
SOXCollaborator: A Bridge System to Realize Open-Data
Commerce by Collaborating with SOXFire and Blockchain

Marketplace

Takafumi Kawasaki1,2,a) Georgios Palaiokrassas6,5,b) Akira Tsuge1,2,4,c) Tadashi Okoshi1,3,d)

Antonis Litke6,5,e) Jin Nakazawa1,3,f)

Abstract: SOXFire is the IoT platform based on pub/sub-model. This platform can provide easy methods for treating
sensors because it has a feature by extended XMPP. In addition, this platform is implemented by XMPP, so this
platform can spread data for many clients. We focused on this platform; we thought the extend the system to realize
an open-data marketplace. For this reason, data will have a huge value better than now, for example, such as monetary
value in the future world. Then, we focus on blockchain as an effective technology. In addition, the IoT marketplace
using blockchain is implemented now. We focus on realizing open-data commerce by collaborating with SOXFire and
the blockchain marketplace. In this paper, we developed a system to integrate those. Last, we tried to do preliminary
experiments to evaluate feasibility by measuring loads of a machine resource and delay time.

Keywords: IoT Platform, Data Delivery, Ubiquitous Computing, System Integration

1. Introduction
The number of sensors and smart devices all over the world

is growing day by day, and their data can be gotten easily by
developing information technology. Those are used to improve
the QoL (quality of life) of all people and that’s useful in various
situations. As the result, IoT (Internet of Things) is very general,
and it will spread better than now. People can think more
flexibility how to use these sensor data by this. For example,
up until now, engineers can use the data of individual sensors, but
they can collaborate many sensors now, so engineers can create
more applications to the convenient for the environment, people,
and industry. Then, we need to think about how to easily send
the data from too many sensors and devices with many clients.
The pub/sub (publish/subscribe) messaging model[1] is focused
to resolve this problem. However, the general pub/sub model
platform is difficult to treat complex sensor device for clients.

Then, Yonezawa et al. was developed SOXFire[2][8][12]
can resolve this problem. SOXFire realized the easy topic
management and multi data sending smoothly, so clients can

1 Keio University, 5322, Endo, Fujisawa, Kanagawa 252-0882, Japan
2 Graduate School of Media and Governance
3 Information and Environment
4 YRP R&D Promotion Committee
5 School of Electrical and Computer Engineering
6 National Technical University of Athens
a) drgnman@sfc.keio.ac.jp
b) geopal@mail.ntua.gr
c) tsuge@sfc.keio.ac.jp
d) slash@sfc.keio.ac.jp
e) litke@mail.ntua.gr
f) jin@sfc.keio.ac.jp

develop some sensor application by using it.
Besides, when it will have realized to share many data

among clients, we will need to think next step. That is data
security and data commerce. Data security means reliability
and impartiality and more because data will have the important
value better than current. However, SOXFire does not have the
function to satisfy these requirements. Next, we focused on the
technique of blockchain.[3][6][11] The blockchain can provide
trade-guaranteed trust and impartiality. In fact, the marketplace
is created by this technology. This will be important for data trade
in the future.

It means one data share within the owner organization by
a pub/sub model platform; besides, a part of data can sell to
external clients by using blockchain marketplace. However,
blockchain marketplace is not suitable to spread data for many
clients immediately because it creates data by chaining among
data. Therefore, we think collaboration with SOXFire and
blockchain marketplace. It can realize the strong data exchanging
system because the system can use good features from each
model.

From the above, we implemented a bridge system to collab-
orate with SOXFire and blockchain marketplace. The system
calls “SOXCollaborator”. SOXCollaborator can provide smooth
data delivery from the pub/sub IoT platform to the blockchain
platform. In addition, we think the problem with using this bridge
system is because it must generate a new cost, for instance, loads
of machine resources and sending delay time via our system. We
evaluated feasibility by measuring them.

At this time, we use the SOXFire such as a pub/sub model

1ⓒ 2021 Information Processing Society of Japan

IPSJ SIG Technical Report
Vol.2021-MBL-100 No.17

Vol.2021-UBI-71 No.17
Vol.2021-CDS-32 No.17
Vol.2021-ASD-21 No.17

2021/9/3



platform, so we implemented the integration system to realize to
connect SOXFire to the general blockchain platform.

