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Abstract: This paper proposes work-stealing strategies for an idle worker (thief) to select a victim worker. These
strategies avoid small tasks being stolen to reduce the total task-division cost. We implemented these strategies on a
work-stealing framework called Tascell. First, we propose new types of priority- and weight-based steal strategies.
Programmers can let each worker estimate and declare, as a real number, the amount of remaining work required to
complete its current task so that declared values are used as “priorities” or “weights”. With a priority-based strategy,
a thief selects the victim that has the highest known priority at that time. With a weight-based non-uniformly random
strategy, a thief uses the relative weights of victim candidates as their selection probabilities. Second, we propose
work-stealing strategies to alleviate excessive intra-node work stealing and excessive “steal backs” (or leapfroggings);
for example, we allow workers to steal tasks from external nodes with some frequency even if work remains inside
the current node. Our evaluation uses a parallel implementation of the “highly serial” version of the Barnes-Hut
force-calculation algorithm in a shared memory environment and five benchmark programs in a distributed memory
environment.
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1. Introduction

With the proliferation of parallel-computing environments in-
cluding multicore processors, mechanisms and techniques that
enable efficient parallel computing for a wide range of applica-
tions are gaining importance.

Work stealing is a technique for parallelizing applications. An
idle worker (thief) steals a task from another worker (victim)
to provide efficient dynamic load balancing. Multithreaded lan-
guages [1], [2], [3], [4], [5] provide dynamic load balancing based
on work-stealing techniques. Cilk [2] renders all workers busy by
creating plenty of “logical threads” and adopting the oldest-first
work-stealing strategy.

A logical-thread-free parallel programming/execution frame-
work called Tascell implements backtracking-based load balanc-
ing [6]. A Tascell worker spawns a real task by temporarily back-
tracking and restoring its oldest task-spawnable state only when
requested by an idle worker. This method eliminates the costs
of spawning and managing logical threads. Furthermore, Tascell
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promotes the long-term (re)use of workspaces, improves the lo-
cality of reference, and enables delayed workspace copying.

In the base implementation of Tascell, victims are randomly
selected based on uniformly random selection. However, vic-
tims with small tasks may be selected, and dividing such tasks
may degrade parallel efficiency because task division may involve
workspace and data copying.

In contrast to uniformly random selection, we proposed proba-

bilistic guards (and virtual probabilistic guards) [7], [8] as a non-
uniformly random steal strategy. Probabilistic guards can prevent
thieves from stealing small tasks from victims probabilistically.

However, using probabilistic guards involves the following is-
sues:
• Only values between 0 and 1 can be used as probabilities

(i.e., values exceeding 1 cannot be used).
• For setting a probability, the effect of the guard must be con-

sidered carefully.
• Priority-based selection is not supported.
This paper *1 proposes two new types of priority- and weight-

based steal strategies. Tascell programmers can let each worker
estimate and declare as a real number the amount of remaining
work required to complete its current task so that declared values
are used as priorities or weights in the enhanced Tascell frame-
work. To reduce the total task-division cost, the proposed strate-
gies avoid stealing small tasks. These strategies offer the follow-
ing advantages:

*1 Part of our proposals can also be found in Ref. [9].
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• A value exceeding 1 can be used to achieve further perfor-
mance improvements.

• Using a value larger than 1, the estimated amount of remain-
ing work can be simply declared, which is much easier than
setting a probability value.

• Priority-based selection is essentially different from (non-
uniformly) random selection.

For distributed memory environments, in the conventional
work stealing strategies of Tascell, only a representative worker
sends a task request to external nodes only when there are no
workers in the same node that can accept a task request. This
hierarchical strategy is expected to reduce the number of inter-
node work steals. However, even if larger tasks are available in
external nodes, this can cause excessive intra-node work stealing;
that is, intra-node workers can divide tasks into a large number of
small tasks.

Furthermore, in the conventional work stealing strategies of
Tascell, a worker that waits for the result of a stolen task sends a
task request only to the worker that stole the task (“steal backs”,
or “leapfroggings” [10]). This constrained strategy guarantees the
maximum size of execution stacks. However, this can cause ex-
cessive mutual “steal backs” of small tasks among involved work-
ers.

To alleviate excessive work stealing among intra-node work-
ers, this paper proposes another work-stealing strategy in which
any worker can send a task request to external nodes periodically
even if some workers in the same node can accept a task request.

To alleviate excessive mutual steal backs, this paper proposes
to relax the constraint to some degree; in the relaxed work-
stealing strategy, a worker that waits for the result of a stolen task
can send non-“steal back” task requests within a certain number
of times.

We applied the proposed priority- and weight-based victim
selection to the Barnes–Hut algorithm [11]. The Barnes–Hut
O(N log N) tree algorithm is widely used for N-body simulations.
In Tascell, Treecode [12] (a fast “highly serial” algorithm [13]) is
well parallelized [7], [8].

The contributions of this paper are as follows:
• We propose new types of work-stealing strategies based on

priority- and weight-based selection.
• We propose two more work-stealing strategies to allevi-

ate excessive intra-node work stealing and excessive mutual
“steal backs”.

