
Electronic Preprint for Journal of Information Processing Vol.29

Regular Paper

Effects and Mitigation of Out-of-vocabulary in Universal
Language Models

SangwhanMoon1,†1,a) Naoaki Okazaki1,b)

Received: December 8, 2020, Accepted: April 2, 2021

Abstract: One of the most important recent natural language processing (NLP) trends is transfer learning – using
representations from language models implemented through a neural network to perform other tasks. While transfer
learning is a promising and robust method, downstream task performance in transfer learning depends on the robust-
ness of the backbone model’s vocabulary, which in turn represents both the positive and negative characteristics of
the corpus used to train it. With subword tokenization, out-of-vocabulary (OOV) is generally assumed to be a solved
problem. Still, in languages with a large alphabet such as Chinese, Japanese, and Korean (CJK), this assumption does
not hold. In our work, we demonstrate the adverse effects of OOV in the context of transfer learning in CJK languages,
then propose a novel approach to maximize the utility of a pre-trained model suffering from OOV. Additionally, we
further investigate the correlation of OOV to task performance and explore if and how mitigation can salvage a model
with high OOV.

Keywords: Natural language processing, Machine learning, Transfer learning, Language models

1. Introduction

Using a large-scale neural language model as a pre-trained
backbone and transferring to a multitude of downstream tasks [6],
[7], [21] has been one of the most significant advancements in the
field of natural language processing (NLP). This approach has
been commonly used with convolutional neural networks trained
against the ImageNet dataset and is commonly referred to as
transfer learning. Language models used in this form do not yet
have an official name but have been canonically called universal
language models [11], due to its universal applicability. Unlike
the domain of images or audio, pre-training language models for
natural language processing do not require any annotated data due
to various self-supervising training methods which have been re-
cently proposed. This allows models to be pre-trained at scale, as
there is a nearly infinite supply of training data from text data on
the internet and through centuries worth of book corpora, given
that one can efficiently digitize this into textual data and afford the
amount of compute power needed as the training data is scaled up.

However, these methods still depend on a vocabulary bound to
an embedding matrix. Due to the unavoidable growth of compu-
tational budget required as the vocabulary size increases, many
methods have been proposed to reduce the vocabulary size to a
manageable size, notably through subword based methods. Sub-
word based methods, such as Byte-Pair Encoding (BPE) [23],
WordPiece [30], SentencePiece [13], which break the lexicons
into smaller subwords, have shown to be effective when applied to
languages that utilize Latin-like alphabets in their writing system

1 Tokyo Institute of Technology, Meguro, Tokyo 152–8550, Japan
†1 Presently with Odd Concepts Inc., Meguro, Tokyo 153–0063, Japan
a) sangwhan@iki.fi
b) okazaki@c.titech.ac.jp

to reduce the size of the vocabulary while increasing the robust-
ness against out-of-vocabulary (OOV) in downstream tasks. This
is especially powerful when combined with transfer learning.

As these tokenizers still operate at Unicode character levels –
contrary to the names suggesting byte-level (which would com-
pletely mitigate OOV, as studied in Ref. [10]). Hence, the vocab-
ulary’s minimum size is twice the size of all unique characters
in the corpus, as subword tokenizers store each character in pre-
fix and suffix form in the vocabulary. In commonly investigated
languages, this still provides significantly more flexibility over
lexicons. For these reasons, OOV issues have not been actively
studied as it simply does not surface. However, this problem is yet
to be solved in Chinese, Japanese, and Korean (CJK) languages
due to the complex alphabets. We recognize that these unsolved
problems make the applicability of neural language models for
tasks in the context of CJK languages less universal than that of
other languages.

The high-level idea of our method is illustrated in Fig. 1, where
ı̂, a token missing from the vocabulary, is substituted with i.
This work expands on our our existing work [20], which adds
an OOV vocabulary learning step before fine-tuning for a down-
stream task. This is done by re-assigning OOV subwords to exist-
ing subwords. Through experiments, we demonstrate the effects
of OOV in a downstream task setup and compare the OOV miti-
gation scheme’s efficacy with and without additional pre-training.
We further investigate how OOV contributes to task contribution
by artificially inducing OOV in a pre-trained model and verify our
proposed method can recover the model to a useable state even in
moderately extreme OOV conditions.

This work is an extension of our work in the Proceedings of Empirical
Methods in Natural Language Processing, 2020 [20].

c© 2021 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.29

Fig. 1 Overview of the vocabulary patching process explained with OOV examples.

2. Related Work

This work builds on the foundation of multiple natural lan-
guage processing developments, which we will explain in the
sections below. First, we disambiguate the concept of a language
model, subword tokenization, then explain how it was combined
to build a backbone model for different tasks and discuss the lim-
itations.

2.1 Neural Language Models
A language model is formally defined as a probability distri-

bution over a sequence of tokens. Given a sequence of length
m, a probability P(w1, . . . , wm) is assigned to the whole sequence.
A neural language model is a sequence prediction model, com-
monly implemented as a classifier that predicts a sequence based
on the past context. In the example above, given a current time
step t which satisfies t < m, it can predict P(wt |w1, . . . , wt−1) up
to the P(wm|w1, . . . , wm−1). This is done by training such a neu-
ral network with unlabeled text corpora. This is possible because
natural language can use coherently written sentences as a form
of labeled data, unlike many other modalities. In the past, neu-
ral language models have been implemented using recurrent neu-
ral networks (RNN) such as long short-term memory networks
(LSTM), but recent trends have shifted towards Transformer [26]
based networks due to the discovery of its applicability in other
tasks, which we will discuss in Section 2.3.

2.2 Subword Tokenization
Tokenization is the process of breaking a sequence into smaller

units for an algorithm to consume. In an NLP context, the most
common practice is to tokenize at the whitespace level, which
generally results in tokens becoming words in languages such as
English. However, when the algorithm that is expected to con-
sume this is a neural network, the possible conjugations and per-
mutations (such as numbers) become computationally intractable
for the network to process. For these reasons, traditional methods
used forms of preprocessing, such as stemming or lemmatiza-
tion or sample the vocabulary to a consumable size. This results
in information loss, which can result in lost performance during
evaluation.

Additionally, these methods are not robust to rare words, which
in evaluation can result in out-of-vocabulary. Subword tok-
enization was proposed as a mitigation for the out-of-vocabulary

problem. Byte-Pair Encoding (BPE) [23], WordPiece [30], and
SentencePiece [14] are all subword tokenization methods, which
break the lexicons into smaller subwords. These methods have
been shown to make the vocabulary robust to rare words while
minimizing information loss.

2.3 Universal Language Models
The term Universal Language Model was first coined in ULM-

FiT [11], which uses a pre-trained LSTM language model’s [18]
hidden state to perform a multitude of tasks and achieve signifi-
cant performance gains over per-task trained models. Around the
same time, it was also discovered that such language model pre-
training applied to a Transformer [26] based model, which was
originally proposed for machine translation. The main difference
of this Transformer based language model, BERT [7], is that it
used significantly more compute power, was trained with a much
larger pre-train dataset, and used subword tokenization.

With the advent of BERT, numerous other Transformer based
architectures have been proposed and have shown to be extremely
effective at being scaled up in terms of both increasing the amount
of training data while also increasing the model capacity. Recent
work such as GPT-3 [2] demonstrated substantial performance
gains by scaling up both the model and data and validated that
larger models are competitive in both zero-shot and few-shot set-
tings.

Generally, the amount of pre-train data and model capacity is
inversely proportional to the amount of downstream task data
needed [2]. A pre-trained model also acts as a better initializa-
tion [1] as it also converges faster, reducing the amount of com-
putation budget needed to achieve high performance on a given
task. Due to this, state-of-the-art research employs transfer learn-
ing in some form.

While not all of the proposed backbone networks provide mul-
tilingual models or evaluations, work such as Ref. [6] shows that
pre-training these models with multilingual corpora transferring
with language models is also effective in a multilingual setup.
However, a multilingual model’s downside over a monolingual
model is that multilingual models tend to suffer from pre-train
data imbalance. This reflects the real world since different lan-
guages differ in the number of users the language has. Generally,
the amount of textual data one can acquire tends to be propor-
tional to the number of users of each language and is also affected
by socio-economical factors contributing to a lower deployment

c© 2021 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.29

rate of digital technology, resulting in fewer data.