In this paper, the 2nd section is written the related works,
the 3rd section is about SOXCollaborator, the 4th section is the
evaluation of it, and the last section is described the future work
and conclusion.

2. Related Works
2.1 Publish/Subscribe Messaging Model

First, we describe about pub/sub messing model because we
choose this model to collaborate platform in this paper. This
messaging model is suitable to send data to many clients. The
best feature of the pub/sub messaging model is that a subscriber
(data receiver) and publisher (data sender) does not communicate
directly. The pub/sub model realizes two data publish methods
that topic-based and contents-based.

On the topic-based pub/sub model, when publishers send data
to clients, they do not send it to clients directly, they send data to
the topic on the broker server.

On the other hand, subscribers subscribe to the topic that they
want to get data in advance. When a subscriber subscribes topic,
a connection is created between the subscriber to the broker
server. Then, the publisher sends data to a broker server, the
broker server sends data to a subscriber to whom he subscribes
the sending targeted topic. Currently, the broker sends data to all
subscribers who subscribe to the target topic. Therefore, if the
publisher and subscriber do not know each other, they can send
and receive data.

Besides, at filtering-based pub/sub model too, publishers and
subscribers do not communicate directly. In this model, the
broker server has a filtering function by the value of data instead
does not have the function to manage topics. The broker server
sends data to subscribers by using this filtering, so subscribers can
get the data without subscribing to specific topics. This model is
effective when the subscriber cannot choose a specific topic. For
instance, a client does not find the topic that should subscribe, or
a client wants to get data that are sent to multiple topics, and a
client wants to choose data to get by using filtering value.

Currently, it is used a topic-based pub/sub model generally, so
in this research, we implement the integration system for the IoT
platform of the topic-based.

However, pub/sub model does not consider that exchanging
data for data commerce because data sends one way a sender
to a subscriber. The purpose of this model is data multi-cast for
many clients on the same time. Therefore, only this model cannot
realize the data commerce for users.

2.2 SOXFire
In this paper, we use SOXFire[2][8][12] as an IoT platform.

SOXFire is used by the topic-based pub/sub model, and this sys-
tem are implemented by an extending Openfire [7] platform. The
platform is implemented by the XMPP (Extensible Messaging
and Presence Protocol). [10]. Therefore, SOXFire also uses
XMPP. XMPP is developed for instant messenger applications,
so this protocol can treat text data and provide certain multicast
clients. Therefore, Openfire can treat the large data of texts, so it

can publish image data such as converted base64.
SOXFire extends Openfire for the treating sensor data simply.

In this system, all sensors are structured two topics. They
are “meta” topics (meta node) and “data” topics (data node).
Meta node manages the sensor information. The management
items are sensor name, category, and transducers. At XMPP,
data is structured in XML format. Therefore, generally, XMPP
platforms manage text data as only one tag.

However, a complex sensor has multi values of variables, in
this case, it is difficult to manage at one tag data. SOXFire
manages these values as each transducer. This is realized
by granting a tag for each value. Therefore, SOXFire can
provide simple methods what management complex sensors, and
subscribers can get all sensor data by integrating data format.
This feature is satisfying to collaborate with other platforms. This
reason is what it can send the data structure clearly. For the above,
this system is very useful for IoT, so we focused on this system
to collaborate with the other systems.

In this research, targeting this system, all sensor data
collaborate with the other systems.

2.3 Blockchain and Its Marketplace
Recently, there is a big research interest for blockchain based

systems as data sending platforms [3][4][8]. The underlying
blockchain technology of such platforms has big differences
comparing to the previous general network models for data
exchanging. The previous most widely used general model
includes the existing clients and the server. Almost all
data available for exchanging are stored on the server, so
communication and access to the server is necessary, if a client
wishes to acquire data for business or other purposes. In this case,
when the client accesses the server, the server replies to the client
with the requested data, which will be then used by the client
according to its needs. This means that all data is exchanged
via the server. Therefore, if the server is broken, clients will
not be able to access it. Besides, this server has a large load
because it has a very important role, so during the periodical
regular server’s maintenance clients will also not be able to access
it until the maintenance work is finished. It is evident that, when
the server stops, the effect spreads to all networks where its clients
are connected.