• We extended the Tascell framework and implemented the
four proposed strategies.

• Based on a parallelized implementation [7], [8] of the
Barnes–Hut algorithm [11], [12], [13], we present a sim-
plified parallelized implementation for priority- and weight-
based selection.

• We present the evaluation results of the parallelized Tas-
cell programs. With 500,000 bodies and 96 workers,
performance improvements of 20.3% (24.5%) and 13.8%
for priority- (“steal back” constraint-relaxed, priority-) and
weight-based selection, respectively, are achieved over uni-
formly random selection. With 1,000,000 bodies and 96
workers, performance improvements of 10.0% (19.4%) and

6.4% for priority- (“steal back” constraint-relaxed, priority-)
and weight-based selection, respectively, are achieved over
uniformly random selection.

• We present the performance evaluation in a distributed mem-
ory environment with five Tascell programs using the four
proposed strategies and their combinations.

This paper is organized as follows. First, we provide a brief
description of the Tascell framework in Section 2. We explain
conventional work-stealing strategies (i.e., (virtual) probabilistic
guards) in Section 3. In Section 4, we propose new types of
priority- and weight-based selection. In Section 4, we also pro-
pose to alleviate excessive intra-node work stealing and excessive
mutual “steal backs”. In Section 5, we discuss parallel implemen-
tations of the Barnes–Hut algorithm. In Section 6, we present the
evaluation results.

2. Tascell Framework

The Tascell framework [6] is a programming and execution
framework for an extended C language called the Tascell lan-
guage.

In Tascell, computations are accomplished by Tascell workers
that execute tasks. A task is a data object that is necessary for
accomplishing a certain computation. Its structure is defined in
a Tascell program by users. A task is associated with a specific
function specified as its task exec body. When a worker re-
ceives a task, it invokes the associated function to complete its
work. In Tascell, an idle worker (thief) can request a task from a
loaded worker (victim). When receiving a task request, the vic-
tim creates a new task by dividing its own task and returns it to
the thief. Subsequently, the thief performs the received task and
returns its result to the victim.

A Tascell worker spawns a task by temporarily backtracking
and restoring its oldest task-spawnable state. That is, when a
worker receives a task request,
( 1 ) it temporarily backtracks (goes back to the past),
( 2 ) spawns a task (and changes the execution path to receive the

result of the task),
( 3 ) returns from the backtracking, and
( 4 ) resumes its own task.
The Tascell worker always chooses not to spawn a task at first and
performs sequential computation. However, when the worker re-
ceives a task request, it spawns a task as if it changed the past

choice.
For performing a temporary backtracking, we employ mech-

anisms for legitimate execution stack access [14], [15], [16],
such as “L-closures” and “closures”, with which a running pro-
gram/process can legitimately access data deeply in execution
stacks (C stacks).

In general, we can spawn a larger task by backtracking to the
oldest task-spawnable state. Because no logical threads are cre-
ated as potential stealable tasks, we can eliminate the cost of man-
aging a queue for them in Tascell. In fact, Tascell outperformed
Cilk and Cilk Plus, as shown in Refs. [6] and [17], respectively.
Moreover, we can parallelize some “highly serial” applications in
a straightforward manner, in which a worker continuously and se-
rially updates a single workspace; this is because Tascell exhibits
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Fig. 1 C program (pseudo-code) that performs backtrack search for finding
all possible solutions to the Pentomino puzzle.

the following characteristics:
• While a Tascell worker performs a sequential computation,

it can reuse a single workspace, whereas a logical thread typ-
ically requires its own workspace.

• When a new task is spawned, the victim’s workspace can be
copied for the thief. Because a task is spawned only when it
is requested by idle workers, workspace copying can occur
only when it is actually required.

Figure 2 is a parallelized Tascell program that performs back-
track search for finding all possible solutions to the Pentomino
puzzle based on the C code shown in Fig. 1.

We defined a structure of task objects named pentomino in the
Tascell program. The fields k, i0, i1, i2, a, and b are declared as
the input of a pentomino task. The field s is declared for storing
the result. A Tascell worker that receives a pentomino task exe-
cutes the pentomino task_exec body. In the body, the worker
can refer to the received task object by the keyword this. For
example, in task_exec in Fig. 2, the worker function search is
called with the values of the input fields of the task object.

The search function divides an iterative computation using a
Tascell parallel for loop construct. It is syntactically denoted by
for(int identifier : exprfrom, exprto) statbody

handles task-name (int identifierfrom, int identifierto)

{ statput statget}.

When the implicit task-request handler (available during the it-
erative execution of statbody) is invoked, the upper half of the re-
maining iterations are spawned as a new task-name task, whose
object is initialized by statput. In statput, the actual assigned range
can be referred to by identifierfrom and identifierto. The worker
handles (merges) the result of the spawned a task by executing
statget. Note that a worker performs iterations for a parallel for
loop sequentially unless requested.

Parallel for statements may be nested dynamically in their
statbody. Therefore, multiple task-request handlers may be avail-
able simultaneously. Each worker attempts to detect a task re-
quest by polling at every parallel for statement. When detecting
a task request, it invokes as old a handler as possible.

