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Abstract: ABCI is the world ’s first large-scale Open AI Computing Infrastructure for both developing AI
technologies and bridging them into the industry, operated by AIST, Japan since August 2018. It delivers
19.88 petaflops of HPL performance and achieves 70 seconds for training ResNet-50 model in MLPerf Train-
ing v0.6. Last November we achieved world’s fastest records for CosmoFlow and DeepCAM in MLPerf HPC
benchmarks. ABCI was the fastest supercomputer in Japan until Fugaku made a spectacular debut, however,
it soon became short of computing capacity and I/O performance due to the rapid expansion of its usage.
This forced us to make a major upgrade to ABCI. With this upgrade, we have added 120 compute nodes and
a stroage system with a capacity of 11 PBytes. We named the whole system which includes both existing
ABCI and the newly added equipments as ABCI 2.0. ABCI 2.0 provides the same software environment
that ABCI provided. It enables that existing ABCI users can easily use the newly equipments in a similar
way they used ABCI. We compared the performance of existing and new compute nodes and found that new
nodes had 4.1 times higher performance than existing nodes in training ResNet-50 model using PyTorch. We
expect that the new nodes largely contributes to increase the system throughput.

1. Introduction

AIST starts operating ABCI (AI Bridging Cloud

Infrastructure) [1] from August 2018 as a platform for

promoting the development of AI technologies. Machine

learning and big data processing are two important compu-

tations required by AI training tasks and ABCI has high

performance GPUs and large capacity storage systems to

process such computation at high speed and high through-

put. ABCI’s peak performance are 37.2 PFlops in double

precision, 75 PFlops in single precision and 550 PFlops in

half precision. Its LINPACK performance are 19.88 PFlops

and 14.423 GFlops/W, which were fifth in June 2018 list

of Top500 and third in June 2019 of Green500. ABCI also

ranked in fifth in June 2018 list of HPCG. As of November

2020, ABCI is still ranked 14th, 13th and 11th in Top500,

Green500 and HPCG list.

ABCI is used by more than 2,000 users and 300 research

projects and used in the following areas: image and voice

recognition, natural language processing, robotics, bioinfor-

matics, Go, etc. Moreover, ABCI is used in studying dis-

tributed training algorithms for deep neural networks and

achieves the world’s top level of performance [2–4]. As a

result of such a wide spread of use, utilization of ABCI is

constantly over 90% and more than 1,000 jobs occasionally
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waited, especially in busy season. There were also a shortage

of storage capacity and I/O performance problems where re-

sponses to I/O requests became worse because of concurrent

executions of large number of jobs. because of concurrent

executions of large number of jobs and a shortage of stor-

age capacity. To solve the problems, we continuously mon-

itored the system and tuned system parameters, however,

we concluded that the root cause of the problems is a lack

of computing and storage capacity to meet demands from

users.

To solve the above problem, we extended ABCI’s comput-

ing and storage capacity. We added the following two equip-

ments to ABCI: 120 compute nodes equipped with eight

NVIDIA A100 GPUs and 11 PB storage system. We named

the whole system which includes both existing ABCI and

the newly added equipments as ABCI 2.0 and started its

operation from May 2021. Peak performance of ABCI 2.0

is 56.5 PFlops in double precision and 225 PFlops in sin-

gle precision, which are 1.52 times and 3 times higher than

existing ABCI. ABCI 2.0 provides the same software envi-

ronment that ABCI provided. Users can use new compute

nodes and storage in a similar way they used ABCI. We

evaluated the performance of ABCI 2.0 in terms of compar-

ing performance of new and old compute nodes in typical

use patterns of ABCI. From a performance result of train-

ing ResNet50 model using PyTorch, we confirmed that new

nodes had up to 2.1 times by GPU and 4.1 times by nodes

higher performance than old nodes. We can extrapolate
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that the throughput of processing this task on ABCI 2.0 is

1.46 times increased against ABCI from this performance

improvement ratio. We expect that such a throughput gain

can be observed in other AI tasks and hope that ABCI 2.0

contributes to meet more demands from users.

The paper is organized as follows. We describe hardware

of ABCI 2.0 in Sec. 2 and software in Sec. 3. In Sec. 4,

we show performance results of ABCI 2.0 and conclude in

Sec. 5.

2. ABCI 2.0 Hardware

Figure 1 shows the hardware architecture of ABCI 2.0.

