アルゴリズム・ハードウェア協調設計による ベイジアン畳み込みニューラルネットワークの高速化

藤原 良樹^{1,a)} 高前田 伸也^{1,b)}

概要:従来のニューラルネットワークにおける不確実性の問題を解決するために,ベイジアン畳み込み ニューラルネットワーク(BCNN)が提案されている.BCNNでは,重みを決定的な値ではなく分布とし て扱うことで,オーバーフィッティング,少量のデータでの学習,不確実性評価の問題に対処することがで きるようになる.しかし,BCNNの出力分布を計算するには,複数のフォワードパスを計算する必要があ るため,多くの時間とエネルギーを消費してしまう.この問題を解決するため,近似アルゴリズムとハー ドウェアサポートを備えた新しいアルゴリズム・ハードウェア協調設計によるBCNNの高速化を提案す る.各層の入力の値と複数のフォワードパス間の入力の差の絶対値を観測した結果,これらの値のほとん どは,それ以外の一部の大きな値に比べて著しく小さくなることがわかった.提案アルゴリズムでは,こ れらの小さな値を0として扱い,スパースにする.このようにして抽出されたスパース性により,ほとん どの乗算を省略することができる.その結果,分類タスクでは81.1%,回帰タスクでは77.7%の計算の削 減を実現した.さらに、アルゴリズムレベルの近似をハードウェア上でサポートするために、本アルゴリ ズムに特化した新しいデータフローを提案し、アルゴリズムによって抽出されたスパース性を扱うことが できる新しいアクセラレータアーキテクチャ ASBNNを開発した.評価の結果,ASBNNはアルゴリズム による計算削減を効率良く活用し、BCNNアクセラレータの素朴な実装に比べて,計算速度を3.3倍、エ ネルギー効率を3.7倍改善することがわかった.

1. はじめに

機械学習の重要な一分野として深層学習が挙げられる. その応用分野は、自然言語処理 [21]、自動運転 [15]、ロボッ ト工学 [17] など多岐にわたる.しかし、その応用分野の 増加に伴い、いくつかの問題が発生している.その一つ は、訓練されたモデルが訓練データに適合しすぎてしまう オーバーフィッティングである.また、多くの応用分野で は小さなデータセットでの学習が求められるが、従来の ニューラルネットワークでの実現は困難である.さらに、 推論結果だけでなく、その信頼度を知るために不確実性評 価が必要であるが、従来のニューラルネットワークでは対 応することが難しい.ベイジアンニューラルネットワーク (BNN)は、重みを分布として扱うことで、上記の問題に 対処することができる.そのようなアドバンテージから BNNは、病気の検出 [14] や自動運転 [2] などの用途に利 用されている.

BNN の重みは、学習データと事前分布によって条件付

 $^{\rm b)}$ shinya@is.s.u-tokyo.ac.jp

けられた事後分布として表現される. それに加えて, BNN の出力も分布として表現される. これらの分布を解析的に 計算することは困難であるため,様々な近似アプローチが 提案されている. 代表的な手法として,変分推論 [4] やマ ルコフ連鎖モンテカルロ法 (MCMC) [3] がある. 本稿で は,MCMCよりも高速でスケーラブルであることから,変 分推論に着目した [5,18]. また,その中でも事前分布をガ ウス混合分布またはガウス分布に制限する,ガウス変分推 論と呼ばれる手法を使用する [6]. 本稿では,性能とパラ メータ数のバランスを考慮して,事前分布としてガウス分 布を用いる.

ガウス変分推論には、計算速度やエネルギー消費量の観 点で課題がある.これは、出力分布を得るために、同じ入 力値を用いてフォワードパスを複数回計算しなければなら ないからである.この計算速度とエネルギー消費量に関す る問題を解決するために、VIBNN [7] というアクセラレー タが提案された.しかし、アルゴリズムとハードウェアの 協調最適化ではないという点で改善の余地があり、複数回 のフォワードパスの必要性についても言及されていない.

本稿では,ベイジアンニューラルニューラルネットワー クの中でも,ベイジアン畳み込みニューラルネットワーク

 ¹ 東京大学 大学院情報理工学系研究科 〒 113-8656 東京都文京 区本郷 7 丁目 3-1

a) fujiwara-yoshiki064@g.ecc.u-tokyo.ac.jp

図 1: BNN の重みと出力の表現.

(BCNN) に注目する.速度とエネルギー消費の問題を解 決するために,BCNN の計算を高速化するための近似アル ゴリズムとハードウェアサポートを備えた新しいアルゴリ ズム・ハードウェア協調設計アプローチを提案する.アル ゴリズムの観点からは,BCNN における分布の観察に基 づき,各層の入力分布の特性と複数のフォワードパス間の 差異を利用した近似手法を提案する.さらに,アルゴリズ ムレベルの近似をハードウェアでサポートするために,新 しいデータフローとアクセラレータアーキテクチャを提案 する.

本稿の主な貢献は以下のようにまとめられる.

- BCNN における分布の特徴に基づいた,ガウス変分推 論のための新しい近似アルゴリズムを提案した.
- このアルゴリズムに特化した新しいデータフローの提案と、このアルゴリズムによって抽出されたスパース 性を扱うことができる新しいアクセラレータアーキテ クチャ、ASBNNを提案した。

2. ASBNN アルゴリズム

2.1 BNN における推論

従来のニューラルネットワークとは異なり, BNN の重 みは図1に示すように分布として表されるため, 出力の 分布を解析的に計算することは困難である. そこで, モン テカルロサンプリングを用いて, フォワードパスを複数回 計算することで, 出力の分布を近似計算する. 計算される フォワードパスの数を num_passes と定義する. それぞれ のフォワードパスの計算に用いる重みの値は, 対応する重 みの分布に従う乱数である. 特に今回対象としているガウ ス変分推論では, 重みとバイアスの分布はガウス分布であ る. したがって, 畳み込み (CONV) 層のフォワードパス は, ベクトル $\epsilon_w, \epsilon_b \sim N(0,1)$ を用いて次のように書くこ とができる.

output = Conv(input, W, b).