Fig. 2 A Tascell program that performs backtrack search for the Pentomino
puzzle.

2.1 Task Request
In the conventional work stealing strategy of Tascell, a thief

worker executes the following steps to select which victim worker
to send a task request.
( 1 ) A thief randomly selects a victim among other workers in

the same computing node and sends a task request to it. If
the victim can spawn a task, it spawns a task and sends it to
the thief, as described above. Otherwise, the victim sends a
reject message to the thief.

( 2 ) If the thief receives a task as a response to the request in ( 1 ),
it executes the task. If it receives a reject message, it selects
another worker in the same node as a victim and sends a task
request to it.

( 3 ) If the thief receives reject messages from all workers in the
same computing node (that is, there are no task-spawnable
workers in the node) and the thief is the representative
worker in the node, it sends a task request to the Tascell

server. If the all-rejected thief is not the representative
worker in the node, it skips to step ( 6 ).
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( 4 ) On receiving a task request, the Tascell server randomly se-
lects a computing node from those connected to the server,
excluding the request sender, and forwards the request to it.

( 5 ) The computing node that receives this task request from the
Tascell server checks the workers in the node in a random
order. If the node contains a worker with a task that can be
spawned, the worker spawns the task and sends the task to
the thief via the Tascell server. Otherwise, the node sends a
reject message to the thief, again via the Tascell server.

( 6 ) If the thief cannot acquire a task even from any external com-
puting nodes, it returns to ( 1 ) and retries the work-stealing
process after a short but gradually long pause period.

2.2 Stealing Back
When a Tascell worker w1 cannot process its running task with-

out receiving the result of a task t that has been sent to another
worker w2 as part of the running task, the worker w1 suspends
the task t and tries to steal another task as a thief rather than be-
coming idle waiting for the result. To implement this mechanism,
each worker has its own task stack to manage tasks assigned to
the worker: when a worker steals a task from another worker, it
is pushed to the top of the worker’s task stack keeping suspended
tasks below the top.

When the worker w1 performs such a work steal caused by a
synchronization delay, the victim of the request to steal is not se-
lected using the strategy explained in Section 2.1, but the thief w1

steals back a task from the worker w2 to which the task t causing
the synchronization delay has been assigned.

Using this technique, called Leapfrogging [10], we can guar-
antee that the maximum sizes of the workers’ task stacks and
execution stacks are at most a constant times as large as those
in a “task-creating single worker execution”, where a program is
executed by a single worker as follows.
• The worker spawns all stealable subtasks and pushes them

to its subtask stack, although there are no other workers that
send task requests. For example, when the worker executes a
parallel for loop with N iterations, it pushes log N subtasks
to the stack at first.

• The worker pops a task from its subtask stack to start the task
on top of its task stack.

3. Probabilistic Guards

In this section, we explain probabilistic guards and virtual

probabilistic guards [7], [8], which we previously proposed to ob-
tain better performance than uniformly random victim selection.

(Only) on stealing, the Tascell framework may need to copy
the necessary data for the thief’s computation from the victim’s
workspace. The copying cost is included in the task-division cost.
If the copying cost becomes large compared with the amount of
the stolen work, dividing small tasks degrades the performance
of parallel execution because it increases the total task-division
cost. The task-division costs may also include costs to merge the
results of divided tasks. As the uniformly random strategy selects
victims at random, the frequency of dividing small tasks may be
problematic.

Probabilistic guards are aimed at reducing the total task-

division cost by preventing thieves from stealing small tasks.
Each (victim) worker can declare a probability to accept a steal at-
tempt. The victim who receives a task request decides whether or
not the steal attempt is successful based on the probability value
set for itself before dividing the task. For a successful steal at-
tempt, the victim divides its own task and spawns a new task for
the thief. If the victim rejects the task request, the thief repeats
probabilistically prevented steal attempts until successful.

By adjusting the probabilities of success in a single uniformly
random steal attempt among victims, we can skew the probabil-
ities of eventual success in repeated uniformly random steal at-
tempts to the relative values of the adjusted (non-uniform) prob-
abilities.

Let gi be the adjusted probability that the task of the i-th victim
is guarded against a single steal attempt, where 1 ≤ i ≤ n and n is
the total number of victims. In other words, the probability pi that
the task of the i-th victim can be divided and stolen by a single
steal attempt satisfies pi = 1−gi. We assume that a thief repeats a
uniformly random choice of a victim until it succeeds in stealing
a task. Supposing that gi is constant while a thief is attempting
to steal a task, as shown in Ref. [7], we obtain the probability si

that the thief eventually succeeds in stealing a task from the i-th
victim as follows:

si =
pi∑n

j=1 p j
(1)

That is, si is the ratio of pi to the sum of p j (1 ≤ j ≤ n).
To set an appropriate probability value for an application, each

worker can roughly estimate the work amount (size) of its current
task; if the size is below a certain size, the worker can set a small
probability value according to the size. By setting smaller prob-
ability values to smaller tasks, the overall parallel performance is
expected to improve.