Components highlighted in light blue are new one introduced

as part of ABCI 2.0.

2.1 Compute Resources

ABCI 2.0 consists of three major types of compute nodes.

Two are compute nodes equipped with GPUs and focus on

accelerating training of machine learning tasks. They are

named as Compute Node (A) and Compute Node (V), and

the former has eight NVIDIA A100 GPUs and the later has

four NVIDIA V100 GPUs. Newly added Compute Node

(A) is fatter than Compute Node (V) in terms of perfor-

mance. We increase number of GPUs and, proportionally,

the amount of memory, number of InfiniBand HCAs, etc.

to increase data transfer performance of multi GPU train-

ing tasks. Figure 2 shows the block diagram of Compute

Node (A) and Figure 3 shows that of Compute Node (V).

We adopted the latest off-the-shelf hardware which can be

acquired at the procurement to construct ABCI, and then

combine them so that the best performance can be achieved

for machine learning tasks. Although devices used in these

two types of compute nodes are different, we designed both

nodes symmetric in terms of CPU, GPU and InfiniBand

HCA so that there was no load imbalance in data transfer

within a node.

The last type of compute node is Memory-Intensive Node

each of which equipped with 2.6 TiB large capacity memory.

The memory consists from 768 GiB traditional DDR mem-

ories and two Intel Optane SSDs. We enabled Intel Memory

Drive Technology (IMDT) to transparently use the SSDs as

a part of memory. This type of compute node was intro-

duced for pre/post processing of large amount of training

data.

As other types of compute nodes, ABCI 2.0 has Inter-

active Nodes and Gateway Nodes. Interactive Nodes are

servers to log in and used for compiling programs and sub-

mitting jobs to the above three types of nodes. Gateway

Nodes are NAT servers located between compute nodes and

the Internet. As the three major compute nodes are not di-

rectly connected to the Internet, their access to the Internet

is relayed by Gateway Nodes.

Peak performance of ABCI 2.0 is 56.5 PFLOPS in double

precision, 225 PFLOPS in single precision and 850 PFLOPS

in half precision. The performance of Compute Node (A)

and Compute Node (V) largely contribute to the entire

ABIC 2.0 performance.

2.2 Storage

ABCI 2.0 has two types of storage systems. One is Shared

File Systems which are mounded by compute nodes de-

scribed in Sec. 2.1. Data used and generated by compu-

tation run on ABCI 2.0 is basically stored in this storage

area. The other is an Amazon S3 compatible object stor-

age system named as ABCI Cloud Storage. ABCI Cloud

Storage supports several security features, such as end-to-

end in-transit data encryption, at-rest data encryption and

AWS IAM compatible access control. It can be used for

publishing research deliverables, such as generated data and

trained models, and deliverables can be cataloged on ABCI

Datasets [5]. The detail about ABCI Cloud Storage is de-

scribed in our previous research paper [6].

Shared File Systems consist of three types of area for dif-

ferent objectives. The first is storage area for system data

and users’ home. We assumed that large capacity was not

required on this storage because system data would not be

so large and we set quota on users’ home. In contrast, we

assumed that high random I/O throughput was required for

accommodating frequent installing / loading user-installed

libraries on / from home area. Under these assumptions,

we constructed this storage as a 1 PByte Lustre file system

using SSDs for both meta data and data storage.

The second is storage area for storing project data. A

project of ABCI 2.0 is a research project where several re-

searchers and developers who have the same goals are in-

volved. ABCI offers a directory for each project on the

project area. In contrast to data in home where only owner

can access, data in a project directory can be shared among

the project members. We assumed that large capacity is

highly demanded for project storage to store large amount

of projects’ deliverables. As a result, we constructed several

file systems using Lustre and IBM Spectrum Scale whose to-

tal capacity is 32.4 PB. *1 10.8 PBytes of HDD-based storage

added as ABCI 2.0 (DDN ES7990X) is used for this purpose.

To overcome the I/O performance problems, we designed

throughputs of meta data and data of the new storage were

higher than the existing storages.

The last is a high-speed storage area, which is newly in-

troduced as a part of ABCI 2.0. This area is constructed

as a 0.3 PB Lustre file system using SSDs for both meta

data and data storage. This area is expected to be used as

a temporal directory for grand challenge applications.

