
IPSJ SIG Technical Report

An effective parallel-in-time method for explicit
time-marching schemes

Yen-Chen Chen1,a) Kengo Nakajima1,b)

Abstract: Various parallel-in-time methods have been studied since the year 1964. Methods such
as parareal and multigrid reduction in time (MGRIT) have been shown to provide reasonable ac-
celeration to PDE implicit schemes. However, only a few have applied pure explicit schemes. This
research introduces a parallel-in-time method optimized for explicit schemes. The proposed method
constructs a multiple coarsening layer structure similar to MGRIT and solves the parareal algorithm
through coarse to fine layers and the relaxation method is defined to solve across the whole time
segment divided by the number of processors. This research conducts numerical experiments for a 1-
dimensional advection equation and a 2-dimensional simulation of compressible viscous flow around
a circular cylinder, using explicit schemes. The research result shows that the proposed parallel-in-
time method could improve the computation efficiency of explicit solvers compared to pure spatial
parallelization.

Keywords: PinT, parallel-in-time, parareal, explicit time-marching scheme

1. Introduction
Parallel computation plays a critical role in modern nu-

merical computations. With the rapid development of su-
percomputers, it has become common to apply thousands of
parallel threads for each problem. However, researchers soon
found out that there is a bottleneck to the maximum num-
ber of spatial parallelization for numerical PDE problems.
In order to exploit more parallel performance, researchers
developed parallel-in-time (PinT) methods that parallelize
the problem in the time dimension. PinT methods have
been developed for more than 50 years[2]. However, it was
not until recent years that PinT methods gained particular
attention. Although some PinT methods are proven to work
with explicit schemes, none has been sufficient to work with
a small number of cores to the best of our knowledge. The
present work proposes a method that targets the best par-
allel performance for parallel-in-time with explicit schemes.
This paper references two existing PinT method, parareal [3]
and multigrid reduction-in-time (MGRIT) method[4]. The
proposed PinT method in this work includes ideas from both
parareal and MGRIT.

Hyperbolic equations have been one of the most chal-
lenging categories for parallel-in-time methods, which most
methods show poor convergence. One of the most classic
and commonly studied hyperbolic equations is the advec-
tion equation. Some of the most recent papers[5], [6], [7]

1 The University of Tokyo, Bunkyo-ku, Tokyo 133–8656, Japan
a) yenchen chen@mist.i.u-tokyo.ac.jp
b) nakajima@cc.u-tokyo.ac.jp

has shown successful parallel-in-time results for advection
equation. Another challenging application for parallel-in-
time methods is Computational Fluid Dynamics (CFD).
CFD simulations involve multiple differential equations and
variables. The instability of CFD with coarse grids makes
it even harder to apply parallel-in-time methods. So far
the following works[7], [9], [10], [11], [15] have tried different
parallel-in-time methods on CFD. However, most work with
implicit schemes and not of which has very good efficiency.
In the present work, the proposed method is tested on two of
these challenging applications. First, a one-dimensional ad-
vection example is tested, and the performance is compared
with the MGRIT method using xbraid library[1]. Numerical
experiments in the result section choose a one-dimensional
advection equation and a two-dimensional explicit CFD sim-
ulation example.

As an overview, existing methods parareal and MGRIT
will be introduced in Section 2. Section 3 introduces the pro-
posed PinT method, which is based on ideas from parareal
and MGRIT. In Section 4, an one-dimensional advection
example and a two-dimensional CFD simulation applies
the proposed PinT method and compares to parallel-in-
space and xbraid library (only for advection example) per-
formances. Finally, Section 5 discusses how the proposed
method could achieve such performance and conclusions and
future works are summarized in Section 6.

2. Existing Methods

The present work proposes a method base on parareal and
multigrid reduction-in-time (MGRIT) method. Therefore,

1ⓒ 2021 Information Processing Society of Japan

Vol.2021-HPC-180 No.2
2021/7/20



IPSJ SIG Technical Report

before giving a detailed explanation of the proposed method,
this section provides a brief overview of the two methods.

