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Abstract: This research work is about using Transformer models, which are first introduced in the paper ”Attention
is All You Need”, for a multimodal task, specifically image captioning. By treating it as an NLP translation task,
different Transformer models are evaluated and optimised. Through the analysis of the data, model and distributed
communication pipeline, bottlenecks are identified and performance increases in regards to accuracy and speed are
shown across multiple accelerators.
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1. Introduction
Image captioning is a research area combining computer vision

and natural language processing (NLP), requiring a good under-
standing of objects, locations and their interaction for image pro-
cessing. To generate fitting sentences, good syntactic and seman-
tic understanding of language is necessary, making it a challeng-
ing task for machine learning algorithms. In contrast to humans,
computers are unable to compress dense visual information into
language using attention to focus on important information, so
traditionally deep neural networks used convolutional architec-
tures to extract and distill features of general objects, but in recent
works many modern algorithms based on Transformers [1], [2]
are emerging in NLP and computer vision by leveraging the at-
tention mechanism with very promising results. In this paper we
incorporate different attention algorithms to the image caption-
ing problem, showcasing their performance in a chemical context
under computational restrictions.

In chemistry, one image captioning problem is generating
molecular representations, also known as Optical Chemical
Structure Recognition (OCSR) [3]. These representations are dif-
ferent ways to indicate information of molecules either in text or
image form. It can include the elements, number of atoms and
structural bond information of how they are interconnected. In
this work we evaluate different architectures on a Kaggle dataset
as part of a competition*1, where the chemical formula is repre-
sented as an image, with the goal to generate the International
Chemical Identifier (InChI) [4] as text as in Fig. 1.

While there are a variety of architectural possibilities, the focus
lies on encoder-decoder structures [5] with popular deep-learning
techniques like convolution neural networks (CNN) [6], recur-
rent neural networks (RNN) [7] and Transformers. Especially

1 Hochschule für Technik und Wirtschaft Berlin - University of Applied
Sciences

2 Fujitsu Limited Japan
†1 Presently with Fujitsu Limited Japan as an intern
a) zimmermann research@mailbox.org
*1 https://www.kaggle.com/c/bms-molecular-translation/

OH

N
H

NH2

InChI=1S/

C10H12N2O

/c11-4-3-7-6-12-10-2-1-8(13)5-9(7)10

/h1-2,5-6,12-13H,3-4,11H2

Input image

Output

Image 
captioning 

model

Fig. 1 Example input image (top) and expected
generated output (bottom)

self-attention-based architectures, in particular Transformers [1],
became a widespread choice in NLP, with many additional re-
search focussed on improving the base architecture. While used
extensively for sequence-to-sequence [8] problems like transla-
tion, computer vision tasks still primarily use convolutional ar-
chitectures.

In this work we compare three different architectures; one
approach with Bahdanau attention [9] as in [10], one hybrid
approach with CNNs and multi-head attention and one purely
attention-based Transformer approach shown in Fig. 2 and fur-
ther explained in section 4. We show that with each architecture
comparable results can be achieved with limited training, but they
differ greatly, when comparing preprocessing and training and in-
ference speed.
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2. Related works
The Show, Attend and Tell model [10] introduced the encoder-

decoder architecture from [8] with attention [9] to image caption-
ing and achieved state of the art (SOTA) results in three datasets
(Flickr8k, Flickr30k and MS COCO), providing a good baseline
algorithm. They apply visual attention in the decoder to specify
which extracted features of the image correspond most to each
generated word. By visualising how the learned attention con-
nects words to part of images, they demonstrate that visual atten-
tion corresponds very well to human intuition.

Following the success of the Transformer by [1] in NLP, the
encoder-decoder architecture [5] and multi-head attention [1]
became increasingly popular, showing SOTA results in various
sequence-to-sequence tasks like machine translation, question an-
swering or text summarisation. Similar to visual attention in im-
ages, multi-head attention helps in focussing on relevant parts
of input sequences and capturing long-term dependencies in text
[11]. Additionally, instead of using a sequential training regime
like RNNs, Transformers are able to achieve significant paral-
lelisation, resulting in faster training speeds for shorter sequence
lengths. To cope with the limitations of complexity O(N2) for
large sequences, multiple optimised models were proposed [12],
introducing solutions like viewing attention through kernelization
[13], [14] or limiting attention to predefined patterns [15], [16]
with the goal of reducing memory and computational complex-
ity.

With the success in NLP came an increasing interest of Trans-
former models applied to computer vision tasks, like image pro-
cessing [17], image recognition [18] or object detection [19].
While early approaches applied attention to CNN extracted fea-
tures [20], the Vision Transformer (ViT) [18] introduced image
patching as a mechanism to directly process image information
with attention. This showed promising results on a variety of im-

age classification benchmarks e.g. [21], [22], when pre-trained
on large datasets.