3. Preliminaries

3.1 CJK Tokenization in Universal Language Models
Out-of-vocabulary (OOV) in a subword tokenization context

typically happens when a character was never seen in a pre-train
context. These missing words can be introduced either by setting
an upper limit on the character coverage or the vocabulary size.
Here, the latter is tied to the former – if the character itself has
been pruned from the initial set of characters to be covered, it is
naturally infeasible to form a subword since the character is miss-
ing. This issue tends to be more significant in languages with a
diverse alphabet, such as Chinese, Japanese, or Korean.

Chinese and Japanese use a large set of ideographs; some of
which are rarely used, hence will not be statistically significant
enough to be selected for inclusion but can be crucial in spe-
cific tasks such as named entity recognition (NER) since rare
ideographs have moderate usage in names of people or locations.

Korean, on the other hand, has a large alphabet for somewhat
artificial reasons. While the modern Korean alphabet can be ex-
pressed with 41 characters, the encoding of Korean in a com-
putational context is done in a way that it is expressed through a
combination of the underlying alphabet to form a composite char-
acter, and has been standardized in Unicode as these composite
characters instead of its native form.

For these reasons, when trained against a diverse set of lan-
guages, the vocabulary size increases proportionally to the num-
ber of languages supported and needs to factor in the number
of characters needed to express the language. For example, ex-
pressing English requires 26 characters, which results in 52 with
both upper and lower cases. To express this in character level
subwords, this results in 104 subwords, as both prefix and suffix
forms are required in a vocabulary. To express French using the
same vocabulary, the initial 26 can be re-used, and only 16 new
characters specific to French are needed.

However, in the context of CJK languages, the initial character
count is much larger, starting at approximately 2000 *1 for com-
mon characters. Full coverage for the CJK ideographs requires
92,856 characters and 11,172 characters. While doubling the bud-
get is not necessary, there are no cases in CJK languages *2, the
magnitude of budget required for the vocabulary is different from
that of a language using a Latin alphabet.

Existing models have sampled portions of entire corpora or
relaxed constraints on character level coverage for these lan-
guages to prevent the vocabulary from growing to an unmanage-
able scale. As of today, this is an unavoidable trade-off when
training multilingual models. This introduces a bottleneck for
downstream tasks since any character omitted causes information
loss. The effect amplifies when a large character level vocab-
ulary and scriptio continua languages *3 exist in the same con-

*1 This approximation is based on the 2010 revised Jōyō kanji table for CJK
ideographs, and the KS X 1001 encoding standard for Korean.

*2 The Kana system in Japanese has diacritics, for a subset of the characters.
*3 Languages which are written without spaces. Chinese and Japanese qual-

ify as scriptio continua, while Korean is a special case where spacing
rules are liberal and can be expressed without spaces in colloquial writ-
ing.

Table 1 Examples of OOV in the task datasets. Here, we can observe that
Chinese has OOV in punctuation, Japanese in emoji, and Korean
in spelling errors.

text, which is the case for all CJK languages. Examples of OOV
in CJK languages can be seen in Table 1. Some methods have
been proposed to mitigate this by decomposition of the charac-
ters [19], [24] to significantly reduce the vocabulary budget while
retaining all information, but have shown little adoption in the
wild.

In a monolingual setup, one can use pre-trained models for the
target task language. However, when considering a multilingual
setup, there is an additional layer of complexity by using an en-
semble of monolingual models, as language detection is required
to determine which model and tokenization scheme to use for
each input. The most straightforward approach here would be to
pre-train a monolingual model with a shared tokenization scheme
for all the required languages.

However, the downside is the cost for pre-training; acquir-
ing a large corpus is a daunting task, and training a large mul-
tilingual model for many researchers can be financially infeasi-
ble. The high upfront cost and complexity when implementing
a multilingual system leaves transfer learning on an open, mul-
tilingual model as an economically attractive alternative. Un-
fortunately, due to corpus imbalance during pre-training, less-
investigated languages, especially those with a diverse character
set (such as CJK languages), OOV is likely to surface. Our moti-
vation is to improve these languages’ performance without signif-
icantly increasing the computation cost when using open-source
pre-trained models.

3.2 BERT Tokenizer
The multilingual BERT model bert-base-multilingual-

cased [7] we used performs two-phase tokenization, first with
whitespace (token) followed by WordPiece [30] tokenization
(subword token). An example output of the tokenizer is explained
in Fig. 1. The prefix forms of the subwords are expressed in their
original form, while suffix forms are expressed by appending a
prefix.

If either form of the subword is missing in a token, the tok-
enization fails, and the token surface is treated as OOV. Using
the example in Fig. 1, the suffix form of ı̂ is not in the vocabulary,
hence the entire surface of the token plaı̂t becomes OOV. This is
due to the greedy merging nature of the WordPiece algorithm and
is not universal to all subword-based methods.

Due to the dependency on initial whitespace tokenization,
BERT’s tokenization is not expected to work well with scriptio
continua languages, especially if it has a diverse alphabet. To
workaround this limitation, BERT’s tokenizer implements special

c© 2021 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.29

handing *4 which artificially injects whitespace before and after
CJK ideographs. This mechanism is not enabled for Korean.

3.3 OOV Mitigation
As OOV was a much more prevalent problem in the context of

word-based methods, it has been investigated further than OOV
in subword-based methods.

In the context of word-based models, pre-processing the input
with stemming and lemmatization was a common practice, both
to reduce OOV and the size of the vocabulary. Additionally, novel
methods such as dictionary-based post-processing [17] and dis-
tributional representation based substitution [12] have been pro-
posed.

However, in the context of subword tokenization this has not
been actively investigated, aside from Ref. [27], which proposes
adding new words to the vocabulary, and Ref. [20], which is our
work.

For our experiments, we used four CJK datasets for evaluation.
For all tasks, we first learn OOV words, perform fine-tuning, then
evaluate. The OOV rates noted for each dataset is the ratio of sen-
tences containing at least one OOV token. We intentionally chose
sentiment analysis datasets, as the pre-trained model used (bert-
base-multilingual-cased) was trained on Wikipedia and book cor-
pora, and a domain shift to user-written content had a higher like-
lihood of suffering from OOV due to words that are unlikely to
appear in well-formed content. Theoretically, Korean is expected
to suffer the most, as the BERT tokenizer does not have special
case handling, hence is susceptible to the greedy merging of the
underlying WordPiece tokenizer.

4. Proposed Method

In this section, we propose a method to mitigate OOV without
training a new model. This is based on a hypothesis that OOV
has adversarial effects on task performance, which we also verify
through experiments in Section 5.2. Our method is implemented
as a modification of the BERT tokenizer. In all mitigation exper-
iments, we compare with and without additional pre-training.

The BERT tokenizer is modified to support a secondary vocab-
ulary which points new words to existing words for our exper-
iments. This modified tokenizer is used instead of the original
tokenizer in a BERT model. The approach consists of three steps.

First, we perform a complete corpus analysis and search for all
OOV surfaces by tokenizing the task corpus. An OOV surface in
the context of BERT is an entire space tokenized token. When-
ever OOV occurs, we keep a record of the entire OOV surface,
along with the context.

For each OOV surface, we brute-force search to find the maxi-
mally specific OOV subword surface. An OOV subword surface
is an actual subword missing in an OOV surface. In this step, we
compute a frequency table for both OOV and in-vocabulary sub-
words for a preference mechanism in the mitigation strategy. We
observed that most OOV subword surface cases were caused by
one character missing in the vocabulary during our experiments,

*4 https://github.com/google-research/bert/blob/master/
tokenization.py#L251

which is a result of incomplete character coverage from the cor-
pora used for pre-training.