3.1 Virtual Probabilistic Guards
In Eq. (1), si is the probability that a thief eventually suc-

ceeds in stealing a task from the i-th victim. Virtual probabilis-

tic guards [7], [8] act as probabilistic guards without repeating
probabilistically prevented steal attempts. That is, the thief ran-
domly selects the i-th victim with probability si for a single non-
uniformly random forced steal attempt.

In implementing virtual probabilistic guards in a shared mem-
ory environment, a thief directly reads the probability values of
all victims.

Although such read accesses cause data races, we consider the
problem only as an impreciseness in non-uniform random selec-
tion among victims.

3.2 Extension of Tascell Framework
We extended the Tascell language and introduced a worker-

local variable to support probabilistic guards. Users can set a
probability that the tasks of a worker can be stolen by using the
following statement:
WDATA.probability = expp;

WDATA is a structure unique to each worker and is implicitly de-
fined by the Tascell language. The type of expression expp should

c© 2021 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.29

be double, and its value p should be between 0.0 and 1.0. For
example, the worker is not guarded if p is 1.0, and the worker is
fully guarded if p is 0.0.

Users can set the probabilities at appropriate timings: typically
when the size of the remaining task of a worker changes. Never-
theless, because the actual size of a stolen task is determined after
the backtracking occurs and the oldest task-spawnable state is re-
stored, it is inefficient to set probabilities every time the size of
the task changes. In our evaluation programs, we set probabilities
at the following events:
• immediately after task exec is called
• when executing statput in the task request handlers.

3.3 Adjusting Probabilities
Let T be the total amount of work to be performed in parallel

execution. If T is divided equally by P workers, each worker can
have work of size T/P. Let Ti be the amount of work that the i-th
worker currently has. An ideal way is to statically divide T so
that Ti = T/P at the beginning of parallel execution; however, in
practice, it is difficult to divide well.

When probabilistic guards determine whether steal attempts
are successful using min(1, kP(Ti/T )) as the steal success proba-
bilities, defining k as 2 renders probabilistic guards effective when
Ti becomes less than half of T/P (that is, T/P/k); meanwhile, the
success probability becomes 1/2 when Ti is a quarter of T/P (that
is, T/P/k/2). Moreover, if Ti is 1/8 of T/P (reducing load imbal-
ance by approximately 12.5%), the probability decreases to 25%,
and we expect that stealing is indirectly guided to other victims
that have success probabilities larger than 25%. Therefore, set-
ting k = 2 for probabilistic guards is reasonable.

4. Our Proposal

In this section, we propose two new types of work-stealing
strategies based on priority- and weight-based selection. In these
strategies, the amount of work is estimated as a real number; the
value is assigned by the same statement as in Section 3.2. In this
section, we also propose to alleviate excessive intra-node work
stealing and excessive mutual “steal backs”.

4.1 Priority-based Selection
In the priority-based selection, the real value set in the worker

is treated as a priority and used for work stealing. The priority-
based work stealing proceeds as follows.
( 1 ) When a worker becomes a thief, κ workers are selected ran-

domly from all victims.
( 2 ) The thief reads the priority of each of κ workers and sends

a task request to the worker with the highest priority. Un-
like probabilistic guards, the steal attempt will succeed if the
worker has a task that can be divided.

By stealing from a worker of high priority, stealing small tasks
can be avoided and the total task-division cost can be reduced.

The value of κ, that is, the number of randomly selected victim
candidates must be selected from the range 1 ≤ κ ≤ n (where n

is the number of all victim candidates). When κ = n, the worker
with the highest priority is always selected as the victim. When
κ is smaller than n, a victim is selected with some degree of ran-

domness while considering the known priorities. In the perfor-
mance evaluation in Section 6, we measured performances when
κ = 3 and κ = n.

4.2 Weight-based Selection
The virtual probabilistic guards described in Section 3.1 is a

work-stealing strategy that uses a real number between 0 and 1
as a probability value. In the weight-based selection, this real
number can be larger than 1 and used as a weight.

Let wi be the weight of the i-th worker. If n is the total number
of victim candidates, then 1 ≤ i ≤ n and 0 ≤ wi. Since weights are
used instead of probability values in the weight-based selection,
the probability si that the i-th victim is selected can be obtained
by the following equation in the same manner as in Eq. (1).

si =
wi∑n

j=1 w j
(2)

This means that si is the ratio of wi to the sum of w j (1 ≤ j ≤ n).
The thief can steal a task from the i-th worker with a single steal
attempt, similar to virtual probabilistic guards.

4.3 Advantages of Priority- and Weight-based Selection
For probabilistic guards, in Section 3.3, a probability value is

given by min(1, kP(Ti/T )).
By contrast, priority- and weight-based selection only require

relatively consistent task size estimation. Therefore, expressions
such as kP(Ti/T ) are not required. In other words, task size Ti can
be simply used as a priority or weight, which is advantageous.

In addition, unlike probabilistic guards with probability 1.0,
priority and weight values (which can be more than 1.0) are al-
ways meaningful for victim selection.

4.4 Alleviation of Excessive Intra-node Work Stealing
As described in Section 2.1, in the conventional work steal-

ing strategy of Tascell, a worker sends a task request to external
nodes only when there are no workers inside the same node that
can accept a task request. This strategy is expected to reduce the
number of inter-node work steals. However, a thief often obtains
a small task within the same node, even if larger tasks are avail-
able in external nodes. This can cause the increase in the total
number of work steals and performance degradation.