In chemistry, early on OCSR were implemented with rule-
based approaches [23] or combining image segmentation with
aforementioned one [24] to identify different bonds and atoms.
Although the latter one used machine vision systems, it still re-
quires specific domain expertise on molecular structures and is
time consuming to apply. Chemception [25] showed, that deep-
learning models are able to match multi-layer perceptron (MLP)
deep neural networks trained on engineered features. Only re-
cently have such machine-learning OCSR methods been pub-
lished, showing promising results and outperforming non deep-
learning ones [3]. A model proposed by [26] to predict SMILES
[27], a notation for encoding molecular structures, achieved good
accuracy on their Indigo dataset, which is similar to the one used
in our work in section 5.1.

By starting with aforementioned Show, Attend and Tell model
for image captioning, we evaluate different model architectures
in constrained computational environments, building on the great
success of Transformer architectures to show accuracy and effi-
ciency of different attention mechanisms.

3. Kaggle environment
Kaggle Inc. is an online community for data scientists and ma-

chine learning practitioners by Google LLC, with the primary fo-
cus on holding competitions and furthering discussions between
users. These competitions are most often held by external com-
panies, which provide a task description, the dataset and prize
money. To be able to develop without any self-investment, Kag-
gle Inc. provides all their users access to Jupyter kernels equipped
with CPU, single GPU or a single tensor processing unit (TPU) v3
(8 cores), the latter two limited to certain hour limits per week. A
competition runs for a fixed time duration, in which participants
can submit predictions for the unknown test set to be evaluated
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Table 1 Evaluated models with parameters

Pure Transformer CNN+RNN Transformer hybrid
ViT small ViT base CNN+RNN CNN+Transformer

Variant A B C D E F G G* H I J J* K K* L
Pre-trained X X X X X X X
Denoising X X X X
Augmentation X X X X X X X X X
Denoised test set X X X
Val score 70.88 74.96 71.82 2.51 2.42 2.51 2.20 2.20 2.22 2.46 11.58 11.58 2.83 2.83 2.10
LB score 5.97 6.36 3.91 4.55 3.07 3.36 3.32 9.76 9.92 5.11 3.05 4.10
A,B,C : training stopped after 2 epochs due to no improvement
Val score : Levenshtein distance on validation set
LB score : leaderboard, Levenshtein distance on unknown test set

and are then placed into a leaderboard. Discussions and sharing
of ideas in text or code form is proactively supported.

4. Model architectures
We evaluated three different model architectures in this work,

described in the following sections and shown in Fig. 2. Each
model has an encoder, extracting features from the input images,
and a decoder, predicting the InChI-formula in an autoregressive
way.

4.1 CNN-RNN
The first model has a CNN as the encoder and uses a RNN

for decoding. The encoder is the EfficientNetV2-M model [28],
which is also used as CNN for all other models. From the im-
age x ∈ RC×H×W , the extracted image features are reshaped to
x ∈ RS×F , where C denotes the channels and H, W the height
and width. S defines the combined sequence length of H × W
and F the extracted features. The decoder first embeds the input
tokens and encoder output to the specified dimensions and then
applies Bahdanau attention [9]. After going through an LSTM-
Cell it outputs the single next token and the new hidden states.
This image captioning architecture was first proposed in [10].

4.2 Transformer hybrid
The second models adds the standard Transformer encoder to

the CNN and replaces the RNN with the Transformer decoder. To
keep the parameter size around the same we substitute the CNN
to the smaller EfficientNetV2-S. It follows the procedure of the
first model for reshaping the features, but additionally a fixed 2D
sinusoidal position encoding is added. This closely follows the
original Transformer, adapted for images. As decoder a mod-
ified Transformer decoder is used. Because the computational
intensive autoregressive decoding limits the inference speed, two
changes, explained in detail in section 5.5, are made. First, we
add a cache for the previously computed attention scores of to-
kens. And secondly, multi-query attention as in [29], where key
and value matrices (K, V) are shared for each attention head.
From here on we refer to this as multi-query decoder.

4.3 Pure Transformer
The third model uses attention exclusively and implements the

Vision Transformer (ViT) as in [18], by extracting images into
patches of size x ∈ RN×(P2×C), where N is the number of patches,
P the square patch size and C the number of image channels.

These patches are then fed into the encoder. The original classi-
fication head is removed. The decoder has the same architecture
as in the Transformer hybrid.

5. Experiments
We evaluate the different learning capabilities for the three

mentioned architectures. To understand and evaluate the influ-
ence of augmentation, model size, input and efficiency, we train
four models on several different parameters and input data as
shown in Table 1. The four models are ViT small and ViT base
for the pure Transformer architecture, CNN+Transformer for the
Transformer hybrid architecture and a CNN+RNN.

