ATTRIBUTES FOR SOFL COMPONENTS. 

 
  Attribute ID Attribute Name and Explanation Attribute Value Type 

1 “identifier”: what is its identifier? String 

2 “type”: Will it be transformed into class or field or method in Java programs? String 

3 “data_type”: what is its type? String 

4 “constant_value”: what is its constant value? String, int or double 

5 
“interacted_method_body_identifier”: What are the identifiers of the methods 

using this component in their method bodies?  
String 

6 
“interacted_method_body_amount”: How many methods using this component in 

their method bodies? 
int 

7 
“interacted_method_amount_outside_class”: How many other classes’ methods 

using this component?  
int 

8 
“interacted_method_amount_in_class”: How many local class’s methods using 

this component?  
int 

9 “interacted_class_type”: What are the types of interacted classes? String 

10 “interacted_class_identifier”: What are the identifiers of interacted class? String 

11 “fields_type”: What are the types of constitutive fields for a class? String 

12 “fields_identifier”: What are the identifiers of constitutive fields for a class? String 

13 “fields_amount”: What is the amount of constitutive fields for a class? int 

14 “interacted_field_type”: What are the types of interacted other components? String 

15 
“interacted_field_amount”: How many other field-level components interacting 

with it? 
int 

16 
“ interacted_method_parameter_part_identifier”: What are the identifiers of the 

methods using this component as the input parameter? 
String 

17 
“ interacted_method_parameter_part_amount”: How many methods using this 

component as the input parameter? 
int 

18 
“ interacted_method_return_type_identifier”: What are the identifiers of the 

methods using this component as the return type? 
String 

19 
“interacted_method_return_type_part_amount”: How many methods using this 

component as the return type? 
int 

20 “domain_type”: What is the type of the domain of a map type field? String 

21 “range_type”: What is the type of the range of a map type field? String 

22 “element_type”: What is the data type of its element in compound type field? String 

23 “enumeration_value”: What is the enumeration value? String 

24 “parameter_type”: what types are the input parameters of a method? String 

25 “parameter_amount”: How many parameters does a method have? int 

26 “return_type”: What is the return type of a method? String 

27 
“interacted_call_identifiers”: What are the identifiers of other methods calling the 

method?  
String 

28 “interacted_call_amount”: How many methods calling the method? int 

29 “method_amount”: How many methods does a class have? int 

30 “method_identifier”: What are the identifiers of methods that a class have? String 

31 
“method_parameters_types”: What are the types of the parameters of methods that 

a class have? 
String 

32 “method_return_type”: What are the return type of methods that a class have? int 

33 “interacted_class_amount”: How many class does it interact? int 
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Figure 5. Workflow of establishing SOFL-to-Java trace links. 

Table 2.  ATTRIBUTES FOR VARIOUS COMPONENTS. 

Component Attribute Combination 
Attribute 

Amount 

constant type data flow / 
final field in Java 

1, 2, 3, 4, 5, 6, 7, 8, 9, 
10, 33 

11 

Basic type data flow / 
basic type field in Java 

1,2,3,5,6,7,8,9,10,14,1
5,33 

12 

Set type data flow / set 
type field in Java 

1,2,3,5,6,7,8,9,10,14,1
5,16,17,18,19,22,33 

17 

Sequence type data flow 
/ list type field in Java 

1,2,3,5,6,7,8,9,10,14,1
5,16,17,18,19,22,33 

17 

Map type data flow / 
map type field in Java 

1,2,3,5,6,7,8,9,10,14,1
5,16,17,18,19,20,21,33 

18 

Enumeration type data 
flow / enumeartion type 

field in Java 

1,2,3,5,6,7,8,9,10,14,1
5,16,17,18,19,23,33 

17 

Composite type or 
producte type data flow 

1,2,3,7,8,9,10,11,12,13
,14,15,16,17,18,19,33 

17 

Process or function / 
method in Java 

1,2,3,9,10,14,15,24,25,
26,27,28,33 

13 

Module / class in Java 
1,2,3,5,6,7,8,9,10,11,1
2,13,14,15,17,18,19,29

,30,31,32,33 
23 

1.6 Selected Similarity Measurement Techniques 
The extracted attribute sets for multilevel components of both 

SOFL specification and Java code are the basis to measure their 
similarity. To calculate the similarity score or trace link score, we 
select four existing similarity measurement techniques including 
longest common subsequence-both (LCS-B), cosine similarity, the 
similarity measurement between two numbers and Jaccard 
coefficient. These four techniques produce a score between 0 and 
1 for each extracted attribute. 
Longest common subsequence-both (LCS-B) [13] is variant of 