Finally, we use this information to build a mitigation strategy
for the OOV subwords. Whenever applicable, we use the previ-
ously computed frequency of the OOV tokens to prioritize fre-
quent OOV tokens over rare cases. Here, we evaluate different
algorithms for OOV mitigation, each of which we discuss in the
individual method sections below. After applying OOV mitiga-
tion, we then optionally perform additional pre-training and eval-
uate against the baseline.

Additional pre-training is the process of using the task corpus
to train the model under a masked language modeling task, which
is a form of additional pre-training, but against domain corpora.
Here, the model is trained to fill in a masked portion of a given
passage, given the context. Formally, this is called a cloze task
and is the same process used to train BERT initially.

This additional pre-training intends to adapt the model so that
it learns the changes in the vocabulary introduced by our mitiga-
tions, as the model has never seen the new subwords. This also
helps the model better learn adequate representations that are bet-
ter suited for the task domain. If the surrogate is assigned to a
subword from a different language, for example, when using un-
seen subwords, this process is crucial. As this does not require
an annotated corpus, it is also possible to make the model more
robust by providing extra corpora.

Substitution to mitigate OOV has been studied in Ref. [12].
This method depends on part-of-speech tagging or a secondary
corpus and model for similarity computation, challenging to ap-
ply in a subword model. Our approach’s significance is that it
works for subword models and its practical applicability, as only
a downstream task corpus and a pre-trained model is required.

4.1 Surrogated Tokens
Surrogates, simply put, map a subword missing from the vo-

cabulary to a subword that is already in the vocabulary of a pre-
trained model. There are intuitive ways to find substitute words
in a word-level setup, the most obvious being choosing a seman-
tically similar word from a thesaurus. In a subword context, this
is not as straightforward, as a subword generally has no meaning.
In our work, we discuss different surrogate selection processes.
The surrogate selection process assigns multiple subwords to the
same embedding, which is a trade-off that limits the utility of the
proposed method for generation tasks. As surrogates are only
assigned once, to perform generation tasks when a subword is
polysemic, one would need to use an auxiliary binary classifier to
determine which subword the prediction actually is. This is not
required for tasks that do not require generation, such as classifi-
cation.

The embeddings between the newly added subword and the
surrogate are shared and updated together in the fine-tuning pro-
cess. The OOV subword frequency table we constructed in the
second step of the process above is used to break ties and min-
imize conflicts. For example, token A and B, both of which are
OOV subwords, can end up with the same proposals {X,Y} in
preference order. In this case, given A has a higher frequency, it
gets precedence over B, so the surrogate map becomes A → X

c© 2021 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.29

Fig. 2 Here, using the masked language modeling task from BERT, the OOV tokens are replaced with a
mask to be predicted. The predictions are used as surrogates in an OOV-mitigated model.

Fig. 3 In character distance, The highlighted character is missing from the
vocabulary. Observing the adjacent characters, in CJK ideographs
they share a radical, while in Korean they share two subcharacters.

and B → Y . Our goal is to refine the proposals to be in a state
where one surrogate is assigned to only one OOV token.
4.1.1 Character Distance

This method selects the surrogate with the shortest Unicode
codepoint distance from the OOV subword, limited to subword
tokens within the vocabulary of the same length. In this process,
we perform an exhaustive search, formulated as the following.

argmin
w∈W′

|ord(v) − ord(w)|1

In the formula above, v is the OOV subword, and W′ is a subset
of the vocabulary W which satisfies UTF-8 character level length
equality |v| = |w| for w ∈ W. ord is the Unicode ordinal conversion
function.

The intuition of this method builds on the characteristics of the
CJK Unicode blocks, which allow us to cheaply approximate text
or semantic similarity through the scalar values of the Unicode
codepoints as seen in Fig. 3. The properties which we intend to
exploit are different depending on the target language. In CJK
ideographs, adjacent characters tend to share a radical, hence has
a bias towards semantic similarity.

On the other hand, in Korean, phonetically similar characters
are adjacent. This approximates edit distance, as a Korean charac-
ter in Unicode is a combination of multiple sub-characters. This
phonetic similarity differs from edit distance, as it tends to dis-
allow edits on the first two components of the character. In the
event of a distance tie, we used the candidate with a lower code-
point.

Frequent subword tokens get preferential treatment and hence
get surrogates with closer distance to an infrequent token. Once
a token has been assigned, it is not re-used as a surrogate.
4.1.2 Unseen Subwords

We select tokens from the in-vocabulary token frequency ta-
ble, which were never seen in the current task as surrogates. As
downstream tasks for evaluation do not require the entire vocab-
ulary, we select random tokens with a frequency of 0 as surro-
gates. In our experiments, this was implemented by overwriting
the existing unseen subword to the target subword. This allows
guaranteed reconstruction of the original text, making it usable

for generation tasks, but at the cost of the embeddings being as-
signed to ones that the model has not seen in the context.

This method is analogous to increasing the model parameters
(via vocabulary size), then pruning back to the original size, but
as an in-place operation. Any word previously assigned was held
out to prevent re-assignment. As the vocabulary will have a large
number of tokens never seen in most downstream tasks, we do
not use any frequency preference here.
4.1.3 Masked Language Model

The masked language model-based method uses BERT’s
masked language head to generate surrogate proposals, as illus-
trated in Fig. 2. Each subword OOV surface is replaced with the
mask token and passed to the masked LM head with the whole
context. The subword token with the highest probability is se-
lected for each context, stored in a frequency table, to select the
most common prediction later. This results in deterministic sur-
rogate mappings.

We use the same frequency preference as character distance,
which allows frequent OOV subwords to have precedence when
selecting surrogates. As with other methods, once a surrogate
is assigned, it is held out. Therefore, less frequent words are as-
signed to the next most locally frequent surrogate. After the entire
process, OOV subwords that were not assigned a surrogate are as-
signed to the candidate with the lowest frequency. This method
has the highest computation cost, as it requires inference on the
model.

4.2 Additional Tokens
Here, we add new tokens to the vocabulary and increase the

model size, motivated by prior work [29]. As this increases the
network parameters, these are used as a secondary baseline to be
compared with surrogates.
4.2.1 Random Initialization

After adding the missing subword to the vocabulary, then the
corresponding embedding is randomly initialized. This is analo-
gous to how a model is commonly initialized, and also how new
tokens are added to an existing vocabulary.
4.2.2 Transfer Initialization

Transfer initialization is done by following the first step of the
masked language model task to generate a list of surrogates. We
then initialize by copying the embedding vector of the topmost
probable candidate of the OOV subword into the newly added
OOV subword’s slot in the embedding matrix. These two tokens
share the same initial embeddings but are expected to diverge
through fine-tuning.

c© 2021 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.29

Fig. 4 The experiment pipeline of our work. Evaluations have been labeled with the corresponding sec-
tion where the results are disclosed. MLM here is the process of performing additional pre-training
through a masked language modeling task.

5. Datasets

5.1 Naver Sentiment Movie Corpus
The Naver Sentiment Movie Corpus *5 (NSMC) [3] is a Korean

sentiment analysis task, containing 200,000 user comments and
a corresponding binary label which indicates positive or negative
sentiment. The OOV rate on the pre-trained BERT model was
30.1% due to a large number of typos and the domain gap.

5.2 Japanese Twitter Sentiment Analysis
As a second validation target language, we used a subset *6 of

a Japanese Twitter dataset [25] *7, which is a sentiment analysis
task with five possible labels. The subset contains 20 K Tweets
and 2 K Tweets, respectively, for training and test. We observed
that a large portion of the OOV was from emojis during analy-
sis, resulting in an OOV rate of 25.1% on the pre-trained BERT
model.

5.3 Chinese News Sentiment Analysis
The INEWS dataset is part of the ChineseGLUE *8 dataset.

The input is a short sentence from a news article, and the label
is one of three labels denoting the tone of the sentence. This is
also a sentiment analysis task, with a split of 5 K train and 1 K
validation, and an OOV rate of 20.1% on the pre-trained BERT
model.