To alleviate such excessive intra-node work stealing, we en-
hanced the conventional strategy so that a worker periodically
sends a task request to external node even if there are workers
inside the same node that can accept a task request.

To implement this strategy, we let each worker have its own
counter that counts the number of task requests accepted by other
workers inside the same node (excluding stealing back requests);
a thief worker sends a task request to the Tascell server and resets
its counter to 0 if the counter value is E.

4.5 Alleviation of Excessive Steal Backs
As explained in Section 2.2, the stealing back mechanism is

necessary for guaranteeing the maximum sizes of workers’ task
stacks and execution stacks.

On the other hand, this mechanism can cause performance
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degradation because a worker waiting for the result of another
task is restricted to stealing back a task from a specific worker
even if larger tasks are available in other workers. When a worker
completes a small task stolen back in a short time, it tries to
steal back another task. This repetition produces a number of
work-steals for small tasks between the two workers. Note that
such a situation can occur between workers in different comput-
ing nodes. Furthermore, a victim of stealing back can also steal
back another worker’s small task at the same time. Such a chain
of stealing back tasks involving a number of workers across com-
puting nodes significantly degrades the performance.

We alleviated such excessive steal backs by allowing a worker
waiting for the result of another task to send a non-stealing back
task request, until the number of such task requests reaches a cer-
tain upper limit.

We implemented this mechanism by letting each worker have a
counter that counts the number of non-stealing back requests sent
while the worker is waiting for the results of another task. Using
this counter, a worker determines whether it sends a non-stealing
back task request or not as follows.
( 1 ) When a worker w1 sends a task request while waiting for

the result of a task assigned to another worker w2, w1 sends a
non-stealing back task request after incrementing the counter
if w1’s counter value c1 is less than an upper limit τ. Other-
wise, it sends a stealing back request to w2.

( 2 ) When a worker w3 accepts a non-stealing back task request
from w1, it sends its counter value c3 to w1 together with a
new task.

( 3 ) When w1 obtains a task from w3, it updates its counter value
c1 to c3 if c1 < c3, before executing the task.

( 4 ) When w1 receives a result, it resets its counter value c1 to
that was saved when it started waiting for the result.

A thief that does not wait for a result also updates its counter value
with a task it stole as ( 3 ) described above. Such “counter inheri-
rance” guarantees that the maximum sizes of the workers’ task
stacks and execution stacks are at most (τ + 1)× a constant times
as large as those in a “task-creating single worker execution”.

5. Barnes–Hut Algorithm

The Barnes–Hut algorithm is a widely used O(N log N) algo-
rithm that performs N-body simulations. It performs approxima-
tion calculations using the fact that the force exerted by bodies
(particles) that are far away is smaller than that by neighboring
bodies.

In Refs. [7], [8], we implemented parallel N-body simulation
programs based on Treecode 1.4 [12], a serial N-body simulation
program. Its implementation can be broken down as follows.
( 1 ) Load all bodies one by one and construct the tree.
( 2 ) Compute gravitational forces for all bodies and update their

potentials and accelerations.
( 3 ) Advance one time step and update the velocities and posi-

tions of all bodies.
Treecode is roughly divided into two phases: tree construction

and force calculation. They are repeated one or more times to
perform N-body simulations. Because most of the computation
time is occupied by force calculation, we do not examine tree

Fig. 3 Pseudo-code for force calculation using the fast algorithm.

construction in this paper.
In the force calculation, Treecode uses a fast “highly serial” al-

gorithm [13]. This algorithm reduces the cost of tree search by the
fact that nearby bodies in space have a similar “interaction list.”
Here, the interaction list is all that affects a certain body. In the
fast algorithm, the tree search is performed only once for all the
bodies, and during that time, a single interaction list is updated
sequentially to calculate the force exerted.

Figure 3 shows the pseudo code that performs fast force calcu-
lations. The list initialized here actually consists of a sufficiently
large array and pointers to the beginning and end of the array
elements in use. The force calculation starts with the function
gravcalc and is performed by mutually recursively calling the
functions walktree and walksub. List I is the interaction list
updated until the traversal reaches node p from the root node.
List A is an active list of nodes that have not finished traversing
about p. List nextA, which is initially empty, is a new active list
to record elements that are newly added next to the tail pointer of
list A. The array to record elements is shared with list A.
Walktree calculates forces exerted on all bodies included in

node p. It calculates the distance between each element a of list
A and p to add a to I or add child nodes of a to nextA. That is,
based on the distance, whether a search for a child node of a is
unnecessary is determined. Because p is always a body if no ele-
ments have been added to nextA, walktree calculates the forces
exerted on p with the interaction list at that time. When any ele-
ment has been added to nextA, walktree calls walksub, which
calculates the forces exerted on the child nodes of p if p is a cell.

We can parallelize “highly serial” force calculation by modi-
fying walksub. If p is a cell, walksub calls walktree for each
child node q of p through a for statement. By using the parallel
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for statement in Tascell instead of the for statement, we paral-
lelized the force calculation [7], [8].