5.1 Dataset
The dataset*2 is provided on Kaggle by Bristol-Myers Squibb

[30] and consists of ∼4 million images in varying sizes. These
are synthetically generated and additionally preprocessed to in-
clude noise, missing atom bonds and rotation. Compared to the
training set, the test set images include more noise. For efficient
data reading the single images structured in folders are converted
to either Tensorflow’s TFRecords format or tar-POSIX archives
for PyTorch. The images get resized and padded to a fixed size
(H×W) of 299×458 pixels, the mean plus an added constant cal-
culated from the first few thousand images. Two versions of the
dataset are created, one has all the noise removed and one remains
as is. As this is an NLP task, where we generate a sequence of
tokens, the Levenshtein distance [31] is used as evaluation met-
ric. It describes the number of token edits (insertion, deletion,
substitution) to change one sequence string into another. For the
tokenization of the InchI string, we remove the version identifier,
split all possible letters for elements, keep numbers in tact, e.g.
(15 instead of 1 5), and define fixed tokens like /c. Because of
hardware limitations, the InchI length is fixed to 250 tokens and
post-padding is applied. 50k elements are then set aside for vali-
dation purposes.

5.2 Model variants
We configured each model with hyper-parameters as in Ta-

ble 2. The parameter count for the encoder is based on the small-
est EfficientNetV2 model. For the decoder we used the multi-
query decoder with four layers and eight heads as baseline, modi-
fying the hidden size as required by the encoder. To see the effect
of different model sizes, we implement ViT in two variants; ViT

*2 https://www.kaggle.com/c/bms-molecular-translation/
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Table 2 Details of trained models

Model architecture Encoder/Decoder Model Layers Hidden size MLP size Heads
Pure Transformer Encoder ViT base 12 768 3072 12
Pure Transformer Encoder ViT small 8 768 3072 8
Pure Transformer Decoder Multi-query decoder 4 768 2048 8
Transformer hybrid Encoder CNN+Transformer 5 768 2048 8
Transformer hybrid Decoder Multi-query decoder 4 768 2048 8

Attention units LSTM hidden state dimension
CNN+RNN Decoder RNN with LSTM-Cell 256 1024
Layers : number of layers
Hidden size : dimension of each layer, also known as model dimension

small and ViT base.

5.3 Training
We train all models using Adam optimizer [32] with β1 = 0.9,

β2 = 0.999 and the largest possible batch size for each acceler-
ator. We use a linear warmup for ½ epoch, followed by cosine
annealing scheduling as in [33]. The maximum learning rate is
set to 1 × 10−3 for 8 accelerators and each model is trained for 9
epochs. Although the CNN could be trained with non-square im-
age sizes as described in section 5.1, they get resized to a square
size of 384 × 384 pixels to have the same input size as the avail-
able pre-trained Vision Transformers. Depending on the training
run, we also do three different augmentation settings, consisting
of random rotation in 90° steps, adding salt-and-pepper noise and
cropping the pictures with border distances between 5 to 20. The
validation set gets evaluated twice per epoch.

5.4 Metrics
To prevent overfitting we use categorical cross-entropy with

label smoothing as the loss function with a value of 0.1 for
Transformer-based architectures, similar to the original [1]. The
loss calculation also masks padding tokens. For validation and
evaluation we calculate the Levenshtein distance as the competi-
tion only relies on this metric.

5.5 Optimisations
When running inference for the large test set of ∼1.6 million

images, we noticed that autoregressive prediction of the Trans-
former was not fast enough for sequence predictions of up to 250
tokens in a manageable time frame. As we want to stay as close
as possible to the original Transformer architecture we apply two
small modifications other than decoupling encoder and decoder.

First is the addition of a cache for attention scores of all previ-
ous tokens, so that the complexity for inferencing goes down from
O(MN2 + N3), where O(MN) is for the encoder-decoder attention
between input of size M and current output N. The complex-
ity O(N2) is for the decoder self-attention over the entire current
output. This increases to O(MN2) and O(N3) for N tokens to be
predicted. The resulting cache implementation reduces the com-
plexity to O(MN + N2) as only the last token attention has to be
calculated.

Secondly we replace multi-head attention by multi-query at-
tention [29]. Normally each head is defined as:

headi = Attention(QWQ
i ,KWK

i ,VWV
i )

In multi-query attention, instead of projecting K (keys) and V

(values) for each head, only a single set of keys and values is
used. This reduces memory and computational requirements.

5.6 Hardware
All training took place on either 8×V100 GPUs or one 8-core

TPUv2*3, both with 16-bit precision enabled for training and in-
ferencing.