5.4 KorQuAD 1.0
KorQuAD 1.0 *9 is a Korean version of the SQuAD [22] read-

ing comprehension task. The task involves answering a question
given a passage of text, and consists of 10 K passages with 66 K
questions. The passages are from Wikipedia, which is commonly
used as a part of large-scale training corpora. The result of this
is a low OOV rate of 5.9% on the pre-trained BERT model. For
this task, additional pre-training was omitted to prevent the model
from memorizing answers. We added this additional task to vali-
date our method against a low-OOV task.

*5 https://github.com/e9t/nsmc
*6 https://github.com/cynthia/japanese-twitter
*7 http://www.db.info.gifu-u.ac.jp/data/Data 5d832973308d57446583ed9f
*8 https://github.com/chineseGLUE
*9 https://korquad.github.io/

6. Experiments

To validate the effectiveness of our method proposed in the pre-
vious section, we perform multiple experiments against multiple
CJK datasets in the upcoming sections. To thoroughly evaluate
the effects of our proposed scheme, we validate against both real
and synthetic setups, using the different mitigation schemes ex-
plained in Section 4. The high-level flow of all experiments we
do here work is explained in Fig. 4. We compare the effects of dif-
ferent methods using a pre-trained multilingual BERT (bert-base-
multilingual-cased). Each method was tested with fine-tuning,
including a masked language modeling (additional pre-training)
task, or by fine-tuning only against the task. Task-level fine-
tuning was included in every experiment to ensure fairness and
is done by attaching a task head and training the downstream task
model. This allows the model to learn how to accomplish the
task while adapting itself to produce better representations for the
task. For our experiments, we limited additional pre-training to
the task corpus to make the experiments reproducible with only
the task datasets.

All experiments that involved training the model were trained
for three epochs. The full list of hyperparameters used for the
experiments is listed in Table A·1, in this paper’s appendix. Ev-
ery experiment in the upcoming section was run five times each,
with the random seed fixed to an integer value of the run number
in the range of [1..5]. The runs are then compared to the base-
line scores to observe the statistical significance of the different
scores for each method. For the significance test, we performed
a dependent t-test for paired samples, following the guidelines in
Ref. [9]. We used a p-value of p < 0.05 to determine statisti-
cal significance and a fixed seed (42) for any random algorithm
to make the results deterministic, which guarantees reproducibil-
ity, as can be seen in Table 2. The evaluation was done with the
reference implementation *10 from Ref. [9].

6.1 Results on Task Datasets
The evaluation was done through the SST-2 GLUE task met-

rics [28] for the sentiment analysis tasks, and EM/F1 evaluation
from the SQuAD metrics for KorQuAD, as the two tasks are com-

*10 https://github.com/rtmdrr/testSignificanceNLP

c© 2021 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.29

Table 2 Scores across five runs, accompanied with statistical significance compared to baseline. Statisti-
cally significant points (p < 0.05) have been underlined in the p-values. Acc denotes accuracy
and Std denotes standard deviation. Add models have more parameters. +MLM is with addi-
tional pre-training on the task corpus. Results for KorQuAD have been scaled down by 100, and
are without additional pre-training.

NSMC (ko) Twitter (ja) INEWS (zh) KorQuAD (ko)
Model Value Acc@+MLM Acc Acc@+MLM Acc Acc@+MLM Acc EM F1

BERT (Baseline) Mean 0.8824 0.8785 0.7284 0.7192 0.8138 0.8074 0.7037 0.9005

Std 0.0017 0.0006 0.0041 0.0058 0.0064 0.0047 0.0016 0.0013

Add (Transfer) Mean 0.8916 0.8844 0.7319 0.7223 0.8116 0.8082 0.7097 0.9030

Std 0.0007 0.0006 0.0040 0.0060 0.0022 0.0082 0.0023 0.0011

p-value 0.0002 0.0000 0.1091 0.1623 0.2599 0.4437 0.0091 0.0041

Add (Random) Mean 0.8928 0.8848 0.7310 0.7211 0.8186 0.8106 0.7098 0.9029

Std 0.0006 0.0004 0.0046 0.0041 0.0049 0.0065 0.0034 0.0018

p-value 0.0000 0.0000 0.2263 0.1639 0.1280 0.0601 0.0128 0.0248

Char. Distance Mean 0.8926 0.8855 0.7304 0.7238 0.8122 0.8092 0.7094 0.9031
Std 0.0009 0.0013 0.0037 0.0024 0.0097 0.0070 0.0026 0.0019

p-value 0.0001 0.0005 0.1499 0.0108 0.3152 0.1567 0.0115 0.0358

Unseen Subwords Mean 0.8922 0.8846 0.7304 0.7225 0.8142 0.8102 0.7037 0.9013

Std 0.0002 0.0013 0.0039 0.0038 0.0079 0.0065 0.0017 0.2112

p-value 0.0000 0.0000 0.1554 0.0649 0.4403 0.1441 0.5000 0.2934

Masked LM Mean 0.8915 0.8842 0.7307 0.7225 0.8100 0.8090 0.7089 0.9027

Std 0.0009 0.0006 0.0043 0.0058 0.0063 0.0047 0.1647 0.1283

p-value 0.0004 0.0002 0.1103 0.1219 0.1451 0.2801 0.0177 0.0614

patible. Each model used the same dataset and training parame-
ters as the baseline, only with different OOV mitigation methods.
The results of these experiments are in Table 2.

Additionally, while Chinese and Japanese are both scriptio
continua languages, BERT’s tokenizer treats CJK ideograph text
differently and breaks at every character by artificially injecting
whitespaces. This makes the affected surface from OOV signif-
icantly smaller, resulting in less information loss. We expect to
see more considerable gains in Korean for these reasons, as the
per-character break is not enabled.
6.1.1 Naver Sentiment Movie Corpus

Due to the larger OOV surface and frequency, we expect to ob-
serve a modest increase in the best case compared to the baseline.
As seen in Table 2, we can indeed observe that regardless of the
mitigation method, OOV mitigation, in general, improves accu-
racy and the improvements are statistically significant. The OOV
tokens we observed here were from casual writing in user com-
ments, which shifts from the book corpus like domain used for
pre-train. This suggests that even without robust, representative
embeddings, it is still better than losing information during tok-
enization. We also hypothesize that performance improves by do-
main adaptation through additional pre-training because the ini-
tial embeddings are not representative of the subword in context.
As this dataset had the most significant gains in performance, we
investigated the positive and negative examples in Fig. 5. As we
have observed in Table 3, there were more cases which improved
with our method. However, we also observed that negative cases
emerge from additional pre-training, such as the samples in Fig. 5,
some of which we suspect can be attributed to surrogates being
assigned to a different language’s Unicode page.
6.1.2 Japanese Twitter Sentiment Analysis

This corpus showed a high OOV rate due to the frequent oc-
currence of emoji in the text, and improper normalization of Uni-
code punctuation. We observe similar patterns with the results

Table 3 Quantified improvements and regressions in performance across
the different tasks with samples affected by OOV. The results are
from the best scoring Character Distance models compared to best
baseline models for each task.

Dataset Regressed Improved Delta
NSMC 392 528 136
KorQuAD 64 79 15
Twitter 21 32 11
INEWS 11 11 0

from NSMC. Generally, we see only minor improvements, ex-
cept for character distance – which was statistically significant.
We observed that character distance assigned surrogates to Ko-
rean characters *11.
6.1.3 Chinese News Sentiment Analysis

While we observed a high OOV rate in this dataset, the im-
provement was negligible. Analyzing the surrogates, we ob-
served that most of the OOV tokens were punctuation or un-
common ideographs, which we expected to, and confirmed to
have little effect in the downstream task performance. In Ta-
ble 3, not only does the improved cases cancel out, looking at
the OOV cases we considered the difference to be training noise.
We hypothesize that small size of the dataset is likely to have
contributed to the negative results.
6.1.4 KorQuAD 1.0

We did not expect significant improvements due to the low
OOV rate, and the results reflect this. While we still saw minor
improvements across the board, the difference is incremental at
best, although some methods produced p-values which were con-
sidered statistically significant. The small delta can most likely
be attributed to the relatively low OOV rate and omission of ad-
ditional pre-training.