 $(\mathbf{W} = \overline{\mathbf{W}} + \boldsymbol{\epsilon}_{\boldsymbol{w}} * \boldsymbol{\Sigma}_{\boldsymbol{W}}, \ \mathbf{b} = \overline{\mathbf{b}} + \boldsymbol{\epsilon}_{\boldsymbol{b}} * \boldsymbol{\Sigma}_{\boldsymbol{b}})$

ここで、 $\overline{\mathbf{W}}$ と $\overline{\mathbf{b}}$ は、それぞれ層の重みの分布とバイアス の分布の平均である。 Σ_W と Σ_b はそれらの標準偏差であ る.ただし、異なるフォワードパスに対しては、 ϵ_w, ϵ_b と して異なる値をサンプリングする。

2.2 中間層の分布の観察

アルゴリズムレベルでの計算高速化を狙い,まず BCNN の内部挙動を観察する. 観察したところ,いくつかの興味 深い特徴が見つかった. Wとbを使って推論する際の第 k層への入力を input_k とする.また, \overline{W} とbで表される 平均値のみを用いて推論を行った場合の第 k 層への入力を input_(k.first) とする.

図 2a に $|input_k - input_{(k,first)}|$ の分布を,図 2b に $|input_k|$ の分布を示す. $|input_k - input_{(k,first)}|$ と $|input_k|$ の分布がロングテールになることを発見した. これらのグラフには、VGG11 [19] をベースにした BCNN の第4番目の CONV 層を使用している.可視化のため、 12より大きな値は表示していない.グラフよりこれらの値 のほとんどは、他の大きな値に比べて著しく小さいことが わかる.

2.3 複数フォワードパスにおける近似

ここでは、前節で得られた知見をもとに、近似アルゴリ ズムを紹介する.上で説明したように、BCNNではフォ ワードパスを num_passes 回計算する.我々のアルゴリズ ムでは、num_passes+1回のフォワードパスを計算し、最 初のフォワードパスの計算を「初期パス」、それ以降の計算 を「後続パス」と呼ぶことにする.

2.3.1 初期パス

初期パスでは、乱数を使わずにフォワードパスを計算する. 第 k 層の重みとバイアスの平均をそれぞれ $\overline{\mathbf{W}_{\mathbf{k}}}$ と $\overline{\mathbf{b}_{\mathbf{k}}}$ とし、 $\mathbf{input}_{(\mathbf{k},\mathbf{first})}$ をこの時の入力とする. この層の出力 である $\mathbf{output}_{(\mathbf{k},\mathbf{first})}$ は以下のように計算される.

 $\mathbf{output}_{(\mathbf{k},\mathbf{first})} = Conv(\mathbf{input}_{(\mathbf{k},\mathbf{first})}, \overline{\mathbf{W}_{\mathbf{k}}}, \overline{\mathbf{b}_{\mathbf{k}}}).$

input_(k,first) と **output**_(k,first) は後の計算のために保存さ れる.

2.3.2 後続パスの近似

この近似手法では、まず乱数に依存する部分と依存しない部分を分け、そして、乱数に依存する部分の0の数を 増やす.0のオペランドとの乗算結果は0になるので、ス パース性が高めることができ、ほとんどの乗算を省略する ことに繋がる.

input_kを第 k 層の入力,output_kを出力する. $\Sigma_{(W,k)}$

と $\Sigma_{(b,k)}$ をそれぞれ重みとバイアスの標準偏差とする. CONV 層の計算に使用される重みとバイアスは, $\epsilon_{w}, \epsilon_{b} \sim \mathcal{N}(0, \mathbf{I})$ を用いて以下のように表される.

$$\mathbf{W}_{\mathbf{k}} = \overline{\mathbf{W}_{\mathbf{k}}} + \epsilon_{\boldsymbol{w}} * \boldsymbol{\Sigma}_{(\boldsymbol{W}, \boldsymbol{k})}, \ \mathbf{b}_{\mathbf{k}} = \overline{\mathbf{b}_{\mathbf{k}}} + \epsilon_{\boldsymbol{b}} * \boldsymbol{\Sigma}_{(\boldsymbol{b}, \boldsymbol{k})}.$$

この層の出力は、以下のように変形される.

- $\mathbf{output}_{\mathbf{k}} = Conv(\mathbf{input}_{\mathbf{k}}, \mathbf{W}_{\mathbf{k}}, \mathbf{b}_{\mathbf{k}})$
- $\simeq Conv(\mathbf{input}_{\mathbf{k}},\mathbf{W}_{\mathbf{k}},\overline{\mathbf{b}_{\mathbf{k}}})$
- $= Conv(\mathbf{input}_{\mathbf{k}}, \overline{\mathbf{W}_{\mathbf{k}}}, \overline{\mathbf{b}_{\mathbf{k}}}) + Conv(\mathbf{input}_{\mathbf{k}}, \boldsymbol{\epsilon_{w}} * \boldsymbol{\Sigma_{(W,k)}}, \mathbf{0})$

(1)

 $= Conv(\mathbf{input}_{(\mathbf{k},\mathbf{first})},\overline{\mathbf{W}_{\mathbf{k}}},\overline{\mathbf{b}_{\mathbf{k}}})$

 $+Conv(\mathbf{input}_{\mathbf{k}}-\mathbf{input}_{(\mathbf{k},\mathbf{first})},\overline{\mathbf{W}_{\mathbf{k}}},\mathbf{0})$