2.1 Parareal Method
Parareal [3] is an iterative PinT method with two levels of

coarsening. Parareal is composed of two solvers. A fine F
solver provides the necessary precision, and a coarse solver
G provides the necessary speedup.

ykf,j = F(ykj , tj , tj+1), ykc,j = G(ykj , tj , tj+1)

First, the method divides the whole timeline into smaller
time intervals. The number of intervals depends on the num-
ber of available parallel processors. In each time interval,
define "the jump" as the difference between results of fine
and coarse solvers.

Sk
j = F(ykj , tj , tj+1)− G(ykj , tj , tj+1)

Secondly, propagate the jumps from the first time interval
to the last using a coarse solver. In general, we could use
the same one G from the last step.

yk+1
j+1 = G(yk+1

j , tj , tj+1) + F(ykj , tj , tj+1)− G(ykj , tj , tj+1)

Iterate the previous three steps until the result for the last
time step converges to the desired accuracy.

Generally, two solvers could be the same time-marching
scheme with different time-step sizes. However, directly
coarsening the time step size is dangerous while working
with explicit schemes since it might violate the Courant-
Friedrichs-Lewy (CFL) condition. More details will be ex-
plained in Section 3.1. A direct approach to overcome the
CFL condition violation problem is to coarsen the mesh size
∆x with the time step ∆t. To do so, one also has to de-
fine restriction and prolongation in the spatial dimension
explicitly. This technique will also be used in our proposed
method.

Algorithm 1: parareal
In parallel:
- Solve on fine ykf,j = F(ykj , tj , tj+1)

- Solve on coarse ykc,j = G(ykj , tj , tj+1)

Sequentially:
- Update from first time segment to the last

yk+1
j+1 = G(yk+1

j , tj , tj+1)+F(ykj , tj , tj+1)−G(ykj , tj , tj+1)

2.2 Multigrid Reduction-in-Time Method
The multigrid reduction-in-time (MGRIT)[4] method is

also a iterative parallel-in-time method. MGRIT is a multi-
grid method on the time dimension with specified relaxation,
restriction, and prolongation methods. Although [4] argues
that parareal method can be written as a type of MGRIT,
the two methods usually have different settings in structures

· · ·

C

Φ

F

Φ

F

Φ

F C

Φ

F

(a) Explicit F-relaxation updates from each C points sequen-
tially to all F points until before the next C point.

· · ·

C F F F

Φ

C F

(b) Explict C-relaxation updates each C point from its pre-
vious F point

Fig. 1: F-relaxation (blue) and C-relaxation (red) for ex-
plicit schemes for the MGRIT method.

and relaxation methods; therefore, we explain the two meth-
ods separately in this paper.

The MGRIT method chooses coarse time points (C
points) from the timeline and constructs the multigrid
method on the time dimension. The merit of the MGRIT
method is that it can construct more than one layer of coarse
time grids and thus leads to more efficient convergence. The
MGRIT method was first developed to work with implicit
schemes using iterative solver as the multigrid method’s re-
laxation method. The MGRIT was later proven that it also
works with explicit schemes with the proper settings.[7]

The MGRIT method first constructs a linear system of
equations for all time steps.

Au =


I

−Φ I

. . .
. . .
−Φ I



u0

u1
...

uNt

 =


g0

g1
...
gNt


Before applying the multigrid method on the time dimen-
sion, pick coarse grid points (C points) in the timeline with
some ratio m. For every m fine grid point (F points), there
is one coarse grid point (C point). Restriction R and pro-
longation P are then defined to move data between different
levels of coarsening.

Like parareal, MGRIT requires a coarse operator to prop-
agate error from one C point to the next. Since the CFL con-
dition must be satisfied for explicit time-marching schemes,
one must ensure that the coarse operator for the MGRIT
method satisfies the CFL condition.

While working with explicit schemes, define F-relaxation
as solving all F points sequentially between each C point
and defining C-relaxation as solving all C points, as shown
in Figure 1. The most used relaxation methods for
the MGRIT method are F-relaxation and FCF-relaxation,
which is F-relaxation followed by C-relaxation, followed by
F-relaxation.