However, blockchain has very high reliability, availability, and
durability because a downtime almost never happens. The main
reason for these advantages is the features and the technologies of
its structure. It is based on p2p connections, so users can directly
connect. The blockchain network is formed by all participating
users and in the case of a member of the network being down
or unavailable, this doesn’t make the whole network being down.
As the result, blockchain can be used to construct very robust
networks.

In addition, the blockchain has another very strong point,
namely integrity, since all data are chained into series of blocks
with timestamps forming a distributed ledger of transactions.
This means that in the case of an attempt by a malicious user to
modify part of the data, this altered information will not match to
the existing information of all other nodes, which are part of the

2ⓒ 2021 Information Processing Society of Japan

IPSJ SIG Technical Report
Vol.2021-MBL-100 No.17

Vol.2021-UBI-71 No.17
Vol.2021-CDS-32 No.17
Vol.2021-ASD-21 No.17

2021/9/3



blockchain network. In this case, the participating nodes will not
include the modified data to the chain of blocks and as a result
the malicious attempt will fail. As a result, blockchain allows
security and trust among members of a decentralized network,
realizing high levels of integrity of the data.

From the above, blockchain’s privacy and security features, as
well as smart contracts running on it can be used to construct
a strong network, where users are able to trade data safely
and securely among each other. This provides very attractive
perspectives as data have an increasing value in the IoT world.

To this direction, IoT Marketplace was developed based on
blockchain technology for sharing IoT sensors’ data[4]. By
combining blockchain technology with IoT, it leverages smart
contracts that are executed on the Ethereum blockchain, creating
a platform that allows users to exchange sensor data. This
decentralized application (Dapp) is designed based on Sensing-
as-a-Service (S2aaS) business model, originally proposed for
Bitcoin [5]. S2aaS brings new data monetization opportunities
to IoT sensor operators, by enabling them to easily sell sensor
data while it makes IoT sensor data more accessible to customers,
by enabling them to easily access those data. It consists of web
applications, front-end user interfaces, enabling user interactions
and Node-Red [9] flows allowing the connection with other
APIs, data sources, deployed smart contracts and databases.
Different users, namely owners registering their sensors and
buyers purchasing available datasets, are able to exchange data
and value using the dedicated created cryptocurrency, in a secure
and user-friendly manner.

3. SOXCollaborator
In this section, we describe implemented system, “SOXCol-

laborator”. SOXCollaborator performs by connecting SOXFire,
and this system helps to collaborate with SOXFire and blockchain
marketplace.

In addition, when users want to connect SOXFire and
blockchain marketplace, users need to think about the informa-
tion to integrate them. In this paper, we defined the format
that this necessary information. This format will become the
reference when users realize it.

3.1 Define The Data Format to Collaborate Blockchain
Marketplace

We presuppose open-data market by using collaborated with
SOXFire and blockchain marketplace. The sent data from the
SOXFire includes the following information. It is publisher
name, topic name (that means sensor name or device name), the
value of that, and publish timestamp. However, the case of users
publish data to the blockchain marketplace, does not satisfy only
this information. We thought the following additional data. It
is login information about the blockchain marketplace, monetary
value, and callback URL. Callback URL is the most important
in those. A Publisher does not connect the marketplace directly,
when sends the data via the SOXFire. A Publisher cannot note
when it is done action oneself data on the marketplace. Therefore,
clients need to prepare the API to receive the notification from the
marketplace. The blockchain marketplace can notify the client by

Table 1 Necessary parameters for collaborating the blockchain marketplace

Eelements Description
Publisher Publisher name

Topic
Sensor or device
or information name

Category Information’s category
Value Value or contents
Timestamp Publish Timestamp
Username
(login info)

Username of
the external services

Password
(login info)

Password of
the external services

CallbackURL
Endpoint to receive
notification

using a callback URL when actions client’s data. For instance, the
time is when it sold the data. Table.1 shows the all necessary data
to collaborate the blockchain marketplace.