2.3 Network

ABCI 2.0 uses InfiniBand for communication between

compute nodes. There are two InfiniBand networks: one

is for Compute Node (A) and the other is for other compute

nodes. They are connected using 40 links of InfiniBand EDR

between spine switches of both networks. Here, we call the

former Compute Network (A) and the later Compute Net-

*1 At the time of writing this paper, we are migrating file system
from IBM Spectrum Scale to Lustre.
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Compute Node (V) x 1088
� CPU / Intel Xeon Gold 6148 x 2
� GPU / NVIDIA V100 SXM2 x 4
� Memory / 384GiB
� NVMe SSD / Intel SSD DC P4600 
1.6TB x 1

� Interconnect / InfiniBand EDR x 2

Compute Node (A) x 120
� CPU / Intel Xeon Platinum 8360Y
x 2

� GPU / NVIDIA A100 SXM4 x 8
� Memory / 512GiB
� NVMe SSD / Intel SSD DC P4610 
1.6TB x 2

� Interconnect / InfiniBand HDR x 4

Memory-Intensive Node x 10
� CPU / Intel Xeon 6132 x 2
� Memory / 768GiB
� SSD / Intel SSD DC S4500 1.9TB x 1
� Optane SSD / Intel Optane SSD 
P4800X 1.5TB x 2

� Interconnect / InfiniBand EDR x 2

DDN SFA14KX
(w/ SS8462 Enclosure x 10) x 3
� 12TB NL-SAS HDD x 2400
� 3.84TB SAS SSD x 216

DDN SFA14KX
(w/ SS9012 Enclosure x 5) x 1
� 7.68TB SAS SSD x 216

DDN ES7990X
(w/ SS9012 Enclosure x 2) x 3
� 18TB NL-SAS HDD x 801

DDN ES400NVX x 3
� 7.68TB NVM2 SSD x 69

HPE Apollo 4510 Gen10 x 24
� 12TB SATA HDD x 1440

Interactive Nodes / Gateway Nodes

Computing Resources Shared File Systems

ABCI Cloud Storage

Compute Network
(InfiniBand EDR/HDR)

Service Network
(10GbE)

SINET5

Firewall

HOME / System Storage

Project Storage

High Speed Storage

Fig. 1: Architecture of ABCI 2.0
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Fig. 3: Block diagram of Compute Node (V)

work (V), and we explain the later first.

Compute Network (V) is a two-level fat tree topology net-

work in which fat trees are organized within racks and inter-

racks. There are 34 nodes in each rack, and nodes are con-

nected to a fat tree network with full-bisection bandwidth

within each rack. There are 32 racks, and they are also con-

nected to a fat tree network, however, bandwidth between

each rack and spine switches is one third of aggregated band-

width within a rack. In this network architecture, contention

can occur when all 34 nodes in a rack simultaneously com-

municate with nodes in different racks. However, we adopted

this architecture to increase cost effectiveness. The reason is

that we could expect that degree of parallelism of machine

learning tasks were low as previous work reported [7,8]. Ac-

tually, our analysis results of ABCI machine learning jobs

showed that multi node jobs are only 2.4% [9].

Compute Network (A) also adopts a two-level fat tree

topology. However, it is different from Compute Network

(V) in the following points.

• All 120 Compute Node (A) are connected with full-

bisection bandwidth.

• There are 5 nodes in a rack, and there are 24 racks in to-

tal. The first level fat tree is constructed using 4 racks,

that is 20 nodes (We call the group as node group). A

node in a node group can reach to other nodes in the

same group by single hop.

• The second level fat tree is constructed for inter node

group communication. Bandwidth between a node

group and spine switches is equals to the aggregated

bandwidth of nodes in a node group. There are three

hops on a path between nodes in different node groups.

Compute Network (A) supports Mellanox SHARP to accel-

erate collective communications.

As the other network, ABCI 2.0 has Service Network.

Most servers consist of ABCI 2.0 are isolated from the In-

ternet. Only servers that has to be exposed to the Internet

for serving their services are connected to this network.
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3. ABCI 2.0 Software

We describe software for main compute resources, that is

Compute Node (A) and Compute Node (V). Although some

minor versions of software used on them are different, users

can use both types of nodes in the same way.