Given that our experiments’ results demonstrate that mitigat-

*11 This would have been appropriate to demonstrate with examples, but due
to the Twitter license agreement, reproducing the original text in this pa-
per was not possible.

c© 2021 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.29

Fig. 5 Positive, positive (with bad patches) and negative examples with the proposed method applied.
Negative cases are surrogate assignments which had adversarial effects on performance, and posi-
tive is the opposite. Positive with bad patches is a special case where the assignment looks incor-
rect, but contributed positively to performance. The OOV surfaces have been marked in bold.

ing OOV improves task performance, in the next section, we ex-
plore if our method can recover performance in high-OOV mod-
els, which we have synthetically created through initial OOV and
performance correlation experiments.

6.2 Effects of OOV on Task Performance
In the previous section, we demonstrated the effects of our

method on different tasks and languages. These experiments were
conducted based on the hypothesis that OOV has an adversarial
impact on task performance. In this section, we artificially in-
duce OOV on a pre-trained model through vocabulary pruning
and correlate the OOV rate to task performance. With these syn-
thetic OOV models, we use one of the tasks to investigate how
OOV affects task performance in a BERT model. Following this,
we apply our scheme to these synthetic models to verify if our
proposed method is effective at recovering the performance of a
broken model.

In this section, we investigate the correlation between OOV
and task performance by evaluating task performance using the
baseline BERT (bert-base-multilingual-cased) model, then com-
pare the results of that to models with varying OOV rates.

We use the three methods to eliminate the most frequent words,
the least frequent words, and random sampling. We compare dif-
ferent methods to ensure fairness, as the different methods exhibit
different scenarios of how an OOV can be introduced in a down-
stream task. NSMC was chosen because it was the largest dataset
we had for our experiments, and we assumed that the larger the
task corpus is, the more likely it will have a diverse vocabulary,
hence being more susceptible to OOV.

For the frequency computation, we used two datasets. The

first dataset we used is the kosentences *12 corpus. This corpus
is a Korean corpus cleansed of Wiki markup from multiple pub-
licly available Wiki dumps. As we only use the Wikipedia part of
kosentences, we will refer to the corpus as KoWiki in this paper.
We considered this to be a good approximation of what the back-
bone model (bert-based-multilingual-cased) was initially trained
with. This is because almost every large-scale pre-train corpus
contains Wikipedia in some form. For this case, the frequency ta-
ble was initialized with every Korean subword in the model, and
the frequencies against the KoWiki corpus were updated on the
frequency table. Subwords in the model’s vocabulary, but not in
the KoWiki corpus, were kept at a 0. The second dataset used
was the actual task corpus, as using the task corpus is the most
effective way to introduce OOV artificially.

This experiment intends to correlate the relation between OOV
rate and task performance to confirm our initial hypothesis. It is
worth noting that as we do not train a model from scratch, this
is an approximation and not an accurate representation of what
a pre-trained model’s vocabulary would have due to the prop-
erties of subword tokenization depending on the character level
n-gram distribution. This trade-off was made for computational
efficiency reasons, as pre-training, a new model requires a signif-
icant amount of computing power, and for our experiments, we
will need to train 42 models, which was computationally infeasi-
ble.

In our experiments, we prune subwords from the frequency ta-
ble in different ratios – for our experiments, we chose 0.1%, 1%,
5%, 10%, 20%, and 50% as the target ratios. 20% and 50% are

*12 https://github.com/cynthia/kosentences

c© 2021 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.29

Fig. 6 Effects of task performance caused by artificially induced OOV. All three pruning strategies have
been compared in this plot.

used to test extreme scenarios, to a point where it is likely that
the model predictions can be considered equivalent to random
choice. We use three different strategies for pruning the vocabu-
lary, which we discuss in the subsections below. The ratio here is
the ratio of words of the frequency table’s vocabulary we prune
from the vocabulary and should not be mistaken with the OOV
ratio discussed in the datasets section.
6.2.1 Common Words

Removing the most frequent words is not a common scenario
in any form, especially when it comes to a pre-trained model
setup. Ranking the vocabulary in order of frequency, we prune
the vocabulary from the top ranking (most frequent) word based
on the ratio to be pruned. For example, in a 1,000 word vocab-
ulary with a 5% prune rate, the end result will be a model that
is missing 50 of the most frequent words. This was chosen to
demonstrate the extreme cases of unusable models, for instance,
if a language that was expected to be supported was accidentally
omitted from the training data.
6.2.2 Rare Words

This method was chosen to simulate a scenario where the cor-
pus was sampled, or character coverage was reduced due to com-
putational constraints. As least frequent subwords in a corpus
will be omitted from the vocabulary, we consider this a rough ap-
proximation of what would happen when trade-offs are made due
to the computational limitations. The process is the same as com-
mon words, but in this case, pruning is in order of least frequent
words.
6.2.3 Random Words

In random words, we randomly eliminate subwords from the
vocabulary. The subwords list in the frequency table is used to
select target subwords to remove from the vocabulary. Based on
the target subword list, we randomly choose a word for removal
and evaluate the performance.

This is also another approximation of the consequences of

computational feasibility trade-offs, as with least frequent words.
As the distribution of subword frequency is expected to follow
Zipf’s law, even with random removal, we assume that the prob-
ability of an infrequent subword being chosen for deletion is in-
versely proportional to the frequency of the given subword.

6.3 Correlating Task Performance with OOV
The results of these experiments are summarized in Fig. 6, ac-

companied by the full results in Table A·2. An important point to
note here is that as this is a balanced, binary classification task, it
is unlikely that a model’s accuracy can go significantly below 0.5.
As it converges towards 0.5, we can consider the model’s output
to be equivalent to an equidistributed binary random number gen-
erator, hence a random model.

Based on the experiment results, the first straightforward obser-
vation we made is that removing rare words does not affect task
performance at all, regardless of how many are removed. Ana-
lyzing the removed words, we observed that the removed words
were mostly words from a different language, which we suspect
will not have substantial contributions to task performance. On
the other hand, the other two methods used for pruning affect ac-
curacy, especially as the ratio increases.

We observed that pruning common words had immediate ef-
fects, especially using the KoWiki corpus – as the effects are
apparent even at 0.1%. This is because the vocabulary of the
frequency table of KoWiki is larger than that of NSMC, 0.1%
pruned more subwords than the NSMC frequency table, which
had a smaller vocabulary. Removal of common words can have
devastating effects, as, without a matching suffix form of a sub-
word, the tokenizer’s greedy will fail. In both cases, we can see
that starting from around 5%; the model converges towards a ran-
dom model’s performance. In these worst-case scenarios, we ob-
served that the model’s input had more OOV than actual sub-
words. In many cases, input to the model exclusively consisted

c© 2021 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.29

Fig. 7 Performance recovery under different OOV rates. Note that the plot range for the y-axis is different
between common, random, and rare.

of OOV tokens.
Random pruning, on the other hand, tended to have a slower

effect on task performance. This is expected, as the probability
of pruning a common subword is lower than the probability of
pruning a less common word. We can still observe noticeable
performance decreases on both KoWiki and NSMC starting from
5%. Unlike common, the model did not end up in a state compa-
rable to random choice.

Even when scaled up to 50%, pruning rare subwords did not
have significant effects on the performance. This was somewhat
unexpected, as we initially hypothesized it to affect the task per-
formance with that many words removed. The reason turned out
to be that even at 50%, most of the rare words only appeared once,
and only a small portion (less than 5%) of these rare words were

Korean – which explains the minimal effect on performance.
We use the models from this experiment with the same proto-

col we proposed to mitigate OOV for the recovery experiments.
Among the multiple methods proposed, we use character distance
(CD), as it was shown to be effective while being computation-
ally efficient, which allowed us to experiment with many different
configurations.

6.4 Recovery with Proposed Method
The results of this experiment are visualized in Fig. 7, and the

full results are in Table A·3. The trends we observed in the
original mitigation NSMC experiments repeat here. A model
that has been both through additional pre-training and OOV-
patching consistently outperformed a model without additional

c© 2021 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.29

Table 4 OOV Rate tested on the task datasets used for our experiments with language-specific models.
Rates have been rounded the first decimal digit. (0.0% is any value under 0.05%.)

