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Abstract: This study presents a method for improving the accuracy of conventional Pedestrian Dead Reck-
oning (PDR) using GPS satellite information in indoor environments. The accuracy of PDR is limited by the
performance of inertial sensors because the errors caused by users’ stride prediction and drift of a gyroscope
continuously accumulate, resulting in large errors in predicted trajectories. We employ a neural network
based PDR which mainly uses accelerometer and gyroscope embedded in a smartphone to predict the user’s
trajectories. To fix PDR’s error on time, we use some landmarks which can be detected by another neural
network that leverages GPS satellite information such as S/N ratio and azimuthal angles to predict if the user
is close to windows in a building. Then, we fuse these two predictions based on the particle filter to predict
a more accurate user’s trajectory. We evaluated our framework using data obtained in different buildings in
our campus and confirmed the effectiveness of the framework.
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1. Introduction

In recent years, with the proliferation of smartphones,
a method called Pedestrian Dead Reckoning (PDR) [1],
which estimates a walking trajectory of a smartphone user
by using the embedded accelerometer and gyroscope, at-
tracts attention of many researchers. In PDR, the ac-
celerometer is used to calculate the walking distance of
the user while the gyroscope sensor is used to detect the
change in direction of walking. Then combining walking
length for each step and direction, the PDR algorithm
can estimate the user’s walking trajectory. However, con-
ventional PDR has some obvious and serious shortcomings
due to the drift of the gyroscope, resulting in accumulated
errors in the trajectory estimation with time. To solve this
problem, some existing studies use some absolute position
information obtained from smartphones to fix the accumu-
lated errors. For example, some methods use Wi-Fi sig-
nal information to estimate the user’s rough position and
then according to this information, the methods eliminate
PDR’s accumulated error [2][3]. However, such methods

require the complete construction of Wi-Fi positioning in-
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frastructure which can cover the whole floor inside the
building. In addition, the collection of fingerprints of Wi-
Fi signal strength at each absolute coordinates should be
conducted in advance and some tiny changes in the orig-
inal environments may cause recollection of fingerprints,
resulting in large installation and maintenance cost [4].
In this research, we propose a new method to solve
the existing problems and realize high accuracy PDR re-
gardless of an additional infrastructure. In the proposed
method, we use GPS satellites information which can be
used by anyone as an existing infrastructure. We have
the following observation in our daily lives: in general, we
cannot get GPS signal or can get poor GPS signal inside
buildings but when approaching the windows or wander-
ing by the window, we can receive GPS signal from the
direction of the window. Therefore, by using these fea-
tures, we can judge whether the user is near the windows
and estimate the user in which side of the building using
the GPS satellite signal strength information and direc-
tional information of observed satellites. Although this
method is unlike Wi-Fi fingerprint methods that can pro-
vide absolute coordinates, we can combine it with map
information so that we can estimate window areas as the

relatively accurate coordinates which can help us elimi-
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nate PDR’s accumulated errors.

2. Related Work

2.1 Conventional PDR

The PDR system was proposed as a solution to naviga-
tion in indoor environments or in weak and unstable GPS
signal areas. The main advantage of PDR is to use inertial
sensors, which are independent of environment changes.
It uses accelerometer signals to detect steps to estimate
walking distance and uses magnetometer combined with
gyroscope signals to compute the heading direction [1].
Finally, with a given known starting position, it can in-
tegrate each step’s displacement with direction change to
get a full trajectory [5]. The main problem for PDR is
the accuracy of heading part that the gyro accuracy and
magnetic disturbance will cause errors growing with time.
To improve the accuracy of PDR, researchers focus more

on reducing errors of heading direction estimation [6], [7].

2.2 Addressing accumulated errors

Another method to improve dead reckoning is using real
map information mainly including map matching methods
[8], [9], [10] and landmarks based methods [11], [12]. On
one hand, in map matching methods, data related to walls
or other objects is used so that if an estimated position
collides with an object because of drift errors, it will re-
calibrate the user’s trajectory. On the other hand, some
researchers use indoor landmarks that represent some spe-
cial positions obviously different from the other positions.
Landmarks can be detected by motion sensors or radio
wave sensors like Wi-Fi or Bluetooth embedded in smart-
phones. For example, if a user approaches an elevator,
data from the magnetometer will have obvious changes so
that as the user is detected in landmarks but PDR has a
drift error, PDR will be fixed immediately by this method.