3. Proposed Method

The present work proposes a parallel-in-time method tar-
geting problems solved by explicit time-marching schemes.

2ⓒ 2021 Information Processing Society of Japan

Vol.2021-HPC-180 No.2
2021/7/20



IPSJ SIG Technical Report

Algorithm 2: MGRIT(l)[4]
if l is the coarsest level L then

- Solve coarse grid system ALu(L) = g(L)

else
- Relax on Alu(l) = g(l)

- Compute and restrict residual
g(l+1) = Rl(g(l) −Alu(l))

- Solve on next level MGRIT (l + 1)

- Correct using interpolation u(l) ← u(l) + Pu(l+1)

end

The challenges of PinT methods for explicit schemes are first
listed in the following subsection, then the proposed method
and how it overcomes the challenges will be explained in the
next one.

3.1 Challenges in Applying PinT to Explicit Time-
Marching Scheme

Despite years of developments for parallel-in-time meth-
ods[2], there is yet a PinT method directly targeting ex-
plicit schemes. However, for some specific applications, such
as supersonic flow simulation, explicit schemes are usually
preferred over implicit ones. Due to its high scalability in
space, spatial parallelization has been sufficient for many
years. Nevertheless, as computing power grows, spatial par-
allelization has gradually reached the saturation point for
parallelization in the spatial dimensions. This motivates us
to study PinT methods for explicit schemes despite that it is
highly scalable in space. Furthermore, the proposed method
in this research can achieve similar parallel-in-time scalabil-
ity compared to that of spatial parallelization.

A necessary restricting condition while solving with an ex-
plicit time-marching scheme is the CFL condition[12]. For
example, a one-dimensional advection problem must sat-
isfy the following CFL condition while solved by an explicit
scheme.

C =
u∆t

∆x
≤ Cmax

Where u is the wave velocity, ∆x is the mesh size, and ∆t

is the time step. The Courant number C has to be less
than some value Cmax, which changes by different explicit
schemes. Cmax is determined base on various schemes and
discretization methods.

Simple observation tells that the Courant number grows
with the size of the time step. Since most parallel-in-time
methods involve time-steppings on coarse time grids, as ex-
plained previously for parareal and MGRIT, it is crucial to
be aware of the CFL condition while designing the PinT
method for explicit schemes.

3.2 Explicit time-marching optimized parallel-in-
time method.

The proposed method targets problems with explicit
schemes and aims to achieve high scalability. The proposed
method is based on parareal but has multiple level structures
like the MGRIT method.

First, the algorithm follows the idea from parareal and

Coarse grid

Fine grid

Restriction Prolongation

x time

Parallelization

Fig. 2: Out proposed method extract coarse grid by coars-
ening both the time grid and the x grid.

divides the whole timeline into time segments of the num-
ber of parallel processors. Because we are working with
explicit schemes, we argue that defining the same coarse
points despite the number of available processors like the
MGRIT method is inefficient. Furthermore, since the relax-
ation method for explicit time-marching schemes is solved
for one step, calculating an FCF-relaxation with coarsening
ratio of 2 is more expensive than a direct sequential solve.
Therefore, to optimize the performance for the parallel in
time method, the relaxation operator is defined as sequen-
tial explicit time-marching on the defined coarsening grid
within each time interval assigned to the core.

The spatial grid is coarsened as the same ratio as the time
grid, as shown in Figure 2, in order to satisfy the CFL con-
dition for all coarsening levels. CFL condition is satisfied in
all coarsening levels if both the time step size ∆t and mesh
size ∆x are coarsened by the same ratio.

C =
v∆t

∆x

C′ =
v(r∆t)

r∆x
=
v∆t

∆x
= C

Since the defined relaxation (sequential time-marching
within the current time segment) calculates results only from
the previous time step, we do not need to define relation and
prolongation in the time direction. However, the values on
the whole space grid are used for the explicit time-marching
schemes. Thus, this method defines restriction and prolon-
gation for the spatial direction. For one-dimension cases, we
could directly take every other point as a coarse point, sim-
ilar to the multigrid method’s restriction method. For pro-
longation, there are several options. The most simple one is,
of course, linear interpolation. In previous studies, [13], us-
ing linear interpolation as prolongation method has proven
to result in slow convergence while working with parareal.
Therefore, this method defines prolongation as updating av-
erage jump values of parareal. More details are explained in
the Numerical experiment in Sectioin 4.