3.2 System Architecture
Fig.1 shows the system architecture of the SOXCollaborator.

SOXCollaborator uses two protocols as shown in Fig.1. First,
XMPP is used to communicate between SOXFire. This
connection follows the methods of the SOXFire connection.

Second, HTTP is used to communicate between SOXCollab-
orator and client. The client orders various control by using an
HTTP request. These controls include starting to subscribe and
topic index. These controls do not need to sustain connection
until subscribing because our system has the function what
storing data. Therefore, responses for needing clients are only
topic searching results or signals to confirm starting subscribe, so
we chose HTTP.

SOXCollaborator has the multi-functions below to collaborate
with other platforms.

Functions:
• Sustainable Subscribing to SOXFire
• Receiving data from SOXFire to store Database
• Subscribing from multi servers
• Searching topic and data from SOXFire and SOXCollabora-

tor
Each detail is described below in subsections.

3.2.1 Sustainable Subscribing to SOXFire
If the platform has this function, it must sustain a connection

to SOXFire. However, the web application uses HTTP connects
only when it is called API by clients. Therefore, connection to
SOXFire is a burden for web applications because it occurs in
other packets sustainably.

SOXCollaborator performs data subscriber as instead of web
applications. This system can subscribe to multiple topics.

Therefore, we implemented multi-endpoint to realize flexible
designation.

designation method of subscribing topic:
• All Topics
• Specific Topic
• Prefix Match Topics
First, all designation methods have common parameters. It is

a connection destination and user information. These parameters
are saved database of SOXCollaborator that uses it to connect
SOXFire. All parameters are described in Table.2.

3ⓒ 2021 Information Processing Society of Japan

IPSJ SIG Technical Report
Vol.2021-MBL-100 No.17

Vol.2021-UBI-71 No.17
Vol.2021-CDS-32 No.17
Vol.2021-ASD-21 No.17

2021/9/3



Fig. 1 System Architecture

Table 2 Request Parameters for subscribing

Name Description
sox server This name means connection designation.
user name The user name on SOXFire
user pass The Password of using user on SOXFire

node name
Topic name.
If prefix match’s flag is on,
this name uses to search topic prefix match.

prefix match This is flag to judge the search method.

If a user wants to subscribe to all topics on SOXFire, the user
sends a parameter that is shown above only. However, if the
user wants to subscribe specifically, the user sends add to the
parameter below.
Specific Topics & Prefix Match Topics

In case of user wants to subscribe to a specific topic, the user
needs to send the topic name. Users can send this request by list
format, so users can specify multi topics at one request. Besides,
a user wants multiple topics, but too many targets, in that case,
the user can specify prefix match. The user can request easily
because the user only adds one parameter to the user’s request.
3.2.2 Receiving Data From SOXFire to Store Database

General pub/sub IoT platform does not have a store function
for publishing past data. SOXFire also does not have it, it
has only cache last publish data, so if another platform wants
to use past data, it must implement the function to store data.
SOXCollaborator has stored function. At SOXCollaborator, it
can store all data from subscribing topics. The table structure of
storing data is simple, it’s shown in Table.3. Many transducers
are managed by topic. In addition, this table has two types
of timestamps. This means stored time and published time.
SOXFire has a function to cache the latest published data, so
starting to subscribe time is not the same publish time necessarily.
Therefore, SOXCollaborator needs to store publishing time to
treat exact time.
3.2.3 Subscribing From Multi Servers

SOXFire may be installed in multiple locations. This reason
is mainly the location and load distribution. At the First,
location, IoT platforms often treat real-world data. Therefore,

Table 3 Data table on the store database
Name Description
TOPIC ID Unique topic name
TRANSDUCER ID Each transducer name
VALUE Value
PUB TIMESTAMP Timestamp when published from publisher
TIMESTAMP Timestamp when stored on the database

these are installed in each region, and these are managed by the
region’s municipality or company. Next, load distribution, IoT
platforms can manage various and many sensors. Those sensors
are different performance. For example, the temperature sensor
publishes value high frequency. On the other hand, the weather
sensor publishes a value every hour, so this frequency is low.
Like this, sensors publish frequency and data size are different
completely. If one IoT platform manages all sensors, the load
is too high. Therefore, it needs to manage these sensors to be
distributed to some IoT platforms.