3. Proposed method

3.1 Overview

The proposed method is composed of three main mod-
ules as shown in Figure 1. The (i) neural network based
PDR module consists of two sub-modules: walking dis-
tance predictor and walking direction predictor. The
walking distance predictor estimates the user’s walking
length within specific time from accelerometer data while
the walking direction predictor estimates the angle of
walking that changes within specific time from gyroscope
data. The second module is named (ii) GPS landmark

module consisting of two sub-modules. We firstly em-
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ploy the window proximity detection model to estimate
whether the user approaches the window in specific time
by time-series information of GPS satellite signal. Then,
the direction classification model estimates the direction
of the window that we detected in the last model in spe-
cific time by using azimuthal angles of satellites. The third
module is (iii) trajectory estimation module, based on par-
ticle filter, which is responsible for integrating outputs of

the above modules to estimate the user’s trajectory.

3.2 Neural network based PDR Module

We propose a method which is different from conven-
tional PDR that predicts the walking distance based on
the step counting and predefined stride length [13]. In our
proposed method, we employ machine learning methods
relying on inertial measurement units data of accelerom-
eter and gyroscope and 2D ground truth trajectories. We
train two different recurrent neural network based sub-
modules [14] for walking distance and direction estima-
2 shows the data flow of the
motion sensor data input and estimated walking length
and change of direction output of the two different LSTM

tion on these data. Figure
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models. [15]
3.2.1 Ground Truth Annotation

To acquire ground truth data of two sub-modules, we
employ Google ARCore technology which can provide pre-
cise relative tri-dimensional positions. ARCore can be
applied in all new Android phones and we can use its
SDK to track camera poses [16], [17]. In the current
method, we only consider two-dimensional positions as
(z¢,vy¢) at time t in a horizontal floor. Therefore, be-
tween time ¢ — 1 and ¢, the walking length d; can be
calculated by d¢ = /(¢ — 2¢-1)% + (y¢ — ye—1)? while

change in walking direction is Af = atan2( “
v

where u = (¢ — 241, Yt — Yt—1), U = (Te1 — T, Yegp1 — Yt)-

We employ these data to train the neural networks.

yU - ’U),

3.2.2 Walking distance predictor

An input of this model is raw accelerometer data and
gyroscope data obtained from a smartphone. After pre-
processing these raw data, we feed them into a recurrent
neural network to estimate the walking length in each time
window.
Preprocessing

To simplify input, we use spline interpolation to unify
the intervals and make up for missing data. In addition,
since it is possible that frequencies of gyroscope and ac-
celerometer are different, we resampled acceleration data
to the same frequency as the gyroscope. We then ap-
ply min-max normalization to each of the preprocessed
data (three-axis acceleration and gyroscope data). After
that, we segment the six-axis time-series into one-second
time windows to simply and synchronize the whole sys-
tem. Note that each segment (time window) is composed
of six time-series with the length of L samples.
Neural Network model

Using segments extracted above associated with d; as la-
bels, we train a LSTM model composed of a single LSTM
layer with a dropout layer and one densely connected out-
put layer. Then, we used relu function as activation func-
tion and mean squared error as the loss function. An
output of this model at time ¢ is estimated walking length
within one time window size [;.
3.2.3 Walking direction predictor

The input of this model is raw gyroscope data collected
from a smartphone. After preprocessing these raw data,
we feed them into a recurrent neural network to estimate

the change of walking direction in each time window.
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Preprocessing

The data preprocessing is almost the same as what we
mentioned in the walking distance predictor but in the
walking direction predictor, we use only three-axis gyro-
scope data as input. Thus, each one-second time window
consists of three time-series with the length of L samples.
Neural Network model

In this part, we use a more complicated LSTM based
model which consists of one Bi-directional LSTM [18] and
one LSTM as shown in Figure 3. Since it is a regres-
sion model, the activation function is linear and the loss
function is mean squared error. We chose this compli-
cated model for this task because our preliminary inves-
tigation revealed that simpler models failed to capture
slight changes in gyroscope data. An output of this model
between time ¢t — 1 and ¢ is the change of the moving di-

rection Awy.