+
$$Conv(\mathbf{input}_{\mathbf{k}}, \boldsymbol{\epsilon_w} * \boldsymbol{\Sigma_{(W,k)}}, \mathbf{0})$$

 $= \operatorname{output}_{(\mathbf{k}, \operatorname{first})} + Conv(\operatorname{input}_{\mathbf{k}} - \operatorname{input}_{(\mathbf{k}, \operatorname{first})}, \overline{\mathbf{W}_{\mathbf{k}}}, \mathbf{0})$ $+ Conv(\operatorname{input}_{\mathbf{k}}, \epsilon_{\boldsymbol{w}} * \Sigma_{(\boldsymbol{W}, \boldsymbol{k})}, \mathbf{0}).$ (2)

式 (1) は BCNN のバイアスの標準偏差がすべて 0 に近い 値であるという観測結果に基づいている. (2.2 章には記載 していない)

次に,式(2)の第二項を近似する. $|input_k - input_{(k,first)}|$ のほとんどの値は0または0に近い値であるため,閾値 α を用いて α 未満の値を0にし,その結果を x_1 と定義する.

 $\mathit{Conv}(\mathbf{input_k} - \mathbf{input}_{(\mathbf{k},\mathbf{first})}, \overline{\mathbf{W_k}}, \mathbf{0}) \simeq \mathit{Conv}(\mathbf{x_1}, \overline{\mathbf{W_k}}, \mathbf{0})$

$$\mathbf{x}_{1}[i] = \begin{cases} 0 \quad (|\mathbf{input}_{k}[i] - \mathbf{input}_{(k,\mathbf{first})}[i]| < \alpha) \\ \mathbf{input}_{k}[i] - \mathbf{input}_{(k,\mathbf{first})}[i] \quad (otherwise) \end{cases}$$

さらに、式 (2) の第三項を近似する. $|input_k|$ のほとん どの値は 0 または 0 に近い値であるため、閾値 β を用いて β 未満の値を 0 にし、その結果を \mathbf{x}_2 と定義する.

 $Conv(\mathbf{input}_{\mathbf{k}}, \boldsymbol{\epsilon_w} * \boldsymbol{\Sigma_{(W,k)}}, \mathbf{0}) \simeq Conv(\mathbf{x_2}, \boldsymbol{\epsilon_w} * \boldsymbol{\Sigma_{(W,k)}}, \mathbf{0})$

$$\mathbf{x_2}[i] = \begin{cases} 0 & (|\mathbf{input_k}[i]| < \beta) \\ \mathbf{input_k}[i] & (otherwise) \end{cases}$$

最終的に 第 k 層の出力 $output_k$ を次のように書き換えることができる.

$output_{\mathbf{k}}\simeq output_{(\mathbf{k},\mathbf{first})}$

+ $Conv(\mathbf{x_1}, \overline{\mathbf{W_k}}, \mathbf{0}) + Conv(\mathbf{x_2}, \boldsymbol{\epsilon_w} * \boldsymbol{\Sigma_{(W,k)}}, \mathbf{0}).$

アルゴリズム1に提案アルゴリズムを要約する.アル ゴリズム中の "gaussian(0,1)" はガウス分布に従う乱数を 表す.

2.4 近似のためのハイパーパラメータ

2.3 章で提案したアルゴリズムは,新しい変数 α と β を 導入するものであり,これらの値によって挙動が変化する. これらのパラメータを適切に設定するために,アルゴリズ

アルゴリズム 1 ASBNN アルゴ	リズム.
1: function $DROP(\mathbf{x},\gamma)$	» γ 未満の値を drop する関数
2: for $i = 0,, len(x)-1$ do	
3: if $abs(x[i]) < \gamma$ then	
4: $x[i] \leftarrow 0$	
5:	▷ 初期パス
6: $output[0] = CONV(input[0], W_{-})$	mean, b_mean)
7:	▷ 後続パス
8: for $pass = 1,, num_passes$ do	
9: $x1 = DROP((input[pass] - input)$	$t[0]), \alpha)$
10: $x2 = DROP(input[pass], \beta)$	
11: $\operatorname{output}[pass] = \operatorname{output}[0] + \operatorname{Ce}$	$ONV(x1,W_mean,0)$
+ CONV(x2, gaussian)	$n(0,1)$ *W_std,0)

ムを用いる前にこれらの値を決定する.あるハイパーパラ メータの値における性能を評価するために,元の分布と近 似された分布の間の KL ダイバージェンスまたは L2 ノル ムを用いて,近似の精度を見ることができる.また,不確 実性の評価指標を用いてハイパーパラメータを評価する こともできる.さらに,実験結果より,層間で同じαとβ を使用しても良いことが確認されているため,ハイパーパ ラメータのチューニングをより簡単に行うことができる. 5章にて,ハイパーパラメータを決定するためのワークフ ローの例を示す.

なお、本節の議論は、カーネルサイズが1×1の CONV 層と等価である、全連結(FC)層についても成立する.

3. ASBNN データフロー

2章の近似アルゴリズムから得られるスパース性を効果的 に利用するために,新しいデータフロー,ASBNNデータフ ローを提案する.ASBNNデータフローは,Planner-Tiled-Input-Stationary-Cross-Production (PT-IS-CP)データフ ロー [16]を拡張したものである.PT-IS-CPデータフロー と同様に,ASBNNデータフローでは,複数のProcessing Element (PE)を使用して,畳み込み計算を並列に行う. すべてのPE は乗算の累積和の計算を行う.

この章では、 $num_passes \times num_ich \times W \times H$ 次元の 実数配列の input を受け取り、 $num_passes \times num_och \times$ $(W - kx + 1) \times (H - ky + 1)$ 次元の実数配列の output を 出力する CONV 層を考える. $num_ich \ge num_och$ はそれ ぞれ入力チャネルと出力チャネルを表している.さらに、 カーネルサイズを $kx \times ky$ とする.