3.1 System Software

System software for Compute Node (A) and Compute

Node (V) is different because the former was installed three

years after the latter was installed. The largest difference

is OS (operating system). We intended to use CentOS 8

for both types of compute nodes, however, the end of life of

CentOS 8 was announced [10]. As a result, we decided to use

OS as follows: CentOS 7.5 for Compute Node (V) to sustain

the same environment as previous, and Red Hat Enterprise

Linux 8.2 for Compute Node (A). Users have to compile

their programs for each compute node because types and

versions of OS and libraries are different. As we describe in

Sec. 3.3, ABCI 2.0 supports Singularity container platform,

and it has potential to absorb differences in system software

of two types of compute nodes.

3.2 Resource Management

To achieve high performance and high utilization, ABCI

2.0 uses a batch job scheduling system for resource manage-

ment. To use ABCI, user describes a job script that calls

programs he wants to run and submit it to the scheduler as

a job. When resources the job requests are available, the

scheduler starts the job. ABCI 2.0 uses Altair Grid En-

gine as the job scheduler and adopts first-come-first-serve

and backfill [11] as its scheduling policy. Tasks for machine

learning may be executed in many forms: interactive exe-

cution, batch execution, bag-of-tasks execution by changing

training parameters. In order to support these execution

forms, the scheduler supports interactive job, batch job, ar-

ray job and advance resource reservation.

Each compute node in ABCI 2.0 has four or eight GPUs,

however, machine learning tasks may use only 1 GPU or may

not use GPUs. To efficiently schedule such jobs and increase

utilization, ABCI 2.0 allocates the same compute node to

multiple jobs without resource oversubscription. When user

submits a job to ABCI, he has to specify one of resource

types described in Table. 1. When a resource type whose

amount of resource is smaller than a compute node is spec-

ified, the scheduler allocation partial resources of a node to

the job by dynamically separating the node using cgroups

and disk quota. When there are idle resources in a node and

there are jobs whose resource requirements can fit in the idle

resources, the job is scheduled to the node and share the

node with other jobs.

For jobs that use multiple nodes, communication perfor-

mance can be changed depending on the use of second-level

fat tree, as we described in Sec. 2.3. To maximize com-

munication performance for multi node jobs, the scheduler

allocates nodes to jobs by using number of nodes within a

full bisection bandwidth group as a threshold as follows.

Compute Node (V) If number of requested nodes is

less than or equals to 34, unused nodes in a rack are

assigned to the job. If the number is larger than 34,

any unused nodes are assigned to the job.

Compute Node (A) If number of requested nodes is

less than or equals to 20, unused nodes in a node group

assigned to the job. If the number is larger than 20, any

unused nodes are assigned to the job.

In addition to the node allocation policy, multi node jobs

can enjoy a feature of temporal shared file system using lo-

cal SSDs of allocated nodes. The feature uses BeeOND,

BeeGFS on Demand, and performance of the created file

system is not affected by I/O of other jobs and is propor-

tional to the number of allocated nodes.

3.3 Development Environment

In addition to software provided by the OS distribution,

ABCI 2.0 provides various software for development (here-

after, we call it ABCI Software). ABCI Software includes

compilers and interpreters (e.g. Java, Python, R), GPU

development tools (e.g. CUDA, cuDNN, NCCL) and MPI

libraries. These ABCI Software is provided using Environ-

ment Modules [12] to enable users easily use various kinds

and versions of software. Environment Modules on ABCI 2.0

is configured so that appropriate libraries are loaded depend-

ing on the loaded libraries. For example, cuDNN depends

on CUDA version, and Environment Modules on ABCI 2.0

loads cuDNN that depends on an already loaded version of

CUDA. The following example loads cuDNN that depends

on CUDA 10.2 as CUDA 10.2 was already loaded.

$ module load cuda/10.2

$ module load cudnn/8.2

The next example loads cuDNN that depends on CUDA

11.0.

$ module load cuda/11.0

$ module load cudnn/8.2

In case of OpenMPI, if CUDA was already loaded before

loading OpenMPI, a CUDA-aware version of OpenMPI that

uses the CUDA is loaded.

Users can construct their development environments on

ABCI 2.0 by loading ABCI Software using Environment

Modules and then installing necessary libraries by their own

to execute their programs. Python libraries for machine

learning can be installed by Anaconda, pip or similar tools.

Libraries for high performance computing can be installed

using Spack [13,14].