3.3 GPS landmark module
3.3.1 Window proximity detection model

GNSS information includes satellites’ PRNs (id), S/N
ratio (signal strength), azimuthal angles and elevation
angles. The latest GNSS-based localization shows more
than 10 meters error in indoor environments, which is not
reliable. However, our preliminary experiment revealed
that smartphones can still receive GNSS signal although
they cannot provide an accurate positioning. In addi-
tion, when a smartphone approaches a window, it can
receive strong GNSS signals, similar to outsides. There-
fore, our proposed method leverages this fact to perform
window proximity detection [19] to judge whether a smart-
phone approaches the window proximity area. Based on
floormaps of various training environments, we predefined
window proximity areas where smartphones can receive
strong satellites signals within d meters from windows to
collect labeled data for supervised machine learning in
this part. In this model, we use processed GNSS signal
strengths into a RNN model and compute the probability

of window proximity in each time window.
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Preprocessing

GNSS information sequences with timestamps are
given. In order to synchronize motion data above and
GNSS data here, we use the same segmentation size with
neural network based PDR module to segment the GNSS
time series. Within one window, since some satellites are
likely to provide some outlying signals due to surrounding
buildings, we delete signals from satellites with low ele-
vation angles. Then we obtain the time series of signal
strength within the time window for each satellite. We
use min-max normalization to normalize signal strength
for each satellite during each collection. Then, within one
time window, the number of satellites is limited to 6 and
if over 6, we chose only 6 satellites with largest signal
strengths and if smaller than 6, zero padding will be per-
formed. And in each time window, the sequences of satel-
lite information are sorted by descending average signal
strengths.
Detection

As we mentioned above, we predefined window proxim-
ity areas to employ a supervised machine learning. When
the smartphone passed through these areas, we labelled
feature vectors in the training dataset as 'window-side’,
and as 'not’ otherwise [19]. Therefore, we train a bi-
nary classifier with a neural network model composed of a
masking layer, a single LSTM layer, a dropout layer and a
densely connected output layer on the labeled data. The
activation function we used is sigmoid and the loss func-
tion is binary-crossentropy. The result obtained is called
P,indow(t) as the probability of window proximity at time
t. We set the threshold for Pindow(t) as 0.4 if over the
threshold, we judge the user is near a window at time ¢
and otherwise not near a window.

maxone

v vV v o

B
R
B

X 4: Data Flow in Direction classification model

3.3.2 Direction classification model

In this part, as we have detected whether a user ap-
proaches the window at time £, our goal is to estimate
the direction of the external wall where that window is

installed. This method is based on previous study of wall
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orientation classification [19] that makes assumptions that
when a smartphone approaches a window, if azimuth of
a satellite is closer to the direction of that window, the
signal received from this satellite is stronger than signals
from other satellites. We use a single binary classifier to
determine the user approaches a specific orientation of the
building. For each direction, we extract a corresponding
feature vector in each time window. For example, if there
are four sides in a building, we extract 4 feature vectors
totally in a time window. This design allows us to train
only one classifier for direction classification and then use
it to get the probability for each orientation. Figure 4
shows this model of example with 4 directions that in each
window, we can extract 4 feature vectors and through the
LSTM model, we can get 4 corresponding probabilities.
Feature Extraction

For each time window, assuming there are m directions
of outer walls, we calculate m feature vectors. For each
direction, we used 6 satellites in each window as the same
as the window proximity detection model, while we chose
satellites with smallest angular differences between satel-
lites and direction of wall. For example, for direction i,
the normal line angle of A; are predefined by floormap
information and the azimuthal angle of one satellite cho-
sen above can be viewed as p; at time t. Therefore, the
angular difference is calculated as |u; — A;|. To normalize
data, we use cos(jpu — A;|) and sin(u; — A;|) as features.
We also used min-max normalization to normalize signal
strengths and elevation angle for each satellite. Then we
concatenate these 4 values from each of the 6 satellites
into a feature vector which is used for a classifier to de-
termine if the direction of the nearest window is direction
i. Therefore, the input for LSTM model is a 4 dimen-
sion with 6 length feature vector in one time window for
direction 7. For remaining directions, we used the same
method to compute feature vectors.
Classification

When we prepare training data, for each direction, we
label each of the feature vectors above as true when the
user is really at corresponding window side areas of the
building and as false otherwise. Then we train all data
of m directions in a LSTM model with a masking layer,
a LSTM layer, a batchnormaliztion layer and a fully con-
nected layer. The activation function and loss function are
identical to those in the window proximity model. When
estimating the window direction, we compute the class
probability of true for each orientation and we can get
Py(t), Py(t), ..., Pn(t) for totally m directions at ¢. Then
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we chose the largest one as our direction of window pre-

diction at t.