3.1 並列化

3.1.1 PE 間並列化

ASBNN データフローは、PT-IS-CP データフローと同 じマッピング戦略を採用する.入力平面を $W_t \times H_t$ の小さ なサブセットに分割し、各 PE に対応する入力をマッピン グする.重みは各 PE にブロードキャストされる.なお、 ASBNN データフローでは input_k の代わりに $\mathbf{x_1} \ge \mathbf{x_2}$ を

マッピングすることで第 k 層を計算している. 各 PE は次 の層の入力である new_x₁ と new_x₂ を出力する. もし PE 内での計算を処理できないほど num_och が大きい場合 は,出力チャネルを num_og 個のグループに分割する.

3.1.2 PE 内並列化

各 PE では、 $x_1 \ge x_2$ の一部を用いた 2 つの畳み込み が計算される.入力と出力にそれぞれ二つのバッファが 用意され、それらは"in_buf1"と"in_buf2"、"out_buf1" と "out_buf2" としてアルゴリズム 2 に記載されている. "in_buf1"と "out_buf1"は $x_1 \ge new_x_1$ に、"in_buf2"と "out_buf2"は $x_2 \ge new_x_2$ に対応している.各 PE では まず、長さが K の重みまたは乱数のベクトルと、長さが I の入力活性ベクトルが、それぞれのバッファから取り出さ れ、乗算器アレイに分配される.次に、乗算器アレイが直 積を計算し、同時に出力座標が計算される.その後、計算 された出力座標を用いて、積を累積バッファに累積する.

これらの計算は、アルゴリズム2において、parallel1 と parallel2 で表されている.また、アルゴリズム内の "rand_generator" はガウス分布に従う乱数発生器を表して いる. "Ocoord" と "Xcoord" と "Ycoord" は各直積に対応 する累積バッファの位置を計算する関数である.さらに、 二つの畳み込み計算, parallel1 と parallel2 は並列に実 行され、それらは異なるバッファに累積される.

3.2 ポストプロセッシング

二つの畳み込みの計算に続き、次の層の入力を作るため の計算が処理され、この計算をポストプロセッシングと呼 ぶ.まず、二つの畳み込みに対応する二つの累積バッファ の値が足される.次に、現在のパスが初期パスであればバ イアスの平均が足され、ReLUの前と後の値が後続パスの ために保存される.これらの保存される値は、アルゴリズ ム2において "out_preserve" と "in_preserve" で表されて いる.そして、new_x1 = 0, new_x2 = input_(k+1,first)が セットされる.もしパスが初期パスでなければ、初期パス で保存された値を用いて、"out_buf1" と "out_buf2" が計 算される.さらに "out_buf1" と "out_buf2" のスパース性 を高めるために、 $\alpha \ge \beta$ を用いた drop 関数が適用される.

3.3 Pass Loop の配置

従来の CNN と BCNN の最も重要な違いは, pass loop

(複数回のフォワードパスを行うループ)が含まれている かどうかである. ASBNN データフローでは,ロードとス トアの数を最小限にするように pass loop を追加している. pass loop 間で値の変わらない部分に着目し,出力チャネ ル群ループと入力チャネルループの間に pass loop を挿入 する.

3.4 境界計算

CONV 層の性質上,入力サイズと出力サイズは必ずしも 一致しない.この問題を解決するには,入力サイズを大き くする必要がある.この手法は,PT-IS-CP データフロー において, input haloとして提案されたものである.

3.5 スパース性の活用

スパース性を利用するために, PT-IS-CP データフロー と同様に,よりハードウェアに適した方法で行列を表現す る compressed sparse format を用いる.ここでは,行列ま たはベクトルを,0以外の要素の値を表すベクトルと0以外 の要素の間にある0の数を表すベクトルに分ける.0の数 は4ビットで表される.非ゼロの要素の前に15個以上の0 が現れた場合,非ゼロの値として0を追加する.ASBNN データフローでは,x₁, new_x₁, x₂, new_x₂ がこのフォー マットで表現される.このフォーマットにより,ロード とストアの数を減らすことができる.さらに,0以外の値 だけを計算することで parallel1 と parallel2 に必要なス テップ数を減らすことができる.

4. ASBNN アーキテクチャ

我々は2章におけるアルゴリズム,3章におけるデータ フローをベースに,我々のアルゴリズムに特化した新しい アーキテクチャを提案する.