Dataset Model OOV Tokens Total Tokens Token Rate OOV Sentences Total Sentences Sentence Rate
NSMC bert-base-multi 81,603 5,185,891 1.5% 60,151 200,000 30.1%
NSMC KR-BERT 360 4,773,732 0.0% 336 200,000 0.1%
KorQuAD bert-base-multi 14,159 5,134,799 2.8% 8,569 144 K 5.9%
KorQuAD KR-BERT 5,978 4,396,060 1.4% 2,393 144 K 1.7%
Twitter bert-base-multi 10,310 985,345 1.0% 5,518 22,000 25.1%
Twitter cl-tohoku-base-v2 26,566 951,286 2.8% 10,165 22,000 46.2%
INEWS bert-base-multi 2,570 158,212 1.6% 1,278 6,355 20.1%
INEWS bert-base-chinese 2,338 158,065 1.5% 1,119 6,355 17.6%

pre-training. In this particular setup, we hypothesize that addi-
tional pre-training contributions in models with higher OOV rates
can be attributed to the fact that many subwords have now been
mapped to semantically different words, so the model has to learn
the structure of the text nearly from scratch. However, our results
suggest that the proposed method can even be effective at im-
proving performance in high-OOV conditions, such as a model
that was pre-trained on corpora extremely disparate from the tar-
get task’s domain.

While the model does not fully manage to recover to the best-
case performance fully, we also observed that extreme case mod-
els such as those with comparable performance to a random
model could also recover quite well. However, in these extreme
case models, we observed that due to the high amount of surro-
gates needed, the model started borrowing subwords from other
languages, from the CJK ideograph block as a surrogate for Ko-
rean subwords.

We do not have any theoretical proof of why extreme cases like
this can also recover near-baseline performance. We hypothesize
that without additional pre-training, the model’s representations
lack semantic or contextual information; hence it acts as a ran-
dom embeddings model. This model can still be used to classify
data with a classification head. With additional pre-training, the
model re-learns the structure from the input, only with different
embeddings, and due to the surrogate assignment being exclusive
in our method, the model can adapt to inherent structure from the
task corpus.

7. Applicability to Other Models

7.1 Multilingual Models
While our experiments are limited to BERT, the method can be

applied to any model. Generally, our proposed method is most ef-
fective when applied to greedy merging tokenizers such as Word-
Piece, which is used by both BERT and ELECTRA [4]. This is
due to the fact that greedy merging results in whole chunks of text
being lost during tokenization, as we have observed in the Fig. 5
examples.

However, our method is applicable to most subword tokeniza-
tion methods, such as Byte-pair Encoding (BPE), used by the
multilingual model XLM [15], and SentencePiece [14], used by
another multilingual model, XLM-R [5] also can benefit from
this. The effects will be less significant since both tokenizers are
not greedy. The expected effect is a diversification of the UNK
token by re-assigning it to different subwords instead of all OOV
tokens being mapped to a single embedding. This is expected to

make it easier to train. In an actual byte-level *13 subword tok-
enization, such as used in GPT-2 [21], our method is not expected
to have any gains as there will always be a byte-level fallback.

7.2 Monolingual Models
Following the discussion on our method’s applicability to dif-

ferent multilingual models, we also investigated whether or not
OOV is also a phenomenon in language-specific models. As our
method depends on the occurrence of OOV in the first place, if
there is a low OOV rate, the contributions of OOV mitigation are
also expected to be minor. To investigate this, we used three sep-
arate monolingual models for each language.

For Chinese, we used the official BERT Chinese model (bert-
base-chinese) released as part of the pre-trained models in
Ref. [8], with the BERT tokenizer, and for Japanese we used *14.
Finally, for Korean, we used KR-BERT [16] with Normalization
Form Compatibility Decomposition (NFKD) *15 pre-processing.
The subcharacter decomposition is similar to the work proposed
in Ref. [19] and makes this method much more robust against
OOV. Each of the monolingual models was used to tokenize
the respective language dataset compared with the multilingual
model used in this work. The results are disclosed in Table 4.

We observed that Korean, which is the most effective language
to our scheme, we can see that the amount of OOV tokens in this
model is extremely low. Due to this, it is unlikely to have ad-
versarial effects on performance. While the OOV token ratio was
still above 1% for KorQuAD, most of this turned out to be caused
by subwords in a foreign language (e.g., CJK Ideographs), which
is unlikely to have severe effects as it is assumed that the reader
does not necessarily have to comprehend this from the passage to
produce an answer *16 for the task.

Japanese, on the other hand, showed an increase in OOV. This
is likely because the pre-training corpus was Wikipedia, which is
well-formed text lacking colloquial writing, and Emojis, common
in data sourced from social networks. In Chinese, there was very
little difference as with the multilingual model, so the effects of
applying our method are likely to be the same as a multilingual
model.

*13 Byte-pair Encoding is commonly misrepresented, as while the original
method does operate at byte-level, current applications all operate at Uni-
code character level.

*14 https://github.com/cl-tohoku/bert-japanese
*15 This model does not work if this normalization is omitted.
*16 We confirmed that none of the answers expected an answer in a different

language from the dataset.

c© 2021 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.29

8. Conclusions

In this work, we investigate the correlation between OOV and
task performance in the context of transfer learning. With dif-
fering OOV rates, we confirm our hypothesis that OOV directly
affects the performance of a model in a transfer setup, to the point
that it makes the model comparable to a model that is randomly
choosing answers.

After demonstrating examples and the effects of OOV triggered
information loss with evaluation performance in a task under
a transfer learning setup, we propose multiple mitigating OOV
methods during downstream task fine-tuning. We then demon-
strate and compare with no mitigation, mitigation through net-
work modification, and surrogates, which require no network
modification, and show how each approach affects downstream
tasks. In particular, we show that vocabulary surrogates can
provide performance boosts with no additional computation cost
at the model level, especially when paired with additional pre-
training. Additionally, with the same experiments, we also con-
firm that tasks with lower OOV suffer less than tasks with higher
OOV.

We further explore the applicability of our work in extreme
cases and use the high-OOV models we used to test our hy-
pothesis, combined with the proposed mitigation can recover the
model’s capabilities and conclude that in a transfer learning setup,
tokenization serves a significant role in a pre-trained model’s ca-
pabilities.

8.1 Future Work
Additionally, one of our work’s limitations is that most of the

surrogate methods cannot be used for generative tasks, as tokens
are replaced with other tokens. We expect future work to explore
potential solutions for this limitation. Finally, while we provided
a hypothesis, the reason why BERT can still perform using un-
seen subwords for classification is not an answered question and
warrants further investigation.

Acknowledgments This paper is based on results obtained
from a project, JPNP18002, commissioned by the New Energy
and Industrial Technology Development Organization (NEDO).
Part of the compute used for the experiments were provided by
Odd Concepts Inc.

The authors also thank Won Ik Cho, Tatsuya Hiraoka, Sakae
Mizuki, Sho Takase, and Angela Smiley for their suggestions and
insightful discussions.

References

[1] Aji, A.F., Bogoychev, N., Heafield, K. and Sennrich, R.: In Neural
Machine Translation, What Does Transfer Learning Transfer?, Proc.
58th Annual Meeting of the Association for Computational Linguis-
tics, pp.7701–7710, Association for Computational Linguistics (on-
line), DOI: 10.18653/v1/2020.acl-main.688 (2020).

[2] Brown, T.B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal,
P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S.,
Herbert-Voss, A., Krueger, G., Henighan, T., Child, R., Ramesh, A.,
Ziegler, D.M., Wu, J., Winter, C., Hesse, C., Chen, M., Sigler, E.,
Litwin, M., Gray, S., Chess, B., Clark, J., Berner, C., McCandlish,
S., Radford, A., Sutskever, I. and Amodei, D.: Language models are
few-shot learners (2020).