longest common subsequence and is used to measure the similarity 
of the “identifier” attribute only. LCS-B calculates the textual 
similarity between two strings 𝑣!"#$and 𝑣%&'&  by dividing the 
length of their longest common subsequence by the greater of the 
length of them. It can be expressed as follows: 

𝑠𝑐𝑜𝑟𝑒(𝑣!"#$ , 𝑣%&'&* =
|)*+('!"#$,'%&'&)|
/01(2'!"#$2,|'%&'&|)

 (1) 

We choose LCS-B as the name similarity technique other than 
naming conventions or Levenshtein distance etc. This is because 
LCS-B performs better than others in recall and it produces the 
same score as naming convention technique even in the extreme 
situation that the names of components in SOFL are the same as 
the names of components in Java. 
Cosine similarity is mainly used to measure the similarity of these 

attributes whose value type is string type except “identifier” 
attribute. Cosine similarity measures the similarity of two strings 
𝑣!"#$ and 𝑣%&'&  through calculating the cosine of the angle 
between two non-zero vectors A and B which representing these 
two strings 𝑣!"#$and 𝑣%&'&. It can be expressed as follows: 

   𝑠𝑐𝑜𝑟𝑒(𝑣!"#$ , 𝑣%&'&* =
3∙5

2|3|2||6||
    (2) 

String vectorization which is actually counting the frequency of 
each character in each string is an essential preliminary work 
before calculating the similarity of two strings. Cosine similarity 
is usually used in positive space in our application scenario, so the 
value given is between 0 and 1. 
The similarity between two numbers 𝑣!"#$ and 𝑣%&'&  is 

measured by dividing the minimum of two numbers by the 
maximum of two numbers. It is mainly used to measure the 
similarity of these attributes whose value type is int type. It can be 
expresses as follows: 

 𝑠𝑐𝑜𝑟𝑒(𝑣!"#$ , 𝑣%&'&* =
789('!"#$,'%&'&)
/01('!"#$,'%&'&)

  (3) 

 
We choose ratio of two number as similarity rather than Euclidean 

distance and Mahalanobis distance as our intention in order to get 
a similarity score between 0 to 1 for each extracted attribute. 
Jaccard coefficient [19] is mainly used to measure the similarity 

of those attributes who value type is set type. Given two sets 
𝑣!"#$ and 𝑣%&'&  , Jaccard coefficient calculates their similarity 
score by dividing the number of elements in their intersection by 
the number of elements in their union. It can be formulated as 
follows: 

𝑠𝑐𝑜𝑟𝑒(𝑣!"#$ , 𝑣%&'&* =
|'!"#$	∩	'%&'&|
|'!"#$	∪	'%&'&|

   (4) 

Jaccard coefficient is selected by considering the multiple value 
and disorder characteristic of the input data flows of SOFL process 
and parameters of Java method. It should be pointed out that most 
set type attributes are transformed into string type and cosine 
similarity is used to measure their similarity to simply calculation 
and improve the accuracy of similarity calculation in our 

Attributes of 
specification’s 
components

Attributes of 
program’s components

Specification

Program

Extract 
program 
attribute 
set 

Measure 
similarity score

Derive Functional Scenario

Specification Purification

Preprocess

Preprocessed Specification

Extract 
specification 
attribute
set 

Component Type Grouping

Type Transformation

Preprocess

Preprocessed 
Attributes of 

specification’s 
components

Similarity Score Trace Links

Rank 

ソフトウェアエンジニアリングシンポジウム 2021
IPSJ/SIGSE Software Engineering Symposium (SES2021)

c⃝ 2021 Information Processing Society of Japan 148



  
 

  
 

implementation. Besides, it could also satisfy our score range 
requirement. 