To calculate forces in parallel, an interaction list (and an active
list) is deeply copied as a workspace only when a task is lazily
divided. Because the cost of deeply copying interaction lists (and
active lists) is considerably large, dividing small tasks degrades
the performance.

For (virtual) probabilistic guards, as proposed in Refs. [7], [8],
the success probability of a steal attempt is given by

p = min

(
1, 2P

msub

mall

)
, (3)

where P is the number of all workers, msub is the total mass of
non-updated bodies, and mall is the total mass of bodies.

By contrast, priorities and weights are simply declared as fol-
lows.

w = msub (4)

6. Evaluations

The evaluation environment is summarized in Table 1. Every
57-core Xeon Phi co-processor can serve as a computation node
with its own memory in a distributed memory environment. We
use just a Xeon Phi co-processor (with 228 hardware threads) as
a shared memory environment.

The evaluated implementation provides an option that enables
a retry loop in a node after the rejected first steal attempt; the
first victim candidate can be selected with various strategies. The
retry loop corresponds to “all workers” in the node in steps ( 3 )
and ( 5 ) in Section 2.1. Unlike [7], [8], [9], we enable the retry-
loop option for all evaluations below.

Furthermore, unlike [9], priority-based selection is properly
applied even for task requests from external nodes.

The evaluated implementation with the proposed strategies
provides users (Tascell programmers) with new opportunities to
improve performance. Users can explore the best use of the op-
portunities; however, even with simple use of the opportunities,
we can see considerable improvements as shown below.

6.1 Evaluations in a Shared Memory Environment
In this section, we present the evaluation results of parallel im-

plementations of the Barnes–Hut N-body algorithm. We adopted
500,000 and 1,000,000 separately as N and set the number of time

Table 1 Evaluation environment.

Xeon Phi
Host processor(s) Intel Xeon E5-2697 v2 12-core × 2
Host memory 64 GB (shared)
Co-processor(s) Intel Xeon Phi 3120P 57-core × 4

(four hardware threads per core)
Co-processor Memory 6 GB (for each co-processor)
Network Each co-processor is connected to the host

via PCIe 3.0×16 (Bandwidth = 15.6 GB/s)
OS CentOS 6.5 (64 bit)
Compiler Intel Compiler 13.1.3 with -O3 optimizers
Closure Trampoline-based implementation

(compatible with the GCC extension [18])
Tascell server Steel Bank Common Lisp 1.2.7

(runs on the host processors)

steps so that the force calculation is performed five times.
We applied priority- and weight-based selection to the parallel

implementation of Treecode and compared speedups relative to
serial C. In addition, we applied (virtual) probabilistic guards.

Figure 4 shows speedups (relative to serial C) of the force cal-
culation. The first and third quartiles are shown as error bars
using 22 runs (with distinct random seeds). The vertical axis,
speedup relative to serial C, is calculated with tS /tP, where tS
is the execution time of the serial C program and tP ranges over
execution times of the Tascell program in parallel with P workers.
• base shows speedups (relative to serial C) of the force cal-

culation with uniformly random selection.
• pg shows speedups of the force calculation with probabilis-

tic guards; p = min(1, kP msub
mall

), where k is 2, msub is the sum
of the masses of bodies to update, and mall is the total mass
of all the bodies.

• threshold shows speedups of the force calculation with
probabilistic guards based on thresholds; p = 1 if kP msub

mall
>

1, where k is 10; otherwise, p = 0.
• vpg uses virtual probabilistic guards; p is declared in the

same manner as pg.
• priority-all shows speedups of the force calculation with

priority-based selection (κ = P). Priority w = msub.
• priority-3 shows speedups of the force calculation with

priority-based selection (κ = 3). Priority w = msub.
• weight shows speedups of the force calculation with weight-

based selection. Weight w = msub.
• relaxed-3 is based on priority-all but alleviates excessive

steal backs by setting τ = 3.
With a small number of workers, all strategies show near-

ideal speedups. With 96 or 128 workers, most strategies have

Fig. 4 Speedup of force calculation (relative to serial C).
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Fig. 5 The number of spawned tasks in force calculation.

peaks. In Fig. 4 (a) with 96 (128) workers, priority-all, priority-
3, weight, and relaxed-3 show 20.3% (24.9%), 8.0% (9.0%),
13.8% (20.7%), and 24.5% (25.0%) improvements over base
and 5.0% (7.4%), −5.6% (−6.2%), and −0.5% (3.8%), and 8.7%
(7.5%) improvements over pg. In Fig. 4 (b) with 96 (128) work-
ers, priority-all, priority-3, weight, and relaxed-3 show 10.0%
(12.4%), 4.5% (4.4%), 6.4% (9.5%), and 19.4% (16.5%) im-
provements over base and 0.7% (2.8%), −4.2% (−4.5%), −2.5%
(0.1%), and 9.3% (6.5%) improvements over pg. When the
retry-loop option is enabled, unlike [7], [8], [9], pg shows good
speedups which are better than vpg.