[3] Cho, W.I., Moon, S. and Song, Y.: Open Korean Corpora: A Practical
Report, Proc. 2nd Workshop for NLP Open Source Software (NLP-

OSS), pp.85–93, Association for Computational Linguistics (online),
DOI: 10.18653/v1/2020.nlposs-1.12 (2020).

[4] Clark, K., Luong, M.-T., Le, Q.V. and Manning, C.D.: ELECTRA:
Pre-training Text Encoders as Discriminators Rather Than Generators,
ICLR (2020) (online), available from 〈https://openreview.net/
pdf?id=r1xMH1BtvB〉.

[5] Conneau, A., Khandelwal, K., Goyal, N., Chaudhary, V., Wenzek, G.,
Guzmán, F., Grave, E., Ott, M., Zettlemoyer, L. and Stoyanov, V.:
Unsupervised Cross-lingual Representation Learning at Scale, Proc.
58th Annual Meeting of the Association for Computational Linguis-
tics, pp.8440–8451, Association for Computational Linguistics (on-
line), DOI: 10.18653/v1/2020.acl-main.747 (2020).

[6] Conneau, A. and Lample, G.: Cross-lingual Language Model Pretrain-
ing, Advances in Neural Information Processing Systems 32, Wallach,
H., Larochelle, H., Beygelzimer, A., d′Alché-Buc, F., Fox, E. and
Garnett, R. (Eds.), pp.7057–7067, Curran Associates, Inc. (2019) (on-
line), available from 〈http://papers.nips.cc/paper/8928-cross-lingual-
language-model-pretraining.pdf〉.

[7] Devlin, J., Chang, M.-W., Lee, K. and Toutanova, K.: BERT: Pre-
training of Deep Bidirectional Transformers for Language Under-
standing, Proc. 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pp.4171–4186, Associa-
tion for Computational Linguistics (online), DOI: 10.18653/v1/
N19-1423 (2019).

[8] Devlin, J., Chang, M.-W., Lee, K. and Toutanova, K.: BERT: Pre-
training of Deep Bidirectional Transformers for Language Under-
standing, Proc. 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pp.4171–4186, Associa-
tion for Computational Linguistics (online), DOI: 10.18653/v1/
N19-1423 (2019).

[9] Dror, R., Baumer, G., Shlomov, S. and Reichart, R.: The Hitchhiker’s
Guide to Testing Statistical Significance in Natural Language Process-
ing, Proc. 56th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp.1383–1392, Association for
Computational Linguistics (online), DOI: 10.18653/v1/
P18-1128 (2018).

[10] Gillick, D., Brunk, C., Vinyals, O. and Subramanya, A.: Multilingual
Language Processing From Bytes, Proc. 2016 Conference of the North
American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pp.1296–1306, Association for Com-
putational Linguistics (online), DOI: 10.18653/v1/N16-1155 (2016).

[11] Howard, J. and Ruder, S.: Universal Language Model Fine-tuning for
Text Classification, Proc. 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp.328–339, As-
sociation for Computational Linguistics (online), DOI: 10.18653/v1/
P18-1031 (2018).

[12] Kolachina, P., Riedl, M. and Biemann, C.: Replacing OOV Words
For Dependency Parsing With Distributional Semantics, Proc. 21st
Nordic Conference on Computational Linguistics, pp.11–19, Associ-
ation for Computational Linguistics (2017) (online), available from
〈https://www.aclweb.org/anthology/W17-0202〉.

[13] Kudo, T. and Richardson, J.: SentencePiece: A simple and language
independent subword tokenizer and detokenizer for neural text pro-
cessing, EMNLP 2018 – Proc. Conference on Empirical Methods in
Natural Language Processing: System Demonstrations (online), DOI:
10.18653/v1/d18-2012 (2018).

[14] Kudo, T. and Richardson, J.: SentencePiece: A simple and language
independent subword tokenizer and detokenizer for Neural Text Pro-
cessing, Proc. 2018 Conference on Empirical Methods in Natural Lan-
guage Processing: System Demonstrations, pp.66–71, Association
for Computational Linguistics (online), DOI: 10.18653/v1/D18-2012
(2018).

[15] Lample, G. and Conneau, A.: Cross-lingual Language Model Pretrain-
ing, Advances in Neural Information Processing Systems (NeurIPS)
(2019).

[16] Lee, S., Jang, H., Baik, Y., Park, S. and Shin, H.: KR-BERT: A Small-
Scale Korean-Specific Language Model (2020).

[17] Luong, T., Sutskever, I., Le, Q., Vinyals, O. and Zaremba, W.: Ad-
dressing the Rare Word Problem in Neural Machine Translation, Proc.
53rd Annual Meeting of the Association for Computational Linguis-
tics and the 7th International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pp.11–19, Association for Com-
putational Linguistics (online), DOI: 10.3115/v1/P15-1002 (2015).

[18] Merity, S., Keskar, N.S. and Socher, R.: Regularizing and Optimizing
LSTM Language Models, arXiv preprint arXiv:1708.02182 (2017).

[19] Moon, S. and Okazaki, N.: Jamo Pair Encoding: Subchar-
acter Representation-based Extreme Korean Vocabulary Compres-
sion for Efficient Subword Tokenization, Proc. 12th Language
Resources and Evaluation Conference, pp.3490–3497, European
Language Resources Association (2020) (online), available from

c© 2021 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.29

〈https://www.aclweb.org/anthology/2020.lrec-1.429〉.
[20] Moon, S. and Okazaki, N.: PatchBERT: Just-in-Time, Out-of-

Vocabulary Patching, Proc. 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pp.7846–7852, Associa-
tion for Computational Linguistics (online), DOI: 10.18653/v1/2020.
emnlp-main.631 (2020).

[21] Radford, A., Wu, J., Child, R., Luan, D., Amodei, D. and Sutskever,
I.: Language Models are Unsupervised Multitask Learners, Technical
Report (2018).

[22] Rajpurkar, P., Zhang, J., Lopyrev, K. and Liang, P.: SQuad: 100,000+
questions for machine comprehension of text, EMNLP 2016 – Proc.
Conference on Empirical Methods in Natural Language Processing
(online), DOI: 10.18653/v1/d16-1264 (2016).

[23] Sennrich, R., Haddow, B. and Birch, A.: Neural machine translation
of rare words with subword units, 54th Annual Meeting of the Associa-
tion for Computational Linguistics, ACL 2016 – Long Papers (online),
DOI: 10.18653/v1/p16-1162 (2016).

[24] Stratos, K.: A Sub-Character Architecture for Korean Language Pro-
cessing, Proc. 2017 Conference on Empirical Methods in Natural Lan-
guage Processing, pp.721–726, Association for Computational Lin-
guistics (online), DOI: 10.18653/v1/D17-1075 (2017).

[25] Suzuki, Y.: Filtering Method for Twitter Streaming Data Using
Human-in-the-Loop Machine Learning, Journal of Information Pro-
cessing, Vol.27, pp.404–410 (online), DOI: 10.2197/ipsjjip.27.404
(2019).

[26] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez,
A.N., Kaiser, Ł. and Polosukhin, I.: Attention is All you Need, Ad-
vances in Neural Information Processing Systems, Guyon, I., Luxburg,
U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S. and
Garnett, R. (Eds.), Vol.30, pp.5998–6008, Curran Associates, Inc.
(2017).

[27] Wan, Z., Wan, X. and Wang, W.: Improving Grammatical Error Cor-
rection with Data Augmentation by Editing Latent Representation,
Proc. 28th International Conference on Computational Linguistics,
pp.2202–2212, International Committee on Computational Linguis-
tics (2020) (online), available from 〈https://www.aclweb.org/
anthology/2020.coling-main.200〉.

[28] Wang, A., Singh, A., Michael, J., Hill, F., Levy, O. and Bowman,
S.: GLUE: A Multi-Task Benchmark and Analysis Platform for
Natural Language Understanding, Proc. 2018 EMNLP Workshop
Blackbox NLP: Analyzing and Interpreting Neural Networks for
NLP, pp.353–355, Association for Computational Linguistics (on-
line), DOI: 10.18653/v1/W18-5446 (2018).