Different from parareal, instead of solving on two levels of
grids with fine and coarse solvers accordingly, we construct
more than two levels of coarsening grids, each solves with
the same explicit schemes but with a different size of the
time step. The solvers in each level are called fine solvers,
coarse solvers, and the coarsest solvers in the following. The
fine solver solves on the whole space grid, while the coarsest
solver solves on the least points of all.

3ⓒ 2021 Information Processing Society of Japan

Vol.2021-HPC-180 No.2
2021/7/20



IPSJ SIG Technical Report

The coarsest solver is the baseline accuracy of the result,
and therefore, we start by initializing the values with a se-
quential solve across the timeline with the coarsest solver.
Then, from coarse to fine levels, we perform the parareal al-
gorithm after prolonging the result from the last level. In
each level, we choose the solver on the current level as the
high precision solver and the coarsest solver as the low pre-
cision solver, which is used to pass on the jumps. This way,
for each level of parareal, a close-to-result initial value is
provided, and the iteration number until convergence is re-
duced. The summarized algorithm for our method can be
found at Algorithm 3.

Algorithm 3: Proposed method
Get coarsest values with restriction.
Initialization: sequential time-marching on the coarsest
level L.

for level ` = L-1 to 1 do
for iterate until residual tolerance do

On current processor:
Solve on the current level yf = F`(yj , tj , tj+1).
Solve on the coarsest level yc = G(yj , tj , tj+1).
for Processor p = 1 to P do

Solve on the coarsest level
yk+1
j+1 = G(yk+1

j , tj , tj+1) + F`(ykj , tj , tj+1)−
G(ykj , tj , tj+1)

Update values to level ` with prolongation.
end

end
end

The proposed method looks similar to the MGRIT
method but is different in two perspectives. The greatest
difference between the proposed method and the MGRIT
method is their relaxation method. The explicit MGRIT
uses FCF-relaxation, which updates values between three
C points, while the proposed method updates sequentially
across the whole time interval assigned to each core. The
two relaxation methods would be similar given a sufficient
amount of cores. However, with a limited number of cores
assigned to the time dimension, the proposed method could
better reduce the computation time. Secondly, the proposed
method does not follow V-cycle as the MGRIT does. In-
stead, the proposed method solves until convergence in each
coarser level before moving to its finer upper level, aiming
to reduce the number of iterations on fine levels (ideally
to 1). On the downside, the iteration number of the pro-
posed method grows slightly along with the number of cores.
Note that the MGRIT method distributes the same compu-
tation into available cores. Thus the iteration number of the
MGRIT method does not change upon the number of cores.

4. Result
The numerical result demonstrates the convergence and

scalability of a one-dimensional advection example and a
two-dimensional simulation of compressible viscous subsonic
flow around a circular cylinder solving the Navier-Stokes

Restriction

fine

coarse

Prolongation

fine

coarse

Fig. 3: Data values between fine and coarse levels are passed
by restriction and prolongation.

equations.

4.1 One-dimensional advection equation
This example is a one-dimensional advection equation ex-

ample with problem settings the same as [6]. A general
one-dimensional advection equation can be written as the
following, where c is the speed of the wave.

∂u

∂t
= −c∂u

∂x
(1)

For convenience, the velocity c is set to 1 in this exam-
ple. Furthermore, the initial condition is set as u(x, 0) =

sin4(πx), and the boundary is set as a periodic boundary.
A simple and effective explicit scheme is for the advec-

tion equation is the Lax-Wendroff method, as described in
Equation 2

un+1
i = uni −

∆t

2∆x
(uni+1 − uni−1)

+
∆t2

2∆x2
(uni+1 − 2uni + uni−1) +O(∆t3)

(2)