1.7 Trace Link Prediction 
SOFL-to-Java Prediction. A matrix of similarity score is 

generated or constructed after the similarity calculation by the 
integrated application of above similarity measurement 
techniques:  
 𝑆𝑐𝑜𝑟𝑒_𝑀𝑎𝑡𝑟𝑖𝑥 ∈ ℝ|+=>)_*|×|ABCB_*| (5) 
Where 𝑆𝑂𝐹𝐿_𝐶is the set of components extracted from SOFL 

specification and 𝐽𝐴𝑉𝐴_𝐶  is the set of components extracted 
from the Java implementation. Each element of the score matrix 
𝑆𝑐𝑜𝑟𝑒_𝑀𝑎𝑡𝑟𝑖𝑥 is the traceability score for a given SOFL-to-Java 
component pair(𝑠_𝑐, 𝑝_𝑐) ∈ (𝑆𝑂𝐹𝐿_𝐶 × 𝐽𝐴𝑉𝐴_𝐶).  
Each row of the score matrix is a similarity score vector of a 

SOFL component to each component of Java program code. This 
similarity score vector is then ranked and compared with a 
threshold. If the maximum of this similarity score vector is greater 
than the threshold, the corresponding SOFL and Java component 
pair will be linked.   

1.8 One-to-Many SOFL-to-Java Trace Links 
The above discussion may create an illusion that the components’ 

mapping or linking is a one-to-one corresponding relationship. The 
realistic SOFL-to-Java traceability link is actually more 
complicated. This is because that a process in SOFL specifications 
may be implemented as multiple methods in Java programs. In 
other words, there exists one-to-many mapping relationships 
between SOFL process and Java method. There are two reasons 
contributing to this phenomenon. 
The first reason is that a process, especially with multiple ports, 

allows exclusive input or output data flows and different output 
data flows depend on different input data flows. Besides, both the 
single port and multiple-port processes could derive multiple 
functional scenarios and these functional scenarios cannot be 
implemented fully in a single Java method sometimes. It should be 
pointed that a functional scenario is corresponding to a program 
path in a Java method and a Java method could implement multiple 
functional scenarios. In this case, we propose to do process 
decomposition and break process into multiple functional 
scenarios [9], record the inclusive relationship between process 
and functional scenarios and use above discussed method to 
establish the trace links between the functional scenarios of SOFL 
and the methods of Java program. 
The second reason is the personal programming habits of 

developers. This means that some developers tend to divide a 
process implementation into several steps and each step is 
implemented as a method for good logic, readability and 
comprehensibility of code. For example, some developers may 
implement the LCS-B algorithm used in this paper as one single 
Java method while some other developers may first implement a 
method to obtain the longest common string and then write another 
method to implement LCS-B algorithm. In this case, a call graph 
or a call chain will be formed. We propose to use the current static 
analysis technique like pointer analysis [10] to construct the call 
graph or call chains, extract attributes for the call chains and 
establish the trace links between processes to the call chains. 

Table 3.  THE SUBJECT. 

ATM Specification ATM Java Code 

module, data flow, process class, field, method 

Module(2), Composite type(8), 
Product type(2), const(5), map 

type(4), sequence type(2), 
enumeration type(1), basic data 
flow(2), data store(6) (overlap 

here)，process(6), process 
functional scenario(3), 

function(1), 

class(12), const(5), map(4), 
seq(2), enumeration(2, 1 

noise), basic(2), method(15, 
5 noise) 

 951 code of lines 

36 multi-level traceability links 

Table 4.  EXPERIMENTAL RESULTS FOR RQ1 AND RQ2. 

Situation 
Attributes 

Dimension 

Grouping 

Traceability 

Link  

Accuracy 

consistent 

identifiers 

Semantical+ 
Structual+ 
Relational 

Not adopted 94.4%(34/36) 

adopted 97.2%(35/36) 

inconsistent 

identifiers 
Structual+ 
Relational 

Not adopted 80.5%(29/36) 
adopted 88.8%(32/36) 