ABCI 2.0 supports running Linux containers using Sin-

gularity [15]. Singularity enables packaging a development

environment as a container file which can be used on any

Linux systems including ABCI 2.0. Singularity also sup-

ports running containers compatible with Docker on ABCI

2.0. As it supports running Docker container images as they

are, ABCI 2.0 users do not have to care about container im-
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Table 1: ABCI 2.0 Resource Types

Resource Type Node Type #CPU cores #GPUs
Memory

(GiB)
Local SSD

(GiB)
Max Resources / Job

V Full Compute Node (V) 40 4 360 1440 512
G.large Compute Node (V) 20 4 240 720 1
G.small Compute Node (V) 5 1 60 180 1
C.large Compute Node (V) 20 0 120 720 1
C.small Compute Node (V) 5 0 30 180 1
A Full Compute Node (A) 72 8 480 3440 64

A G.small Compute Node (A) 9 1 60 390 1

Compute Nodes

Facility

Project Storage

ABCI
Cloud Storage

Prometheus

Thanos Store
For 2019 DB

Current DB

2019 DB
2020 DB Thanos Store

For 2020 DB

Thanos
Query Analysis

Visualize

Separate 
old data

Fig. 4: Resource Monitoring for Long Term Storage

age format. However, if a Docker container is provided only

in Dockerfile format, users have to convert it to a Singu-

larity recipe before building a container image. An open

source software, named Singularity Python [16], simplifies

the conversion.

3.4 Monitoring System

ABCI 2.0 has two monitoring systems. One is Re-

source Monitoring which monitors and collects metrics from

servers and services that construct ABCI. The other is Us-

age Monitoring which collects information about how users

use ABCI 2.0.

We use Zabbix and Prometheus [17] for Resource Monitor-

ing. Zabbix monitors all ABCI 2.0 components and mainly

used for alerting. Incidents recognized as faults are manu-

ally recorded in a fault history database. However, Zabbix

is not configured to store raw metrics for long term for a

use of later analyses. We use a Prometheus based system

for this purpose. To create a database that stores operation

status of ABCI 2.0, Prometheus is configured to collect met-

rics from compute nodes and power and cooling facilities in

one minute interval. Most of the metrics come from com-

pute nodes. Specifically, Prometheus collects metrics about

CPU cores, GPUs and various sensors from a compute node,

which results in 1393 points for a Compute Node (V) and

2411 points for a Compute Node (A). That means there

are more than 1.5 million metrics collected every minute.

As the amount of annual data exceeds 1.5 TB, we sepa-

rate the database as depicted in Fig. 4. Only latest metrics

of compute nodes and metrics of facilities are recorded in

Prometheus. Old metrics of compute nodes are removed

from Prometheus and archived in ABCI Cloud Storage. To

use the metrics in ABCI Cloud Storage as the same interface

with Prometheus, we use Thanos [18].

For the purpose of Usage Monitoring, we collect two types

of data. One is attributes of all jobs submitted to the

Table 2: Software Used for Performance Measurement

Software
Compute Node Compute Node

(A) (V)
OS RHEL 8.2 CentOS 7.5
gcc 8.3.1 7.4.0
Singularity Pro 3.7 ←
CUDA 11.2.2 ←
GDRCopy 2.1 2.0
OpenMPI 4.0.5 ←
UCX 1.9.0 1.7.0
NCCL 2.8.4-1 ←
Horovod 0.22.0 ←
OSU

5.7 ←
Micro-Benchmarks
NCCL Tests Commit:0b30de5 ←
fio 3.26 ←
NVIDIA PyTorch

21.04-py3 ←
Container Image

scheduler which include followings: User ID, Project ID,

Resource Type, Amount of Resources, Request Walltime,

Actual Walltime, Used CPU Core IDs, Used GPU IDs, etc.

The other is ABCI Software used by each job. The log sys-

tem logs all ”module load”ed ABCI Software with its name

and version for each job and then associates them with job

attributes. We analyzed usage of ABCI 2.0 by using these

information [9]. We feed the results of our analyses back to

operation as new job scheduling parameter settings or kind

and versions of software provided as ABCI Software.

4. Performance Evaluation

We evaluated performance of both compute nodes of

ABCI 2.0 to compare their performance. We evaluated com-

putation and communication where GPU is involved. As our

previous work showed [9], most of ABCI jobs were single

node or single GPU jobs. As a result, we focused on show-

ing performance of general use of ABCI 2.0 and evaluated

using small number of nodes. Specifically, the maximum

number of nodes used in the evaluation is limited by num-

ber of nodes in the first level of the two-level fat tree: 16

nodes for Compute Node (A) and 32 nodes for Compute

Node (V). Table. 2 shows software and versions used in the

evaluation. We used software already installed in ABCI 2.0

or published on the Internet. We plan to publish procedures

and scripts used for the evaluation and all results.