Figure 5 shows the number of spawned tasks in the force cal-
culation. We can confirm that priority-all (with relaxed-3) has
improved the performance because the number of spawned tasks
has decreased overall (significantly). In this setting, vpg and
priority-3 perform retry loops without individual probabilistic
guards and spawn more tasks than pg. For weight, the number
of spawned tasks is not as small as that of priority-all.

6.2 Evaluations in a Distributed Memory Environment
In the distributed memory environment, up to four processes

run on co-processors (one process on each). We created 114
worker threads in each process. A Tascell server on host pro-
cessors relays inter-node messages such as task requests, rejects,
tasks, and results among four co-processors (nodes), where intra-
node work stealing always precedes inter-node work stealing.
Note that virtual probabilistic guards, priority-based selection,
and weight-based selection can be used only for worker selection
at each computing node: the Tascell server that receives a task
request randomly selects a computing node to which the server
forwards the request, as described in Section 2.1.

We employed the following benchmark programs:

• Fib(n) recursively computes the n-th Fibonacci number.
Probability p = min(1, n

20 ), where n is the problem size of
the current task. Priority or weight w = n

20 .
• Nq(n) finds all solutions to the n-queens problem on the ba-

sis of backtrack search. Probability p = n−( j+1)
n−2 if j > 1;

otherwise, p = 1.0, where j is the number of queens placed,
and n is the number of all queens. Priority or weight w =
n − ( j + 1).

• Pen(n) finds all solutions to the Pentomino problem with n

pieces (using additional pieces and an expanded board for
n > 12) on the basis of backtrack search. Probability p = n− j

n−2

if j > 2; otherwise, p = 1.0, where j is the number of pieces
placed. Priority or weight w = n − j.

• Cmp(n) compares array elements ai and b j for all 0 ≤ i, j <

n using a cache-oblivious recursive algorithm. Probability
p = min(1, n

500 ), where n is the problem size of the current
task. Priority or weight w = n

500 .
• Histogram(n,NR, d) considers a multiset of nd GCDs of all

d-tuples each element of which is 2 or more and less than
2 + n: {gcd(i1, i2, . . . , id) | 2 ≤ i1, i2, . . . , id < 2 + n}, and
counts the number of occurrences of each GCD value (if the
value is 2 or more) as a histogram of NR ranks efficiently
with pruning. Probability p = nmaxd+n

nmaxdmax
. Priority or weight

w = nmaxd + n.
Of course, in Fib(n) and Cmp(n), we can simply use priority
or weight w = n. We employed Fib(n) and Nq(n) as standard
benchmark programs, Pen(n) as a significantly irregular program,
and Cmp(n) and Histogram(n, NR, d) as programs with large
workspaces. We employ small problem sizes such as Fib(50),
Nq(17), Pen(15), Cmp(150000), and Histogram(50, 50, 7) in or-
der to clearly see speedup differences with a large number of
workers.

Figures 6, 7, 8, 9 and 10 show speedups (relative to serial C)
of benchmark programs.
• priority-all+pval is based on priority-all but sends the cur-

rent maximum priority value within a node with task and
task request messages to the Tascell server to make the server
perform node-level priority-based selection over all nodes.

Priority-all shows considerable performance improvements;
with 4 × 114 workers, priority-all is 4.2% better than base in
Fib(50), 7.9% in Nq(17), 14.0% in Cmp(150000), and 5.6% in
Histogram(50, 50, 7).

However, in Pen(15), priority-all is −1.2% better than base;
that is, priority-all degrades the performance. With a very irreg-
ular search tree, a large subtree at some deep tree node may be
found early by using randomness instead of an imprecise estima-
tion.

Priority-all+pval and priority-3 show some performance im-
provements, but they are less significant than priority-all. For
priority-all+pval, node-level priority-based selection can only
see somehow old values.

6.3 Evaluations of Alleviation of Excessive Work Stealing
Figures 11, 12, 13, 14 and 15 show measurement results when

we alleviated excessive intra-node work stealing and excessive
steal backs. The labels in these figures indicate execution settings
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Fig. 6 Speedups of Fib(50) (relative to serial C).

Fig. 7 Speedups of Nq(17) (relative to serial C).

Fig. 8 Speedups of Pen(15) (relative to serial C).

Fig. 9 Speedups of Cmp(150000) (relative to serial C).

Fig. 10 Speedups of Histogram(50, 50, 7) (relative to serial C).

Fig. 11 Speedups of Fib(50) (relative to serial C).

Fig. 12 Speedups of Nq(17) (relative to serial C).

Fig. 13 Speedups of Pen(15) (relative to serial C).

Fig. 14 Speedups of Cmp(150000) (relative to serial C).

Fig. 15 Speedups of Histogram(50, 50, 7) (relative to serial C).
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as follows.
• remote-2, remote-10, remote-20, and remote-40 show

speedups when we alleviated excessive intra-node work
stealing by setting E to 2, 10, 20, and 40, respectively.

• relaxed-3 shows speedups when we alleviated excessive
steal backs by setting τ = 3. Alleviation of excessive intra-
node work stealing is not employed (E = ∞).

• rm20+rx3 shows speedups when we alleviated both exces-
sive intra-node work stealing and excessive steal backs by
setting E = 20 and τ = 3.