Recall that in order to prevent the violation of the CFL
condition while solving with an explicit scheme, the present
work coarsens the space grid along with the coarsening of
the time grid. As shown in Figure 3, restriction and pro-
longation are defined to pass data values between fine and
coarse space grids. Assume that {Yi}Ni=0 represents the fine
grid values and {yj}nj=0 represents the coarse grid values,
where N = 2n. Restriction is defined as follows:

yj = Y2j ∀0 ≤ j ≤ n

And prolongation is defined as follows:

Yi =

Yi + ∆yj i = 2j

Yi + (∆yj + ∆yj+1)/2 i = 2j + 1
∀0 ≤ j ≤ n

The following performance result uses tolerance of aver-
age residual norm 0.001 for both the proposed method and
xbraid MGRIT. The result is generally accurate, but there
are some small oscillations near 0 points.

This numerical experiment for a one-dimensional advec-
tion example is conducted on the Oakbridge-CX cluster at
the University of Tokyo with the described initial state.
Oakbridge-CX is an Intel Xeon Platinum 8280 system with

4ⓒ 2021 Information Processing Society of Japan

Vol.2021-HPC-180 No.2
2021/7/20



IPSJ SIG Technical Report

Fig. 4: Execution time for advection equation using 4096 x
points and solves for 8192 time steps. The explicit scheme
applied for this experiment is ERK3-U3[6]. This figure
compares the result of that of parallel-in-space, parallel-in-
time(proposed method) ,and MGRIT with xbraid library.
The value in cf brackets is the coarse-fine ratio for MGRIT
method.

28 CPUs per node and two cores per CPU with a memory
size 96 GB and memory bandwidth 101 GB/s.

The most recent PinT result with advection using explicit
scheme we could find is in [6] using the MGRIT method
with the xbraid library. Figure 4 shows the runtime result
of our method compared to that of sequential and MGRIT
method by xbraid. The experiment uses the order 3 explicit
Runge-Kutta and order 3 upwind scheme (ERK3-U3) in [6]
and has 4096 number of x grids, 8192 number of time steps.
The xbraid results were tuned with the best parameters as
possible as we can with version 3.0.0. The proposed method
shows that the parallel-in-time method could be helpful even
if one only has a few extra processors to spare.

As shown in Figure 4, the parallel performance of the pro-
posed method is similar to spatial parallelization, and much
better compares to xbraid MGRIT. The figure also shows
that the proposed method could serve as an efficient PinT
method even with a small number of cores. Figure 5 adds the
results for parallel in space and time using 2 and 4 group of
cores in the time dimension accordingly. The number in the
brackets denotes the number of cores assigned to the time
dimension. In the case of 32 MPI processors, if the num-
ber of threads assigned to the time dimension is 2, then the
number of threads assigned to the space dimension would
be 16, so on so forth.

However, we could also observe that the iteration number
increases while the number of processors increases, resulting
in choosing the number of time intervals according to the
number of available processors. This is different from the
MGRIT method, in which iteration number does not depend
on the number of processors. The improvement for conver-
gence with a large number of processors is left as future work.
From the numerical experiments, we also observe that the
residual decreases very fast at first to about O(10−3), but
it takes many iterations to achieve very high precision. The
restriction and prolongation operators produce errors that
cause slow convergence in the space dimension. Because

Fig. 5: Execution time for advection equation using 4096 x
points and solves for 8192 time steps. The explicit scheme
applied for this experiment is ERK3-U3[6]. The number in
the barckets denotes the number of threads assigned to the
time dimension.

the proposed method update jumps with coarse grid time
stepping, the update for the error caused by prolongation is
inefficient. How to improve the convergence for the spatial
coarsening error is also left as future work.

4.2 Two-dimensional compressible subsonic flow
around cylinder

For the two-dimensional example, we choose the simula-
tion of compressible viscous flow around a circular cylinder.
A two-dimensional Compressible compressible fluid dynam-
ics (CFD) can be solved by solving the following Navier-
Stokes equations.[14]

∂U

∂t
+5 · (F î+Gĵ) = 5 · (Rî+ Sĵ (3)

where the state vector U , convective flux vector F , G and
viscous flux vector R, S can be written as following.