4.1 Intra-Node GPU Point-to-Point Communica-

tion

We measured bandwidth of GPU mem-

ory access and inter-GPU communication using

p2pBandwidthLatencyTest attached to CUDA. We
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Fig. 5: Bidirectional Bandwidth of Inter-GPU Communica-

tion

selected 10 nodes from each node type to measure per-

formance. The average bandwidth is shown in Fig. 5.

Compute Node (A) achieves 1.66 times higher memory

bandwidth and 4 to 5 times higher inter-GPU communi-

cation bandwidth against Compute Node (V). In contrast,

Compute Node (V) achieved higher ratios against the peak

performance. Specifically, the peak memory bandwidth of

Compute Node (A) is 1,555 GB/s and that of Compute

Node (V) is 900 GB/s. From the evaluation results, we

can find that the performance ratio against peak is 83%

for Compute Node (A) and 86% for Compute Node (V). In

terms of inter-GPU communication, peak performance of

Compute Node (A) is 600 GB/s and that of Compute Node

(V) is 100 GB/s. so, the peak performance ratios are 68 to

86% for Compute Node (A) and 97% for Compute Node

(V).

4.2 Inter-Node GPU Point-to-Point Communica-

tion

We measured bandwidth and latency between two nodes

by changing number of communicating GPU pairs and mes-

sage size. We used a CUDA-aware OpenMPI for MPI library

and used osu_mbw_mr of OSU Micro-Benchmarks [19,20] to

transfer between inter-GPU memories.

The results of bandwidth are shown in Fig. 6a. When we

compare performance by fixing the number of GPU pairs,

Compute Node (A) and (V) have the similar performance

until 256 Bytes messages. Compute Node (V) had higher ra-
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Fig. 6: Inter-Node GPU Point-to-Point Communication

tios against peak performance. Compute Node (A) has 100

GB/s as its peak bandwidth and its maximum measured

bandwidth was 39.02 GB/s; the ratio is 39%. In contrast,

Compute Node (V) has 25 GB/s as its peak bandwidth and

its maximum bandwidth was 20.48 GB/s; the ratio is 82%.

Fig. 6b shows the latency results. Compute Node (V) has

smaller latency than Compute Node (A) until 2 KBytes mes-

sages.

4.3 Inter-GPU Allreduce

We measured Allreduce between GPUs using NCCL. We

used all_reduce_perf from NCCL Tests [21] as the bench-

mark program. Fig. 7a shows the performance using a node.

To compare performance using the same number of GPUs,

we also show results using 4 GPUs for Compute Node (A).

We can see the Compute Node (V) is superior to Compute

Node (A) if message size is less than 256 KBytes. Fig. 7b

shows the performance using multiple nodes. There are no

performance differences between node types when message

sizes are less than 1 KBytes, however, Compute Node (A)

outperforms Compute Node (V) when message size becomes

larger. The expected reasons are not only performance im-

provements of communication and memory access perfor-

mance, but also that Compute Node (V) need twice count

of nodes against Compute Node (A) to use the same number

of GPUs.

4.4 Single Node Training

To measure performance of training on a single node,
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Fig. 7: Inter-GPU Allreduce

we used a training program of ResNet-50 [22] attached to

NVIDIA’s DeepLearningExamples [23] to measure count of

processed images per second. We used a container image

published on NVIDIA’S NGC Catalog that includes Py-

Torch optimized for NVIDIA GPUs. The image also in-

cludes the above training program so that we can get re-

sults by just running a Singularity container using the image

on ABCI 2.0. The program was executed using a standard

benchmark parameter set, however, we changed batch sizes

per GPU as follows depending on amount of GPU memory:

256 for Compute Node (A) and 128 for Compute Node (V).

We used ImageNet ILSVRC2012 [24] dataset as input and

used local SSD of compute node to store data.