Implementation and Evaluation  
This section shows the implementation, the research questions, 

the subject and the performance of our method compared with 
existing approach, and a discussion of threats to its validity. 
The proposed traceability link method and workflow are 

implemented using Python programming language. To extract 
attribute sets for components of Java program, we use the open 
source javalang python library which provides a lexical analyzer  
and parser for Java source code and make some modifications. 
Besides, we rely on javalang to tokenize SOFL specification and 
make some rules based on keywords or modifiers in SOFL 
language to extract attribute set for components of SOFL 
specification for a small money-box example which is not used as 
experimental data here. Lastly, we implement the three used 
similarity measurement algorithms including longest common 
subsequence-both (LCS-B), our variant of Manhattan distance, 
cosine similarity and Jaccard coefficient by ourselves. A tool 
supporting our work will be released in the future. 
For the subject as shown in Table 3, we use a critical ATM system 

example [14] which was specified using SOFL and was 
implemented using Java programming language. The SOFL 
specification modeling ATM system contains totally 36 
traceability links. Among them, there are 2 module-level trace 
links, 8 composite type data flow level trace links, 2 product type 
data flow level trace links, 5 constant data flow level trace links, 4 
map type data flow level trace links, 2 sequence type data flow 
level trace links, 1 enumeration type data flow level trace links, 2 
basic type data flow level trace links, 6 process level trace links, 3 
process functional scenario level trace links and 1 function level 
trace links. The implemented Java program of ATM specification 
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has the size of 951 code of lines, 12 Java classes, 5 constant fields, 
4 map type fields, 2 list type fields, 2 enumeration type fields, 2 
basis type fields and 15 methods. It should be pointed that 1 of 2 
enumeration type fields and 5 of 15 methods are noise data in the 
Java implementation. 
In order to achieve a comparative analysis, we choose the latent 

semantic indexing (LSI) [11] from existing information retrieval-
based techniques and naming conventions technique [4] as the 
baseline. They are chosen because they are two of the most 
common techniques for establishing traceability links and naming 
conventions is best for accuracy in [13]. 
To evaluate our work, we are concerned about the following 

research questions: (1) how effective is our proposed method in 
modeling SOFL-to-Java traceability links in the situation of 
consistent identifiers during implementation? (RQ1) (2) How 
effective is our proposed method in modeling SOFL-to-Java 
traceability links in the situation of inconsistent identifiers during 
implementation? (RQ2) We also make a hypothesis that the 
implemented Java program implements all the specification and so 
we do not need to consider the measurement like recall, F1 score. 
Table 4 illustrates the results for RQ1 and RQ2. The result shows 

that our method could achieve the precision of 94.4% and finally 
attain the precision of 97.2% by using type grouping traceability 
link optimization strategy in the situation of consistent identifiers. 
The performance of our proposed method is approaching the 
accuracy of naming conventions techniques which has the highest 
accuracy. Besides, it is still effective with the final accuracy of 88.8% 
in dealing with the situation of inconsistent identifiers. This is 
because proposed method makes use of more dimensional 
attributes’ information. The 88.8% accuracy is usually better than 
the latent semantic indexing (LSI) [12] from existing information 
retrieval-based techniques which is one of the most common 
techniques for establishing traceability links.  
The main threat comes from the following aspects. One is the 

scale of the program used in our experiment. It is not big enough 
to fully demonstrate the effectiveness of proposed method. 
However, the experimental results support our proposed method 
and proved that our method is more powerful than existing two 
methods in such a small-scale program and makes us believe that 
it will still perform better than them in a larger program. Besides, 
the applicability of proposed method will be restricted as currently 
we manually extract the attributes which may introduce some 
faults in extracted attribute sets and have not implemented the 
automatic various dimensional attributes extraction tool. 

Conclusion 
In this paper, we have presented an approach for establishing 

multilevel SOFL-to-Java traceability links for both completed 
programs. The proposed method for SOFL-to-Java traceability 
link could be extended to model relationships between formal 
specification artefacts and code artifacts. It enhances the existing 
establishment techniques by combining an ensemble of new and 
existing measurement dimensions including semantics, structure, 
function and relationships. An evaluation of our approach shows 
that it gives an accurate and fine-grained view of the relationships 
between the SOFL specification and Java code artefacts. This work 

mainly serves for automatic specification-based program 
inspection and software construction monitoring realization in 
human-machine pair programming to detect requirements-related 
fault and ensure software quality.  
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