From the above, SOXFire may be installed in multiple
locations. By then, if clients want to use data from several
SOXFire, clients have to manage connections and subscriptions
from all SOXFire. This is difficult for clients, and development is
hard.

Therefore, SOXCollaborator can manage some connection
SOXFire. This system stores each server’s information to realize,
and all data stores the same database, so clients can use data
easily.
3.2.4 Searching Topic and Data From SOXFire and SOX-

Collaborator
SOXFire does not searching function for topics. It’s not

usability, so we implement search topics on the SOXFire. Clients
want two pieces of information about a topic. Those are the
topic name, and meta-information about the topic. First, we
implemented the topic name getting function, if a client calls this
function, he can get all topic names on SOXFire. Second, if the
client gets a topic name, the client doesn’t know the detail about
the topic. We implemented the function to get the topic’s detail,
client calls it, he can get the detailed information on the topic.
In addition, we implemented the function to check the database.

4ⓒ 2021 Information Processing Society of Japan

IPSJ SIG Technical Report
Vol.2021-MBL-100 No.17

Vol.2021-UBI-71 No.17
Vol.2021-CDS-32 No.17
Vol.2021-ASD-21 No.17

2021/9/3



If clients subscribed to several topics, they want to check the
subscribed topics. Therefore, SOXCollaborator provides the
function that clients can check the subscribed topic name on the
database.

From the above, SOXFire can help clients to subscribe and
collaborate data on SOXFire to other systems.

4. Evaluation
We evaluated the performance of SOXCollaborator by measur-

ing the computation cost and delay time occurring via this system.

4.1 Experimental Environments
We constructed two environments to measure performance

correctly. SOXFire is constructed on the host machine, and
SOXCollaborator is constructed on the virtual machine. This
reason is that we do not work many processes in one environment.
The host machine’s spec is a Table.4 and, the virtual machine’s
spec is Table.5. Publisher performs on the same virtual
machine because to measure delay correctly via SOXFire and
SOXCollaborator. In this case, we give a bit many machine
resources for the virtual machine because this machine activates
two processes and the publisher works many threads.

Table 4 Host machine’s spec

Name Description
OS macOS Big Sur(11.4)
CPU 2.4GHz 8 core Intel Core i9
MEMORY 64GB 2667 MHz DDR4
LANGUAGE java(openjdk 14.0.2)
ACTIVATED PROCESS SOXFire

Table 5 Virtual machine’s spec

Name Description
OS ubunt 18.04
CPU 8 processer
MEMORY 16GB
LANGUAGE java(openjdk 14.0.2)
ACTIVATED PROCESS SOXCollaborator, publisher(multi)

4.2 Measure Load of Machine Resources
First, we evaluated the measure load of machine resources.

SOXCollaborator saves the subscribing topic to the database, and
it subscribes to all topics stored in the database when receiving
the subscribing request. And, our system doesn’t have a data
cache, it inserts data into the database immediately when receives
it. Therefore, the amount of using memory depends on the
number of topics. When our system subscribes to 300 topics,
the percentage of the memory is almost 2.2%. This value shows
almost 352MB. In addition, we could not confirm changing this
percentage when it received much data and inserted it into the
database. Therefore, SOXCollaborator doesn’t have a problem
when users use some situations. However, if the user wants
to subscribe to too many sensors, the system must waste much
memory.

On the other hand, wasting the CPU processor depends on the
amount of receiving data. Therefore, we evaluated the wasting
it each the number of publishers. In this case, subscribing topics

are fixed at 300 because the publisher and SOXFire connections
are broken when 500 publishers. This reason is the conflict
connections among publishers.