4.1 アーキテクチャ全体図

3章のデータフローを採用した ASBNN アクセラレータ は,図4のように,相互接続された PE,バッファ,乱数生

アノ	ルゴリズム 2 ASBNN データフロー
1:	wt_mean_buf[num_ich][num_og*kx*ky/K][K]
2:	bias_mean_buf[num_och/num_og][num_og]
3: 4.	$\ln_{ln} = \ln_{ln} + \ln$
-1. 5:	acc_buf1[num_og][Wt][Ht]
6:	acc_buf2[num_og][Wt][Ht]
7:	$out_buf1[num_passes+1][num_och/num_og][num_og*Wt*Ht]$
8:	$out_buf2[num_passes+1][num_och/num_og][num_og*Wt*Ht]$
9:	for $og = 0,, num_och/num_og - 1$ do
10:	for $pass = 0,, num_passes$ do
11:	⊳ parallel1 と parallel2 は並列計算
12:	parallel1 {
13:	for $ich = 0,, num_ich - 1$ do
14:	for $a = 0,, Wt * Ht/I - 1$ do
15:	$in1[0:I-1] = in_buf1[pass][ich][a][0:I-1];$
16:	for $w = 0,, num og * kx * ky/K - 1$ do
17:	$wt1[0:K-1] = wt_mean_buf[ich][w][0:K-1];$
18:	for $(i = 0,, I - 1) \times (k = 0,, K - 1)$ do
19:	o = Occord(w.k):
20:	x = Xcoord(a.i.w.k):
21:	u = Ycoord(a, i, w, k);
22:	acc buf1[o][x][y] += in1[i]*wt1[k]:
]
23:	
24:	$\begin{array}{l} \text{parament} 2 \\ \text{for } i ab = 0 \\ \text{maximize} b = 1 \\ \text{do} \end{array}$
20:	for $a = 0$, $Mt + Ht/L$ 1 do
20:	for $u = 0,, w t * H t / I - 1$ do
21:	$\lim_{t \to 0} [0:1-1] = \lim_{t \to 0} \lim_{t \to 0} [pass][ich][a][0:1-1];$
28:	$10\mathbf{r} \ w = 0, \dots, num \log * kx * ky/\mathbf{K} - 1 \ \mathbf{d}0$
29:	$wt2[0:K-1] = rand_generator();$
30:	for $(i = 0,, I - 1) \times (k = 0,, K - 1)$ do
31:	o = Occord(w,k);
32:	x = Xcoord(a, i, w, k);
33:	$y = Y \operatorname{coord}(a, i, w, k);$
34:	$\operatorname{acc_buf2}[o][x][y] += \operatorname{in2}[i]^{\mathrm{wt2}}[k];$
35:	}
36:	▷ ポストプロセッシング
37:	$acc_buf = acc_buf1 + acc_buf2;$
38:	if pass $== 0$ then
39:	$out_preserve = acc_buf + bias_mean_buf[og];$
40:	$in_preserve = ReLU(out_preserve);$
41:	$out_buf1[pass][og] = \{0\};$
42:	$out_buf2[pass][og] = in_preserve;$
43:	else
44:	$out_buf1[pass][og] =$
	$drop(ReLU(acc_buf + out_preserve) - in_preserve);$
45:	$out_buf2[pass][og] =$
	$drop(ReLU(acc_buf + out_preserve));$

成器から構成されている. 各 PE は,入力,重み,乱数を 受け取るチャネルと,出力を送信するチャネルを持ってい る. さらに,モデルにバイアスがある場合は,それも受信 し,また,ハイパーパラメータαとβも PE に渡される.

ASBNN は SCNN [16] をベースに設計されており, さら に, SCNN は我々のデータフローの元となった PT-IS-CP データフローをベースに設計されている. 5.2 章で我々は ASBNN を SCNN と比較して評価するため, 図4にてその 違いを明示している. さらに, 我々は VIBNN と同様に, 乱数生成器として, BNNWallace-GRNG 法を用いた.

4.2 PE デザイン

各 PE は、入力活性 RAM (IARAM), 出力活性 RAM (OARAM), 重み FIFO, 乱数 FIFO, 乗算器アレイ, 座標 計算ユニット, ポストプロセッシングユニット (PPU) か ら構成される. IARAM と OARAM は、それぞれの活性 値を、3.5 章で提案したスパースフォーマットで保存する.

PE の設計の概要を図4に示す.各 PE は、ASBNNの データフローの順に重みと入力活性を用いて計算する.並 列処理とその計算については前節で説明したため、ここで はデータフローを実現する PE の各構成要素の設計につい て説明する.PPU 以外の要素は、SCNNの PE コンポー ネントをベースに構成されている.

まず,長さが K の重みベクトルと,長さが I の圧縮され た入力活性ベクトルが,重み FIFO と IARAM から取り出 される.これらは, K × I 個の乗算器からなる乗算器アレ イに分配される.さらにそれらの座標は,座標計算ユニッ トに分配される.次に乗算器アレイで直積が計算され,同 時に,座標計算ユニットで出力座標が計算される.別の畳 み込みは,もう一つの乗算器アレイを用いて,同じ方法で 同時に計算される.

各ステップでは, *K*×*I*個の直積が累積バッファに蓄積 される.このバッファは,入力のスパース性による不連続 なアクセスの影響を軽減するために,小規模な累積バンク の分散アレイに分割されている.小規模な累積バンクは, クロスバースイッチのように構成されたネットワークを介 してアクセスされ,加算器と小さなエントリのセットで構 成されている.累積する場所は,座標計算ユニットの出力 に基づいて決定される.[16]の結果に基づけば,2×*K*×*I* 個の累積バッファが十分な大きさであり,競合を減らすこ とができる.さらに,値の更新と PPU への値の送信を同 時に行うことができるように,累積バッファはダブルバッ ファリングされている.

二つの畳み込みが計算された後,累積和の値が PPU に送られる. PPU は図 5 のように表される.ここでは, バイアス加算, ReLU 関数, drop 関数, sparse format へ の変換が行われえる.はじめに,二つの累積和が計算さ れ,バイアスまたは output_(k,first) に保存されている値

が加算される.次に、ReLU 関数が適用される.さらに、 input_(k+1) – input_(k+1,first) が計算され、次の層の入力 となる.最後に、計算された次の層の入力の一部が $\alpha \ge \beta$ を使った drop 関数によって 0 となり、sparse format へと 変換される.もし、パスが初期パスであれば、output_kが output_(k,first) に格納され、input_(k+1) が input_(k+1,first) に格納される.

5. 評価

5.1 アルゴリズム評価

5.1.1 分類

この章では, 我々のアルゴリズムの分類タスクへの適用 可能性を示し, ハイパーパラメータ α と β を選択する方法 を示す.

ここでは、VGG11をベースにした BCNN を用いて、我々 の近似手法の性能を検証する.他の多くの場合と同様に、 バッチ正規化層を挿入し、活性化関数として ReLU を使用 する.また、CIFAR10 データセット、Bayes by Backprop、 確率的勾配降下法を用いてモデルを学習させる.