U =


ρ

ρu

ρv

E

 , F =


ρu

ρu2 + p

ρuv

Eu+ pu

 , G =


ρv

ρvu

ρv2 + p

Ev + pv



R =


0

τxx

τxy

uτxx + vτxy − qx

 , S =


0

τxy

τyy

uτxy + vτyy − qy


where ρ is density, u, v are velocities in x and y directions, E
is total energy, τxx, τxy, τyy are viscous stresses and qx, qy
are heat fluxes.

The four Navier-Stokes equations can be written in a sim-
ilar form and can be solved using the same grid partition
and explicit scheme. For compressible CFD, we have five
unknowns ρ, u, v, E, and P . For a perfect gas, we have
Equation 4 to solve pressure P from total Energy E.

E =
p

γ − 1
+

1

2
ρ(u2 + v2) (4)

The goal is to solve an initial uniform velocity condition
to the right (+u direction) until a steady-state of viscous

5ⓒ 2021 Information Processing Society of Japan

Vol.2021-HPC-180 No.2
2021/7/20



IPSJ SIG Technical Report

Fig. 6: X-velocity distribution of flow around cylinder stable
result with initial velocity 0.3 Mach.

(a) Fine grid with 256
points on the angular coor-
dinate.

(b) Coarse grid with 128
points on the angular coor-
dinate.

Fig. 7: Grid points on different levels.

flow around a cylinder. Figure 6 shows a sample result of a
steady-state with initial flow velocity 0.3 Mach to the right,
where the color indicates the value of the rightward velocity
of the flow.

Grid points are taken on the polar coordinates. Grid
points for each coarsening level are defined such that the
height is the same as the lower width. Figure 7 shows the
grid taken with different solutions.

∆r = r∆θ

The grid points for coarse and fine grids do not match
except for the inner boundary. Thus, both restriction and
prolongation should be defined by interpolation for the space
dimension. We interpolate the values of each coarse and fine
grid from its closest grid mesh Ω using bicubic interpola-
tion[8]. Bicubic interpolation approximates values in a grid
mesh using a cubic equation of x and y.

f(x, y) =
3∑

i=0

3∑
j=0

aijx
iyj ∀(x, y) ∈ Ω

The parameters aij of the cubic is solved with values
f(x, y) and derivatives fx, fy, fxy on the four corners of the
mesh. The solved cubic function is then used to derive in-
ternal points. In this experiment, both restriction and pro-
longation use bicubic interpolation on polar coordinate to
get coarse and fine grid point values.

For the explicit scheme, we rewrite Equation 2 into a two-
dimensional version on polar coordinates.

Fig. 8: MPI runtime comparison of 2D CFD flow simulation
example with proposed parallel-in time method

Fig. 9: Two-dimensional compressible flow execution time
with 32000 grid points and solves for 100000 time steps.
The blue line parallels only in the space dimension. The red
line divide 2 time intervals and the and the rest of the cores
are used to parallel in the space dimension.

Un+1 = Un +

(
∂U

∂t

)n

∆t+
1

2

(
∂2U

∂t2

)n

∆t2(
∂U

∂t

)n

= 5 · (~R− ~F ),

(
∂2U

∂t2

)n

= 52(~R− ~F )

5 ·~F =
(~Fi+1,j − ~Fi−1,j)

2∆r
+

(~Fi,j+1 − ~Fi,j + ~Fi,j − ~Fi,j−1)

2r∆θ

52 ~F =
(~Fi+1,j − 2~Fi,j + ~Fi−1,j)

∆r2
+

(~Fi,j+1 − 2~Fi,j + ~Fi,j−1)

r2∆θ2

(5)

where ~F = F î+Gĵ, ~R = Rî+ Sĵ.
With this explicit two-dimensional scheme, the experi-

ment compares the runtime for spatial parallelization and
parallel-in-time. For this numerical simulation, the problem
has 32,000 space grid points and computes for 100,000 time
steps. This experiment is also conducted on the Oakbridge-
CX cluster at the University of Tokyo. We can see from
Figure 8 that our method could achieve faster runtime for
more than two MPI processes. Similar to the last example,
we tested the performance of parallel-in-space/time with the
proposed method in Figure 9.