We evaluated wasting the CPU resource in two situations.
First, publishers publish data every 0.5 seconds. This publish
frequency is high, so the number of the publisher is increasing,
loads of CPU also is increasing. We defined this situation as a
high load situation. We show the result on Table.6. At Table.6,
when publishers are more than 50%, the max load is very high.
In addition, the max loads exceed 100%, when there are 300
publishers. Therefore, if the user’s machine can use only one
CPU processor, SOXCollaborator has limits subscribing topics.
This value likes less than 100 topics. However, this situation is
very rare because all sensors send very high frequency.

However, the average percentage is less than 30%. This
average is not high, so if publish rate is a little down,
SOXCollaborator can perform enough.

Table 6 Wasting the CPU Resource (every 0.5sec(high load situation))

PUBLISHERS AVERAGE(%) MAX(%) MODE(%)
1 0.160 1 0
10 8.493 18.8 3
50 17.368 70 4
100 22.861 74 21
300 23.262 114 14

Next, we evaluated the low load situation. Publishers publish
data every 10 seconds, and publishers are activated every 3
seconds because these spreads publish timing. We defined this
situation as a low load situation. Table.7 shows the result.

At Table.7, all max loads are down less than the high load
situation. Especially, the mode and average are very low. Fig.2
shows the of max and average of the CPU loads.

From this result, the load of CPU resources depends on
published rates. In addition, from Fig.2, if too many publishers
publish data at the same time, the system wastes too many CPU
resources. However, that case is rare, normally our system wastes
the resource less than 30% on the high load situation. This
average percentage is never high, we judge SOXCollaborator has
usefulness.

Fig. 2 Wasting the CPU Resource (all situations)

4.3 Measure Delay Time via SOXCollaborator
Finally, we evaluated delay time via our system. If the

user uses this system, the user’s application gets data via
SOXCollaborator and SOXFire from the publisher. The user gets

5ⓒ 2021 Information Processing Society of Japan

IPSJ SIG Technical Report
Vol.2021-MBL-100 No.17

Vol.2021-UBI-71 No.17
Vol.2021-CDS-32 No.17
Vol.2021-ASD-21 No.17

2021/9/3



Table 7 Wasting the CPU Resource (every 5sec(low load situation))

PUBLISHERS AVERAGE(%) MAX(%) MODE(%)
1 0.226 8.0 0
10 0.771 22.7 0
50 1.536 34.0 1
100 2.262 37.0 1
300 2.670 70.0 2

Table 8 Delay time (the high load situation)

PUBLISHERS AVERAGE(ms) MAX(ms) MODE(ms)
1 4 22 3
10 19 64 13
50 5 30 2
100 7 40 2
300 7 52 2

Table 9 Delay time (the low load situation)

PUBLISHERS AVERAGE(ms) MAX(ms) MODE(ms)
1 4 17 3
10 2 14 2
50 3 27 2
100 2 41 2
300 2 22 2

Fig. 3 Delay time (all situations)

data from the database that it connects to our system. In addition,
we describe in subsection 4.1, our system can subscribe to many
topics at the same time. Therefore, we measured the delay time.
In this case, like measuring CPU resources, we evaluated two
situations, and each the number of publishers.

First, we show the result when the high load situation on
Table.8 The unit of time in milliseconds, the delay time is very
little from Table.8. Especially, average time and mode time are
less than 20 milliseconds.

On the other hand, we show the result of the low load situation
on Table.9 and, Fig.3 shows the max and average of the delay
time.

At Table.9 and Fig3, we could not confirm the large difference
between high and low load situations. Therefore, we judged the
no effect by the number of topics and publishers.

In addition, the delay time is very short. The most max time
is only 64 milliseconds from Table.8and Table.9. Almost mode
time is two milliseconds, and average times are less than 20
milliseconds.

From those results, we confirm the no problem via SOXCol-
laborator because the delay time is very short.

5. Future Work
In this paper, we described the system to collaborate SOXFire

and blockchain marketplace. From the evaluation, our system

has usefulness enough to satisfy operating. Therefore, we
are planning the fieldwork using SOXCollaborator at the next
step. At the fieldwork, we use SOXFire and implement a client
application for a smart city. Users collect data in the city by
using the client application and upload the data to blockchain
marketplace via SOXFire and SOXCollaborator. Therefore, we
will evaluate the usefulness of our system in the real world, and
we will search for other problems.