適切なハイパーパラメータを選択するために,100回の フォワードパスを異なる重みサンプリングで計算した時の, 学習済みモデルからの2種類の出力分布を比較する.1つ は近似なしの出力分布で,もう1つは我々の近似手法を用 いた近似出力分布である.出力分布の結果がハイパーパラ メータの値によってどのように変化するかを観察するため に,2つの分布の間のL2ノルム(図 6a)と削減された乗 算の平均割合(図 6b)を,パラメータごとにヒートマップ を用いて描く.

近似に必要な精度は、どこで必要とされ、適用されるか によって異なる. 今,「L2 ノルムが約 0.012 より小さいこ と」という要求があると仮定する.「L2 ノルムが約 0.012 より小さい」というのは、直感的に「100 回フォワードパ スを計算したときの結果の数が、どのクラスについても約 11 以上の差があってはならない」という意味を持つ. この 要求される精度の下で、省略される乗算が最大となるよう に、ハイパーパラメータを決定する. 図 6a と図 6b の結果 から、ハイパーパラメータ $\alpha = 0.32$ と $\beta = 1.28$ が得られ る.図 6b より、これらのパラメータを用いることで、全 体の 81.1%の乗算をスキップすることができる.

(a) L2 ノルムとパラメータの(b) スキップされる乗算の割
 関係を表すヒートマップ
 合とパラメータの関係を表す
 ヒートマップ

図 6: パラメータを選択するためのヒートマップ

また, test log likelihood (TestLL) [9] を用いて, その パラメータ下での近似が精度と不確実性を保持しているの かを調べることもできる. TestLL は, 予測の精度とその不 確実性の両方に依存する評価指標であり, 値が大きいほど 良い指標である. 今回のパラメータ設定では, 近似なしの 結果の TestLL は-0.23, 近似ありの結果の TestLL は-0.20 となっている. よって, このパラメータ設定における近似 手法は, TestLL のスコアを若干向上させ, 精度や不確実性 を悪化させていないことがわかる. また, 精度だけで言え ば, 0.6%の向上となる. これらの指標は, 今回のパラメー タの選択が, TestLL のスコアと精度を維持しつつ, 計算 量を削減することに成功していることを示している.

5.1.2 回帰

さらに、回帰タスクを用いて、提案近似手法の有効性を 検証する.目的関数 f(x) を $f(x) = \sin(4x) * \cos(14x)$ と し、観測点 X の集合を $X = \{x_1, x_2, ..., x_{20}\}$ とする.対 応するターゲットの集合 T を $T = \{t_1, t_2, ..., t_{20}\}$ とする. $i \in \{1, 2, ..., 20\}$ において、 $t_i = f(x_i) + noise$ が成立する. noise は標準偏差が 0.05 のガウスノイズである.実装され た BNN は、1 つの入力、1 つの出力、そして 3 つの隠れ層 を持っており、すべての層は FC 層(1 - 512 - 1024 - 512 - 1)である.モデルの学習には、Bayes by Backprop と確 率的勾配降下法を用いる.図7中の点は、学習用に用意さ れた観測点 (X, T) を示している.これらの図では、目的 関数曲線(青線)と、重みを 50 回サンプリングして得られ た回帰曲線(カラフルな線)を示している.

図 7 では、オリジナルの結果(図 7a)と近似された結果 (図 7b)の類似性を視覚的に示している.この近似には、 $\alpha = 0.005$ and $\beta = 0.2$ を用い、77.7%の計算を削減して いる.このように、我々の近似手法では、近似なしの場合 とほぼ同じ出力分布が得られることがわかる.また、近似 手法を用いない場合の TestLL は -0.65、近似手法を用い た場合の TestLL は -0.64 となる.このことから、提案近 似手法は TestLL を若干改善し、精度や不確実性を悪化さ せていないと結論づけることができる.

図 7c と図 7d では、 α と β が出力分布に与える影響を視

表	ŧ	1:	7	-	キ	テ	ク	チ	ヤ	パ	ラ	X	_	タ	設定

パラメータ	値
乗算のビット幅	16 bits
累積のビット幅	24 bits
乗算器アレイ $(I \times K)$	4×4
PE の数	16

覚的に見ることができる. α を大きくしすぎると出力値を 誤推論してしまいやすくなり(図 7c), β を大きくしすぎ ると,不確実性を過小評価してしまいやすくなる(図 7d) ことがわかる.

5.2 ハードウェア評価

5.2.1 評価設定

上で説明したように、ASBNNはPT-IS-CPデータフロー とSCNNをベースにしている.ASBNNデータフローと アーキテクチャを評価するために、ASBNNを2つのSCNN ベースラインと比較する.1つは、PT-IS-CPデータフロー とSCNNを用いて、素朴にフォワードパスをnum_passes 回計算する"SCNN (dense)".もう一つはPT-IS-CPデー タフローとSCNNを用いてフォワードパスをnum_passes 回計算するが、3.5章で説明したスパース性を活用するメカ ニズムを追加している、"SCNN (sparse)"である.これら をASBNNと、速度向上とエネルギー効率の観点で比較を 行う.ASBNNは、リアルタイム推論を必要とする低レイ テンシー重視のアプリケーションを対象としているため、 ここでいう速度向上は、レイテンシーの改善を意味する.

アーキテクチャを評価するためには,アーキテクチャの パラメータ設定が必要である. ASBNN は SCNN をベース にしているので,SCNN の設定を参考にして,アーキテク チャのパラメータを設定する.設定したパラメータは,表 1の通りである.

図 8: SCNN (dense) と SCNN (sparse) と ASBNN の速度 向上の比較.