5. Discussion
The parallel-in-time method requires more computations

compare to the spatial parallelization of the explicit scheme.
Therefore, it might seem odd that the proposed method
could achieve similar scalability compared to spatial par-
allelization. This section provides a breakdown analysis of
the computation cost, communication cost, and the number

6ⓒ 2021 Information Processing Society of Japan

Vol.2021-HPC-180 No.2
2021/7/20



IPSJ SIG Technical Report

of synchronizations for both parallel-in-space and parallel-
in-time (proposed method).

Assume that the target problem has Nx grid points (fine
grid), Nt number of time steps, and the target machine has
P parallel processors. Suppose that one sequential explicit
time-marching without parallelization costs Tex computa-
tions. Generally, with P processors, the computation com-
plexity for spatial parallelization would be

Nt ×
1

P
Tex

For the proposed method, suppose that there are L levels,
with the coarsening ratio of 2 between each adjacent level.
The iteration number in each level is ml, l = 1, . . . , L − 1.
The computation complexity for the proposed method would
be.

1

P
(mL−1 ×

1

2n−1
Tex + . . .+m1 × Tex)

+
1

2L
Tex × (1 +mL−1 + . . .+m1)

The first term is for the parallelization part, and the sec-
ond term is for the sequential part. According to the nu-
merical experiment, we can reduce the ml to nearly one or
two and still get decent results; therefore, the difference in
computation cost is not significant.

Assume that for spatial parallelization, the explicit
scheme exchanges Cex data with its neighbor processors.
The communication cost for spatial communication cost
could be written as

Nt × CexP

For the proposed method, the communication cost is as
follows

(m1
1

2
Nx +m2

1

22
Nx + . . .+mL−1

1

2n
Nx)× (P − 1)

The communication cost is also similar when the number
of grids Nx is similar to the number of time steps Nt. An-
other critical factor for parallel computation is the number
of synchronizations. For spatial parallelization, the number
of synchronization is the number of time steps

Nt

For the proposed method, the number of synchronization
equals the summary of iteration numbers.

L−1∑
l=1

ml ≤ LP

Since the number of processors bounds the iteration num-
ber in each level, we have an upper bound LP for the num-
ber of synchronization, which is much smaller than Nt for a
large problem.

The present work presented two examples with very dif-
ferent computation complexity. According to the above

analysis, the proposed method could achieve better perfor-
mance when synchronization time is larger than the com-
putation complexity difference. Therefore, if the fine grid
iteration number could be successfully reduced, the parallel
performance of parallel-in-time could be similar to that of
parallel-in-space. Moreover, combining parallel-in-space and
parallel-in-time might be faster than that of pure parallel-in-
space with sufficient number of cores, which fits the results
we observe from Figure 5 and Figure 9.

6. Conclusion and Future Work
This paper proposed a parallel-in-time method that is op-

timized for explicit time-marching schemes. The proposed
method is mainly based on parareal but has many layer hi-
erarchies like MGRIT. For a one-dimensional advection ex-
ample and a two-dimensional compressible CFD simulation
example, the proposed method has been proven to converge
even with a small number of iterations. Also, the proposed
has shown that with enough processors, combining parallel-
in-space and time could provides better performance than
that of pure spatial parallelization.

Despite the high scalability and convergence on both ex-
amples, the proposed method has a problem that iteration
number grows slightly with the number of processors. Also,
as the error analysis result shows, the discretization er-
ror caused by restriction and prolongation of the proposed
method converges slowly. Therefore, the fast converging re-
sult, as shown in the result section, could only serve as a
fast approximation of the original problem. More iteration
is required for high precision results. At last, the proposed
method has not yet provided a successful result for the com-
pressible CFD with shock wave results (supersonic flow) due
to the stability problem in the coarse layers.

In future work, the convergence of the method should
be improved such that the discretization error could be re-
duced more efficiently. Secondly, the algorithm should be
further adjusted in order to solve CFD problems with shock
waves. We would also like to challenge applying parallel-
in-time for three-dimensional examples and large-scale CFD
applications.