In all of these settings, priority-based selection (κ = 114) was
used for worker selection inside each computing node.

Remote-20 shows considerable performance improvements;
with 4 × 114 workers, remote-20 is 29.7% better than priority-
all in Fib(50), 48.8% in Nq(17), 26.5% in Pen(15), 83.4% in
Cmp(150000), and 53.2% in Histogram(50, 50, 7).

Relaxed-3 shows negligible/positive/negative performance im-
provements; with 4 × 114 workers, relaxed-3 is −1.8% better
than priority-all in Fib(50), 1.0% in Nq(17), −14.8% in Pen(15),
−6.6% in Cmp(150000), and 0.4% in Histogram(50, 50, 7).
Rm20+rx3 shows negligible/negative performance improve-
ments over remote-20; with 4 × 114 workers, rm20+rx3 is
−28.6% better than remote-20 in Pen(15). In these evaluations,
remote-20 alone suffices.

7. Related Work

Work-stealing frameworks are typically implemented as mul-
tithreaded languages [1], [2], [3], [4], [5] or libraries [19]. Unlike
multithreaded languages, Tascell [6] provides logical-thread-free
on-demand concurrency; a worker performs a computation se-
quentially unless requested, and a new task is spawned only when
requested.

Duran et al. proposed an adaptive cut-off for task parallelism
that determines which tasks should be pruned [20]. Wang et
al. proposed adaptive task creation [21]. These techniques en-
able adaptive creation time cut-offs. In Tascell, the granularity
control can be applied at steal time, and a thief can use some
global information over victims when using virtual probabilistic
guards [7], [8] or the proposed priority- and weight-based selec-
tion strategies.

Shiina and Taura proposed Almost Deterministic Work Steal-
ing (ADWS) [22], which primarily addresses the issue of data lo-
cality. ADWS would reduce the number of steals as well. Yasugi
et al. proposed a Parallel Execution model based on Hierarchi-
cal Omission (HOPE) [17], which primarily addresses fault toler-
ance; every HOPE worker starts a redundant (idempotent) com-
putation sequentially with its own predetermined order and dy-
namic work omission.

Various types of priority-based selection are commonly used
for victim selection. For example, OpenJDK [23] employs a
strategy similar to priority-2 for parallel GC (Garbage Collec-
tion); Horie et al. proposed a strategy similar to priority-κ with
automatic adjustment of κ based on the number of GC work-
ers [24]. Unlike work stealing for parallel GC, our proposed Tas-
cell framework allows the users (application programmers) to let
each worker estimate and declare, as a real number, the amount

of remaining work so that declared values are used as “priorities”
or “weights”.

Okuno et al. proposed work stealing strategies for a certain pro-
gram that extracts connected subgraphs with common itemsets
in distributed memory environments [25]. In their work stealing
strategies, to increase the frequency of task requests to outside
nodes, a thief sends a task request to external nodes if the num-
ber of uncompleted tasks taken from external nodes (except tasks
taken by stealing back) is less than a threshold. In addition, to
prevent workers from stealing back a small task, a worker waits
for the result for a certain period of time before sending a stealing
back request to an external node.

Feeley proposed victim selection from all candidates instead of
“steal backs” [26]. To prevent stack overflow, workers with stacks
of the maximum size must wait for the replies by busy-waiting.

8. Conclusion

This paper proposed four steal strategies for work-stealing
frameworks, namely, two new types of priority- and weight-based
strategies, a non-hierarchical strategy to alleviate excessive intra-
node work stealing, and a relaxed strategy to alleviate excessive
“steal backs”, and implemented them for a parallel language, Tas-
cell. To reduce the total task-division cost, each worker can esti-
mate the work amount of its current task as a real number to be
used as a priority or weight upon victim selection.

From the performance evaluation of the Barnes–Hut algorithm,
we confirmed that the proposed priority- and weight-based strate-
gies showed better performance than uniformly random selection.
Furthermore, priority-based strategy (and a relaxed strategy) also
showed better performance than (virtual) probabilistic guards that
we previously proposed. We conducted a performance evaluation
in a distributed memory environment with five Tascell programs
and mostly confirmed the effectiveness of the proposed strategies.

Comparing the priority- and weight-based steal strategies, we
could not clarify cases where the weight-based strategy would be
better. At least, we can say that the priority-based strategy among
all workers is worth trying in most cases.

For future work, we would like to enhance our implementa-
tion to support more combinations of the proposed and existing
strategies. First, as a combination of priority- and weight-based
strategies, the future implementation may perform priority-based
selection of top m (m > 1) candidates from all workers (by using
some data structures) and then perform weight-based selection
from the top m candidates. This may improve performance if
over-concentration is problematic. Second, probabilistic guards
with a retry loop can be combined with priority- and/or weight-
based strategies.

The proposed framework provides Tascell programmers with
various opportunities to improve performance. For future work,
we (as representative users) would like to explore the best use
of the opportunities to figure out the best performance users can
achieve, for example, by adjusting the numbers of candidates in
priority-based selection; such investigations would be useful for
developing automatic adjustment.

We will apply the proposed strategies to other frameworks,
such as Cilk, for future work.
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