6. Conclusion
Currently, the number of sensors and smart devices all over the

world is growing day by day, and their data can be gotten easily
by developing information technology. As the result, IoT is very
general, and it will spread better than now.

There are too many sensors and data from those now, we need
to prepare the platform to send and receive data from the various
senders. We focus on SOXFire as a IoT platform because that
platform provides simple data treating and managing.

Besides, when it will have realized to share many data among
clients, we need to think next step. It is the open-data commerce
among users. In a near future, we think the various data will
have a monetary value. Then, if users must upload the buyer
application by managing a private company, data commerce
cannot realize seamlessly. Therefore, we must construct a market
where users can do data buying/selling trust and impartiality.
Blockchain marketplace is the best method to realize that market
because it can provide trade-guaranteed trust and impartiality.

Therefore, we suggested and implemented the system “SOX-
Collaborator” to collaborate with SOXFire and blockchain
marketplace. The system helps to collaborate those. In addition,
we evaluate the performance of our system. From the result, we
confirm no problem that the load of machine resources and the
delay time by using the system, so our system has usefulness
for integration the systems. We are planning the fieldwork using
SOXCollaborator at the next step. We will verify and search the
other theme through the fieldwork.

Acknowledgments This work was supported (in part) by
National Institute of Information and Communications Technol-
ogy (NICT), Japan.

References
[1] Bedi, Bharat, Marc Carter, and Andrew Stanford-Clark. “Con-

trol of publish/subscribe messaging.” U.S. Patent Application No.
11/209,445.

[2] Bhatia, G., Rowe, A., Berges, M., and Spirakis, C. (2011).
Sensor-over-XMPP.

[3] Gupta, S. S. (2017). Blockchain. IBM Onlone (http://www. IBM.
COM).

[4] JS Foundation, ”Node-RED,” JS Foundation, [Online]. Available:
https://nodered.org/.

[5] K. Noyen, D. Volland, D. Wörner and E. Fleisch, ”When Money
Learns to Fly: Towards Sensing as a Service Applications Using Bit-
coin,” 20 9 2014. [Online]. Available: https://arxiv.org/abs/1409.5841.

[6] Nofer, M., Gomber, P., Hinz, O., & Schiereck, D. (2017). Blockchain.
Business & Information Systems Engineering, 59(3), 183-187.

[7] https://www.igniterealtime.org/projects/openfire/

[8] Rowe, A., Berges, M. E., Bhatia, G., Goldman, E., Rajkumar,
R., Garrett, J. H., ... and Soibelman, L. (2011). “Sensor Andrew:
Large-scale campus-wide sensing and actuation.” IBM Journal of
Research and Development, 55(1.2), 6-1.

[9] Papadodimas, G., Palaiokrasas, G., Litke, A., Varvarigou, T. (2018,
November). Implementation of smart contracts for blockchain based

6ⓒ 2021 Information Processing Society of Japan

IPSJ SIG Technical Report
Vol.2021-MBL-100 No.17

Vol.2021-UBI-71 No.17
Vol.2021-CDS-32 No.17
Vol.2021-ASD-21 No.17

2021/9/3



IoT applications. In 2018 9th International Conference on the Network
of the Future (NOF) (pp. 60-67). IEEE.

[10] Saint-Andre, Peter. “Extensible messaging and presence protocol
(XMPP): Core.” (2004).

[11] Yaga, D., Mell, P., Roby, N., & Scarfone, K. (2019). Blockchain
technology overview. arXiv preprint arXiv:1906.11078.

[12] Yonezawa, Takuro, et al. “Soxfire: A universal sensor network system
for sharing social big sensor data in smart cities.” Proceedings of the
2nd International Workshop on Smart. 2016.

7ⓒ 2021 Information Processing Society of Japan

IPSJ SIG Technical Report
Vol.2021-MBL-100 No.17

Vol.2021-UBI-71 No.17
Vol.2021-CDS-32 No.17
Vol.2021-ASD-21 No.17

2021/9/3