ASBNNのPEは、図4のように、PPU以外の部分は2つ ずつ用意されており、それらの部分は単純にSCNNのPE の2倍とみなすことができる. ASBNNのPPUとSCNN のPPUとの大きな違いは、ASBNNでは、input_{(k+1,first}) とoutput_(k,first)を格納するレジスタが追加されているこ とである. なお、これらを合わせたサイズは常に、ダブル バッファリングされた累積バッファと同じか、それよりも 小さくなる. また、SCNNのPEでは、ダブルバッファリ ングされた累積バッファがPEの29%を占めていることか ら、ASBNNのPEはSCNNのPEの2+0.29 = 2.29倍 以下の大きさになることが言える.以上から、公平な評価 を行うために、SCNNには36個のPEを用意するのに対 し、ASBNNには16個のPEを用意する.

5.2.2 パフォーマンス

評価のために、16 個の PE の ASBNN と 36 個の PE の SCNN のサイクルアキュレイトなシミュレータを開発し、 CONV 層に必要なサイクル数をカウントする.シミュレー タでは、PE 内のローカルバッファやグローバルバッファ を含むメモリサブシステムにおけるデータの動きも正確に モデル化されている.評価には、5.1 章で使用した学習済 みの VGG11 ベースの BCNN モデルとパラメータ設定を 使用する.

なお, BNN の出力分布を評価する際には, 2.1 章で説明 したように, 異なる重みで複数回フォワードパスを計算す ることに注意する. ASBNN は計算するフォワードパスの 回数によって性能が異なる. そのため, 我々は ASBNN を 異なるフォワードパスの回数で比較する. 評価に用いたパ スの数は 2, 4, 8, 16, 32, 64, 128 である. 結果は図 8 に記 されている.

図8より,ASBNNはどのパス数でもSCNN (dense)よ り高速である.また,出力分布を128回のパスで比較した 場合,ASBNNはSCNN (dense)よりも3倍以上高速にな る.さらに,8回以上のパスを計算した場合,ASBNNは SCNN (sparse)よりも高速である.しかし,パスの数が2 または4の場合,初期パスのオーバーヘッドが相対的に大 きくなるため,ASBNNはSCNN (sparse)よりも遅くなる. 表 2: 評価に用いられたエネルギー消費量. これらは, [11] や [12] や [8] で提案されている. ここでの数字は [12] の結 果を用いて計算されている.

	エネルキー (pJ)	相灯コスト
加算 (16 bit)	0.4	$1 \times$
乗算 (16 bit)	1.1	$2.75 \times$
ロード/ストア (16 bit)	9.6	$24 \times$

図 9: SCNN (dense) と SCNN (sparse) と ASBNN のエネ ルギー効率の比較.

5.2.3 エネルギー効率

エネルギー効率の評価には、性能評価と同じモデルを使 用する.まず、先程のシミュレータを用いて乗算、加算、 ロード/ストアの回数をカウントし、その回数を使ってエ ネルギー消費量を計算する.演算処理数とロード/ストア 数に、それぞれのエネルギー消費量の比率を乗じてエネル ギー消費量を算出する.各演算のエネルギー消費量は表 2 のように定める.

ASBNN のエネルギー効率は、出力分布を計算するため のパスの数に依存するため、我々は複数のパス数でエネル ギー効率の比較を行った.結果は図9のようになった.

その結果, ASBNNは SCNN (dense) と比較して, どの ようなパスの数でもエネルギーを節約できることがわかる. パスが2回しか計算されない場合は,最初のパスのオー バーヘッドが比較的大きく,ASBNNのエネルギー効率の 妨げになる.しかし,出力分布を計算するパスの数が多い 場合,ASBNNはより多くのエネルギーを節約することが できる.

5.3 議論

アルゴリズムの評価では,密なニューラルネットワーク に比べて,分類タスクで 81.1%,回帰タスクで 77.7%の計 算量を削減できることを示している.ハードウェアの評価 では,パスの数を変えた ASBNN の性能とエネルギー効率 を観察する.BCNN を用いて出力分布を計算する場合,2 回のパスや4回のパスでは出力分布が十分に近似できない ため,10~100回のパスを計算することが多い.したがっ て,ASBNN を 64回のパスの場合で評価することは合理的 である.この場合,ASBNN は密な BCNN アクセラレータ の素朴な実装と比較して,計算速度を 3.3 倍,エネルギー 効率を 3.7 倍改善すると結論づけることができる.

6. 関連研究

我々の知る限りでは、二つの BNN アクセラレータが存 在する. VIBNN は、始めに提案された BNN アクセラレー タである. 彼らは、我々の研究と同様に、ガウス変分推 論の高速化を試みており、乱数生成器の設計を複数提案 し、比較している. さらに、BNN のための空間アーキテ クチャを提案している. しかし、彼らのハードウェアは FC 層のみを対象としているが、[1,8] によると、VGG11 や AlexNet [13] など、最も広く使われている CNN では、 CONV 層が全体の計算のほぼ 90%を占めている. そのた め、本稿では主に CONV 層を考慮している.

もう一つのアクセラレータは Fast-BCNN [20] で,最初 のBCNN アクセラレータである.著者らは,BNN を実現 する手段としてドロップアウト [10] を用い,影響を受け ないニューロンを予測することで,不要な計算をスキップ できるアクセラレータを提案している.しかし,ドロップ アウトでは,事後分布として表現される分布がベルヌー イ分布に限定されてしまい,一般性が損なわれてしまう. 我々のアプローチであるガウス変分推論は,より多くのク ラスの分布を事後分布として表現することができるため, より一般的で応用性の高いものとなっている [6].さらに, VIBNN や Fast-BCNN は,BNN が推論を行うために複数 のフォワードパスを計算する必要があるという事実を適切 に考慮していない.我々の手法は,ガウス変分推論におけ る複数のフォワードパスの類似性を利用した高速化を提案 している.