References
[1] XBraid: Parallel multigrid in time.

http://llnl.gov/casc/xbraid
[2] M. J. Gander, “50 years of time parallel time integration,” in

Multiple shooting and time domain decomposition methods.
Springer, 2015, pp. 69–113.

[3] J. L. Lions, Y. Maday, and G. Turinici, “Résolution d’EDP
par un schéma en temps «pararéel »,” Comptes Rendus de
l’Academie des Sciences - Series I: Mathematics, vol. 332,
no. 7, pp. 661–668, 2001.

[4] R. D. Falgout, S. Friedhoff, T. V. Kolev, S. P. MacLach-
lan, and J. B. Schroder, “Parallel time integration with
multigrid,” SIAM Journal on Scientific Computing, vol. 36,
no. 6, pp. C635–C661, 2014.

[5] O. A. Krzysik, H. De Sterck, S. P. MacLachlan, and
S. Friedhoff, “On selecting coarse-grid operators for parareal
and mgrit applied to linear advection,” arXiv preprint
arXiv:1902.07757, 2019.

[6] H. De Sterck, R. D. Falgout, S. Friedhoff, O. A. Krzysik,
and S. P. MacLachlan, “Optimizing mgrit and parareal

7ⓒ 2021 Information Processing Society of Japan

Vol.2021-HPC-180 No.2
2021/7/20



IPSJ SIG Technical Report

coarse-grid operators for linear advection,” arXiv preprint
arXiv:1910.03726, 2019.

[7] A. J. Howse, H. D. Sterck, R. D. Falgout, S. MacLach-
lan, and J. Schroder, “Parallel-in-time multigrid with adap-
tive spatial coarsening for the linear advection and inviscid
burgers equations,” SIAM Journal on Scientific Comput-
ing, vol. 41, no. 1, pp. A538–A565, 2019.

[8] Keys, R.: Cubic convolution interpolation for digital im-
age processing. IEEE Transactions on Acoustics, Speech,
and Signal Processing 29(6), 1153–1160 (1981). DOI:
10.1109/TASSP.1981.1163711

[9] J. Christopher, R. D. Falgout, J. B. Schroder, S. M. Guzik,
and X. Gao, “A space-time parallel algorithm with adaptive
mesh refinement for computational fluid dynamics,” Com-
puting and Visualization in Science, vol. 23, no. 1, pp. 1–20,
2020.

[10] R. D. Falgout, A. Katz, T. V. Kolev, J. B. Schroder,
A. Wissink, and U. M. Yang, “Parallel time integration
with multigrid reduction for a compressible fluid dynam-
ics application,” Lawrence Livermore National Laboratory
Technical Report, LLNL-JRNL-663416, 2015.

[11] M. von Danwitz, V. Karyofylli, N. Hosters, and M. Behr,
“Simplex space-time meshes in compressible flow simula-
tions,” International Journal for Numerical Methods in
Fluids, vol. 91, no. 1, pp. 29–48, 2019.

[12] H. Lewy, K. Friedrichs, and R. Courant, “Über die par-
tiellen differenzengleichungen der mathematischen physik,”
Mathematische annalen, vol. 100, pp. 32–74, 1928.

[13] D. Ruprecht, “Convergence of parareal with spatial coars-
ening,” PAMM, vol. 14, no. 1, pp. 1031–1034, 2014.

[14] V. Parthasarathy, Y. Kallinderis, and K. Nakajima, “Hybrid
adaptation method and directional viscous multigrid with
prismatic-tetrahedral meshes,” in 33rd Aerospace Sciences
Meeting and Exhibit, 1995, p. 670.

[15] Cortes Garcia, I., Kulchytska-Ruchka, I., Clemens, M.,
Schöps, S.: Parallel-in-time solution of eddy current prob-
lems using implicit and explicit time-stepping methods.
arXiv e-prints pp. arXiv–2012 (2020)

8ⓒ 2021 Information Processing Society of Japan

Vol.2021-HPC-180 No.2
2021/7/20