Fig. 8 shows the results. Compute Node (A) achieved 2.13

times higher performance than Compute Node (V) when the

same number of GPUs are used. In terms of scalability, per-

formances of both node types almost linearly scale against

number of GPUs. We show that this performance is not

limited by I/O performance of local SSDs as follows. As the

average image size of ILSVRC2012 dataset is 114 KBytes,

amount of I/O per second of Compute Node (A) and (V)

can be calculated as 340 MBytes and 160 MBytes in case

of 4 GPUs. In contrast, random read performance of local

SSD measured by fio [25] was 1,650 MB/s and 942 MB/s for

Compute Node (A) and (V), which were large enough.

By comparing the whole node performance, we can see

that Compute Node (A) has 4.25 times higher performance

than Compute Node (V). If we do a simple math, adding 120

Compute Node (A) is equals to adding 510 Compute Node
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Fig. 8: Single Node Training of ResNet50

Table 3: Speedup of Node (A) against Node (V)

(a) By Changing # of Nodes

#Nodes 1 2 4 8 16
Speedup 4.10 3.89 3.68 3.56 3.09

(b) By Changing # of GPUs

#GPUs 8 16 32 64 128
Speedup 2.10 2.00 1.96 1.82 1.64

(V) for this task. As most jobs run on ABCI uses equal

to or less than 1 node, adding nodes directly contributes

to improve task processing throughput. We can extrapolate

the throughput increase ratio of this task is 1.46 ( 1088+510
1088 ).

We expect that ABCI 2.0 also increases throughput for other

tasks by equivalent or higher level.

4.5 Multi Node Training

To evaluate training performance using multiple nodes, we

used PyTorch and Horovod [26,27] to measure training time

of ResNet-50 in data parallel. We used a ResNet-50 model

training example program of Horovod as a benchmark pro-

gram and run it in a Singularity container. We created a

container image where Horovod is installed using the im-

age described in Sec. 4.5 as a base image because the image

does not include Horovod. We used a standard parameter

set, such as 90 epochs, except for batch size per GPU: 256

for Compute Node (A) and 96 for Compute Node (V). We

used ImageNet ILSVRC2012 dataset as input and used local

SSD of compute node to store data.

Fig. 9 shows training times and Table. 3 shows speedup

of Compute Node (A) against Compute Node (V). We can

see from Table. 3a that Compute Node (A) has 3.1 to 4.1

times higher performance than Compute Node (V) in terms

of node performance. When we compare performance using

the same number of GPUs, the performance improvement

of Compute Node (A) is 1.6 to 2.1 as shown in Table. 3b;

it is a similar trend with Sec. 4.4. Table. 4 shows scalabil-

ity. Compute Node (V) has better scalability than Compute

Node (A).

5. Summary

From the start of its operation on August 2018, ABCI is

used in basic AI research and applied research areas that

7ⓒ 2021 Information Processing Society of Japan

Vol.2021-HPC-180 No.18
2021/7/21



IPSJ SIG Technical Report

1 2 4 8 16 32
# of Nodes

0

5

10

15

20

25
Ti

me
 (
ho

ur
s)

5.90

3.18
1.73 0.95 0.56

24.22

12.39

6.36

3.40
1.73 0.92

Node(A)
Node(V)

Fig. 9: Multi Node Training of ResNet50

Table 4: Relative Performance Gain

(a) Against #Node=1

#Nodes 1 2 4 8 16 32
Node (A) 1.00 1.86 3.41 6.19 10.52 -
Node (V) 1.00 1.96 3.81 7.13 13.97 26.26

(b) Against #GPU=8

#GPUs 8 16 32 64 128
Node (A) 1.00 1.86 3.41 6.19 10.52
Node (V) 1.00 1.95 3.65 7.14 13.43

use AI. Because of a lack of computing and storage ca-

pacity caused by increased demands, we added 120 com-

pute nodes equipped with eight NVIDIA A100 GPUs and

11 PBytes storage to ABCI and started its operation as

ABCI 2.0 from May 2021. To compare performance of exist-

ing and newly added compute nodes, we conducted micro-

benchmarks focusing on measuring communication perfor-

mance and benchmarks to train deep learning models. As a

result, we confirmed that the new node outperformed exist-

ing node, and new node had up to 4.1 times higher perfor-

mance than existing node when training ResNet-50 model

using PyTorch. We can extrapolate that ABCI 2.0 has 1.46

times higher throughput for processing this task than ABCI,

and expect that such a throughput gain can be observed in

other AI tasks. We hope that ABCI 2.0 will greatly con-

tribute to developments of future AI technologies.
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