7. まとめ

本稿では、BCNN の高速計算を実現するために、近似ア ルゴリズムとハードウェアのサポートによる新しいアルゴ リズム・ハードウェア協調設計手法を提案した.BCNN の 特性を利用した近似アルゴリズムでは、評価の結果、分類 タスクで 81.1%、回帰タスクで 77.7%の計算を省略するこ とができるとわかった.さらに、このような計算省略の機 会を利用するために、BCNN 用のアクセラレータを開発 した.我々は、提案アルゴリズムに特化した新しいデータ フローを提案し、我々のアルゴリズムによって抽出された スパース性を扱うことができる新しいアクセラレータアー キテクチャ、ASBNN を開発した.最後に、評価の結果、 ASBNN は計算量を減らすことに成功し、BCNN アクセラ レータの素朴な実装と比較して、計算速度を 3.3 倍、エネ ルギー効率を 3.7 倍向上させた.

謝辞本稿の一部は, JSPS 科研費 19H04075, 18H05288, および JST さきがけ JPMJPR18M9 の支援により行われ たものである.

参考文献

- Akhlaghi, V., Yazdanbakhsh, A., Samadi, K., Gupta, R. K. and Esmaeilzadeh, H.: SnaPEA: Predictive Early Activation for Reducing Computation in Deep Convolutional Neural Networks, 2018 ACM/IEEE 45th Annual International Symposium on Computer Architecture (ISCA), pp. 662–673 (2018).
- [2] Amini, A., Soleimany, A., Karaman, S. and Rus, D.: Spatial uncertainty sampling for end-to-end control, arXiv preprint arXiv:1805.04829 (2018).
- [3] Andrieu, C., De Freitas, N., Doucet, A. and Jordan, M. I.: An introduction to MCMC for machine learning, *Machine learning*, Vol. 50, No. 1-2, pp. 5–43 (2003).
- [4] Barber, D. and Bishop, C. M.: Ensemble learning in Bayesian neural networks, *Nato ASI Series F Computer* and Systems Sciences, Vol. 168, pp. 215–238 (1998).
- [5] Blei, D. M., Kucukelbir, A. and McAuliffe, J. D.: Variational inference: A review for statisticians, *Journal of the American statistical Association*, Vol. 112, No. 518, pp. 859–877 (2017).
- [6] Blundell, C., Cornebise, J., Kavukcuoglu, K. and Wierstra, D.: Weight Uncertainty in Neural Networks, ICML'15, JMLR.org, p. 1613–1622 (2015).
- [7] Cai, R., Ren, A., Liu, N., Ding, C., Wang, L., Qian, X., Pedram, M. and Wang, Y.: VIBNN: Hardware Acceleration of Bayesian Neural Networks, ASPLOS '18, New York, NY, USA, Association for Computing Machinery, p. 476–488 (2018).
- [8] Chen, Y., Emer, J. and Sze, V.: Eyeriss: A Spatial Architecture for Energy-Efficient Dataflow for Convolutional Neural Networks, 2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA), pp. 367–379 (2016).
- [9] Gal, Y.: Uncertainty in deep learning, University of Cambridge, Vol. 1, No. 3 (2016).
- [10] Gal, Y. and Ghahramani, Z.: Dropout as a bayesian approximation: Representing model uncertainty in deep learning, *international conference on machine learning*, pp. 1050–1059 (2016).
- [11] Han, S., Liu, X., Mao, H., Pu, J., Pedram, A., Horowitz, M. A. and Dally, W. J.: EIE: Efficient Inference Engine on Compressed Deep Neural Network, 2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA), pp. 243–254 (2016).
- [12] Horowitz, M.: 1.1 Computings energy problem (and what we can do about it), 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), pp. 10–14 (2014).
- [13] Krizhevsky, A., Sutskever, I. and Hinton, G. E.: ImageNet Classification with Deep Convolutional Neural Networks, *Commun. ACM*, Vol. 60, No. 6, p. 84–90 (2017).
- [14] Kwon, Y., Won, J.-H., Kim, B. J. and Paik, M. C.: Uncertainty quantification using Bayesian neural networks in classification: Application to biomedical image segmentation, *Computational Statistics and Data Analy*sis, Vol. 142, No. C (2020).
- [15] Milz, S., Arbeiter, G., Witt, C., Abdallah, B. and Yogamani, S.: Visual SLAM for Automated Driving: Exploring the Applications of Deep Learning, *Proceedings of* the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops (2018).
- [16] Parashar, A., Rhu, M., Mukkara, A., Puglielli, A., Venkatesan, R., Khailany, B., Emer, J., Keckler, S. W. and Dally, W. J.: SCNN: An accelerator for compressed-

sparse convolutional neural networks, ACM SIGARCH Computer Architecture News, Vol. 45, No. 2, pp. 27–40 (2017).

- [17] Pierson, H. A. and Gashler, M. S.: Deep learning in robotics: a review of recent research, *Advanced Robotics*, Vol. 31, No. 16, pp. 821–835 (2017).
- [18] Salimans, T., Kingma, D. and Welling, M.: Markov chain monte carlo and variational inference: Bridging the gap, *International Conference on Machine Learn*ing, pp. 1218–1226 (2015).
- [19] Simonyan, K. and Zisserman, A.: Very Deep Convolutional Networks for Large-Scale Image Recognition, 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings (Bengio, Y. and LeCun, Y., eds.) (2015).
- [20] Wan, Q. and Fu, X.: Fast-BCNN: Massive Neuron Skipping in Bayesian Convolutional Neural Networks, 2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), pp. 229–240 (2020).
- [21] Young, T., Hazarika, D., Poria, S. and Cambria, E.: Recent Trends in Deep Learning Based Natural Language Processing [Review Article], *IEEE Computational Intelligence Magazine*, Vol. 13, No. 3, pp. 55–75 (online), DOI: 10.1109/MCI.2018.2840738 (2018).