6. Evaluation
When evaluating the three architectures, we can see that the

Levenshtein distance for the validation set is very close for each
architecture, differing only in the range of 0.1 − 0.4. Also note-
worthy is the reached score of ∼2 by every model in validation.
The big difference between test set and validation set score fur-
ther suggests that the test set contains harder to predict samples.
This can include unseen bond combinations or numbers, but also
a different image composition as for example the test set contains
more noise, making more generalisable models a priority.

While the ViT base encoder outperforms the smaller ver-
sion due to having 2× the parameter size, the experiments
show, that with a smaller training dataset and shorter training
time, the CNN+Transformer can even outperform larger vari-
ants. After only ½ epoch scores reach ∼30 with pre-trained ViT
and CNN+RNN, while the CNN+Transformer with pre-training
catches up shortly after, making them good few-shot learners.

6.1 Parameter comparison
To clarify the effect of external parameters we implement the

ViT small with a combination of different settings, showing the
result of each. Non pre-trained ViT perform as expected very
bad [18], and are not able to achieve any validation score under
70 with comparable training time. We noticed that although the
ViT produced InChI strings, with this amount of training data it
was unable learn the relevant patterns and overfitted heavily, inde-
pendent of preprocessing, augmentation or larger model size. In
contrast the convolutional inductive bias helped non pre-trained
CNN-based architectures to achieve good results, similar to pre-
trained variants, after ∼4 epochs. Preprocessing the data to re-
move noise seems to help immensely for the test set (LB), im-
proving the score by almost 2.5, therefore being the biggest fac-
tor other than pre-training. To alleviate the weakness to noise
and rotation, we added augmentation as described in section 5.3,
but it shows that the augmentation might be too strong for this
short training time, improving the score compared to variant E in

*3 on Google Colab: https://colab.research.google.com/
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Table 3 Comparison of trainable model parameters, total training time
and inference time

Parameters Training Inference
CNN+RNN 52.2/12.3 23h04min 23min
CNN+Transformer 48.7/23.5 10h43min 1h02min
ViT base 86.1/23.5 23h53min 2h40min
ViT small 48.3/23.5 15h27min 2h30min
Parameters : encoder/decoder, in million
CNN+RNN : uses 8-core TPUv2
Training time : time taken for 9 epochs

Table 4 Optimisation results for inferencing

Step time Batch size Speed-up
Base 33.61s 250
Cache 12.82s 250 2.62×
MQD 32.32s 250 1.04×
Cache+MQD 10.16s 250 3.31×
Base : original Transformer implementation
MQD : decoder with multi-query attention
Benchmarks done on one V100 GPU

Table 1, but falling behind by a big margin in regards to the de-
noised variant F. For multi-head attention-based variants, the best
scores show the positive effects of augmentation when predicting
on a denoised test set. For computer vision tasks like image clas-
sification it was shown, that deeper models with more parameters
achieve better accuracy [18] and this holds true for image cap-
tioning as well, with ViT base outperforming the smaller variant
by ∼1.5. Because the encoder only runs once for each prediction
batch (section 5.5), the total inference time only increases slightly
due to the larger encoder.

6.2 Efficiency
We also note the difference in training and inference time

of each architecture in Table 3, although they have around the
same parameter size. When comparing total training time for
nine epochs, the CNN+Transformer is the fastest architecture
for training and achieves good results thanks to the CNN fea-
ture extraction. Interestingly, even though the ViT base is larger,
it takes around the same time as the CNN+RNN to train and pro-
duces better results. While the CNN+RNN has the shortest de-
coding time for inferencing, the CNN+Transformer is the fastest
Transformer-based architecture. Additionally it was shown in
[34], that for CNN and RNN based architectures, TPUs are even
faster than a comparable setup of GPUs.

To compare the effect of our inference optimisations, we profile
each version and note the speed-ups in terms of step time with the
same architecture and batch size in Table 4. Especially caching
provides a big speed-up without any impact on model perfor-
mance. Multi-query attention on its own doesn’t provide much
speed-up, problem being either the relatively small decoder or
too small of a batch size as the authors noted [29]. It has a larger
effect when combined with caching, reaching a total speed-up of
∼3.3×, cutting inference time to just over 1h on 8 GPUs for the
fastest model.

7. Conclusion
In this work we presented an analysis of different deep-learning

architectures with attention on an image captioning task in a
chemical context. We showed that with restricted computing

power very good results on OCSR can be achieved with little to
no domain knowledge, showing promise for deep-learning archi-
tectures in other areas as well. The combination of CNNs and
Transformers allows for very fast and efficient training compared
to the CNN+RNN by leveraging the parallelizable architecture
of Transformers and inductive bias of CNNs. Although atten-
tion models are able to achieve good results on their own, our
experiments show, that additional processing for images, specifi-
cally denoising with augmentations, can be very beneficial. With
small modifications the Transformer can be speed-up even for
inference-heavy applications, making it very versatile all around.
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