[29] Wang, H., Yu, D., Sun, K., Chen, J. and Yu, D.: Improving Pre-
Trained Multilingual Model with Vocabulary Expansion, Proc. 23rd
Conference on Computational Natural Language Learning (CoNLL),
pp.316–327, Association for Computational Linguistics (online),
DOI: 10.18653/v1/K19-1030 (2019).

[30] Wu, Y., Schuster, M., Chen, Z., Le, Q.V., Norouzi, M., Macherey,
W., Krikun, M., Cao, Y., Gao, Q., Macherey, K., Klingner, J., Shah,
A., Johnson, M., Liu, X., Kaiser, L., Gouws, S., Kato, Y., Kudo, T.,
Kazawa, H., Stevens, K., Kurian, G., Patil, N., Wang, W., Young, C.,
Smith, J., Riesa, J., Rudnick, A., Vinyals, O., Corrado, G., Hughes,
M. and Dean, J.: Google’s Neural Machine Translation System:
Bridging the Gap between Human and Machine Translation, CoRR,
Vol.abs/1609.08144 (2016) (online), available from 〈http://arxiv.org/
abs/1609.08144〉.

Appendix

A.1 Hyperparameters

We ran our experiments as close as possible to the baseline
parameters used by the publicly available benchmark scripts for
each task type. This means most of the hyperparameters for all
of the evaluation was done as close to the default values as pos-
sible. For the OOV correlation and recovery tasks, we optimized
the sequence length and batch size parameter specifically to the
task to maximize VRAM usage for faster experimentation. The
exact hyperparameters are disclosed in Table A·1 *17.

The masking probability for the MLM task was set to 0.15 for
additional pre-training. We did not use whole word masking for

*17 The parameters used will use 23.5 GBs out of 24 GB of available VRAM
when training using IEEE754 half-precision floating point tensors.

our experiments.

A.2 Environment and Computation Cost

The experiments in this paper were run on two different envi-
ronments. The additional pre-training and accompanied evalua-
tion experiments were executed on a shared rt G.small instance
on the ABCI compute cluster *18. An rt G.small node has six seg-
regated CPU cores from a Xeon Gold 6148, a Tesla V100 GPU
with 16 GB VRAM, and 60 GBs of memory. The training data
and experimental code was streamed from a shared GPFS mount.
Each experiment requires a different amount of compute bud-
get. The longest-running experiment finished in 10 hours of wall
clock time, and the shortest finished in 2 hours of wall clock time.
The average runtime for each experiment was approximately 5.5
hours.

The OOV correlation and recovery NSMC experiments were
executed on a desktop computer with a Ryzen 9 3900XT 12-core
processor, RTX3090 GPU with 24 GBs of VRAM, and 64 GBs
of memory. The training data and experimental code were on
a local Phison E16 NVMe drive. Both tasks required the same
amount of compute budget, and the average runtime for each ex-
periment was approximately 40 minutes with the hyperparameter
optimizations used above.

A.3 Experiment Result Tables

The results obtained from all of the experiments, including
those omitted from the plots, are in Tables A·2 and A·3 respec-
tively.

*18 https://abci.ai/

c© 2021 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.29

Table A·1 Hyperparameters used to train each of the downstream task models.

Task Optimizer Adam ε LR GradAccum Weight Decay Length Batch Size Epochs
Additional Pre-training Adam 1e-8 5e-5 1 0.0 512 6 3
OOV Correlation (NSMC) Adam 1e-8 2e-5 1 0.0 160 160 3
Mitigation (GLUE) Adam 1e-8 2e-5 1 0.0 512 10 3
Question Answering (KorQuAD) Adam 1e-8 3e-5 1 0.0 512 12 3
OOV Recovery (NSMC) Adam 1e-8 2e-5 1 0.0 160 160 3

Table A·2 Experiment results demonstrating the effects of OOV in an artificial setup. The percentages
are the ratio of words removed based on the frequency table computed with different data.
Method is the different methods used for pruning.

Frequency Table Method 0% 0.1% 1% 5% 10% 20% 50%
KoWiki Common 0.87730 0.75882 0.64312 0.53632 0.52584 0.50994 0.49654
KoWiki Rare 0.87730 0.86772 0.86730 0.86730 0.86842 0.86786 0.86928
KoWiki Random 0.87730 0.86892 0.86456 0.85934 0.82758 0.79182 0.70068
NSMC Common 0.87730 0.83650 0.70486 0.59100 0.49656 0.52088 0.50788
NSMC Rare 0.87730 0.86772 0.86918 0.86766 0.86790 0.86762 0.86794
NSMC Random 0.87730 0.86784 0.86494 0.85550 0.82104 0.76904 0.66556

Table A·3 Recovery experiment results. Patched is with mitigation, Patched+MLM is with mitigation
and additional pre-training.

Frequency Table Sampler Mitigation 0% 0.1% 1% 5% 10% 20% 50%
None 0.87730 0.75882 0.64312 0.53632 0.52584 0.50994 0.49654

KoWiki Common Patched (CD) 0.88390 0.87132 0.85702 0.85014 0.84756 0.85146 0.85120
Patched (CD) +MLM 0.88850 0.88446 0.86514 0.86256 0.86918 0.86662 0.86562

None 0.87730 0.86772 0.86730 0.86730 0.86842 0.86786 0.86928
KoWiki Rare Patched 0.88390 0.88094 0.88072 0.88072 0.88060 0.88124 0.88020

Patched (CD) +MLM 0.88850 0.88588 0.88556 0.88572 0.88628 0.88530 0.88646
None 0.87730 0.86892 0.86456 0.85934 0.82758 0.79182 0.70068

KoWiki Random Patched 0.88390 0.88092 0.88078 0.87752 0.87452 0.87012 0.85542
Patched (CD) +MLM 0.88850 0.88582 0.88490 0.88522 0.88380 0.88334 0.87710

None 0.87730 0.83650 0.70486 0.59100 0.49656 0.52088 0.50788
NSMC Common Patched 0.86830 0.87942 0.87530 0.86340 0.85716 0.84872 0.85000

Patched (CD) +MLM 0.88850 0.88432 0.87788 0.86590 0.86146 0.86122 0.86040
None 0.87730 0.86772 0.86918 0.86766 0.86790 0.86762 0.86794

NSMC Rare Patched 0.86830 0.88176 0.88208 0.88264 0.88242 0.88248 0.88266
Patched (CD) +MLM 0.88850 0.88610 0.88622 0.88648 0.88446 0.88588 0.88490

None 0.87730 0.86784 0.86494 0.85550 0.82104 0.76904 0.66556
NSMC Random Patched 0.86830 0.88288 0.88112 0.88264 0.87702 0.87506 0.86194

Patched (CD) +MLM 0.88850 0.88488 0.88634 0.88196 0.87882 0.87388 0.86554

Sangwhan Moon received his master’s
degree in computer science from the
Georgia Institute of Technology in 2017.
He is a director of engineering at Odd
Concepts Inc. and an elected member of
the World Wide Web Consortium (W3C)
Technical Architecture Group. He also
is a standardization expert for the Korean

Telecommunications Technology Association. His research in-
terests include natural language processing, computer vision, ma-
chine learning, and information retrieval.

Naoaki Okazaki is a professor in School
of Computing, Tokyo Institute of Technol-
ogy, Japan. Prior to this faculty position,
he worked as a post-doctoral researcher in
University of Tokyo (2007–2011), andas
an associate professor in Tohoku Univer-
sity (2011–2017). He is also a senior sci-
entific research specialist of Ministry of

Education, Culture, Sports, Science and Technology (MEXT)
and a visiting research scholar of the Artificial Intelligence Re-
search Center (AIRC), National Institute of Advanced Industrial
Science and Technology (AIST). His research areas include Nat-
ural Language Processing (NLP), Artificial Intelligence (AI), and
Machine Learning.

(Editor in Charge: Yuki Arase)

c© 2021 Information Processing Society of Japan