3.4 Trajectory Estimation model

To combine motion results and GPS landmark mod-
ule results, we choose to use particle filter algorithm [20]
which is usually used to estimate the states of non-linear
systems. In our particle filter tracking, each particle rep-
resents the user’s location. The algorithm works by iter-
ating the following steps:

e Predict: For the remaining particles selected from
the last iteration, each particle generates N parti-
cles. The position of new particle ¢ is calculated by
following: lmi‘] = |:r,:,_;| + 1 % lsm(zpt)] where

Yie Yies cos(Xpt)
p¢ is generated randomly by normal distribution with
mean Aw; and a constant variance o.

e Update: For each particle which was generated in the
Predict step, we reassign weight to it with GPS land-
mark module results and floormap information in this
step. We define the overall weight of particle i com-
bined with two weights following as w = a;w; +agwy
where a; and ap are two constants. Firstly, for parti-
cle i, it has weight w; = CDF'(p;) in a normal distri-
bution of (Awy, o) if py < Aw; and wy = 1—-CDF(p;)
otherwise. We use cumulative distribution function
(CDF) here because in this method, it can describe
the probability of such a particle in the normal dis-
tribution and we set this probability as this parti-
cle’s self-weight. Then we use GPS landmark mod-
ule results at time t, if Puindow(t) is larger than
the threshold (our default is 0.4) and (z;,,y;,) is in
the real corresponding window side area of the pre-
dicted direction, the particle i has another weight
wWo = Puindow(t) and wy = 0 otherwise. We define
the overall weight of particle ¢ combined with two
weights mentioned above as w = a;w; + asw, where
a1 and o are two constants.

e Resampling: From these new predicted weighted par-
ticles, we resample them by their weights. In this

study, we will choose top-k weights particles.

4. Evaluation

4.1 Data set

Our dataset consists of GNSS data and motion sensor
data collected in two environments (buildings) and there
are totally 26 different routes. We used Google Pixel 4
with Android 10 to collect motion and GNSS data with a
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self-developed App and used another Google Pixel 3a with
Android 10 to collect ground truth with ARCore App.
During the experiments, a subject held the smartphones
by hand. The floormaps of two buildings are shown in
Figure 5 and we marked where windows are. Building A
is an office floor on the 2nd floor and during the collec-
tion, the subject may pass window areas near the south or
north staircases or in the west lounge or in the east class-
room. There is a neighboring building located in the west
of Building A. Building B is also an office floor on the 6th
floor. However, the south and north windows are between
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A 82.06% 91.20%
B 81.30% 82.09%
Overall 81.84% 88.03%

3 1: Accuracy of models in GPS landmark module

staircases and there are no neighboring high buildings.

4.2 Evaluation Methodology

The evaluation was conducted using ’leave-one-out’
cross validation which means that we iterated each route
as the testing dataset with the remaining datasets used as
training datasets. In the walking distance predictor and
walking direction predictor, we compare the mean abso-
lute errors of LSTM-based models and CNN-based models
because we want to test which DNN framework is better
for this task. The structures of LSTM-based models are
mentioned above while CNN-based models consist of two
1-D convolution layers, one max pooling layer, one flat-
ten layer and one dense layer and same activation function
and loss function as LSTM-based models. In addition, the
length L of each time window is 50 samples. In the GPS
landmark module, we compute the classification accuracy
by comparing the predicted results with ground truth. In
the trajectory estimation model, we compare our proposed
method with the situation if we don’t use GPS landmark
module results as well as the ground truth trajectories.

We use Tensorflow as a deep learning platform.
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4.3 Performance of neural network based PDR
module

Figure 6 shows the comparison of the MAEs (mean ab-
solute errors) for all trajectories collected in building A
and in building B between LSTM-based model and CNN-
based model for walking distance predictor and walking
direction predictor respectively. No matter walking dis-
tance predictor or walking direction predictor, in both
environments, the average MAEs of LSTM-based mod-
els are smaller than that of CNN-models. The results in
building B are not very good because we consider that
it includes much data about going downstairs or going

upstairs which is not a horizontal motion.

4.4 Performance of GPS landmark module

Table 1 shows the accuracies of window proximity de-
tection model and direction classification model for all tra-
jectories respectively in building A and B. Also, in Figure
7, we showed the results of two randomly selected trajec-
tories associated with the outputs of the window prox-
imity detection model respectively in building A and B.
These dots represent positions during movement at dif-
ferent times. Red dots represent positions which are de-
tected as window areas while blue dots are not. We can
find that there are some outliers but these results do not

affect finding out window areas.

4.5 Performance of Trajectory Estimation mod-
ule

We randomly selected two trajectories in building A
and Figure 8 shows the comparison of predicted trajec-
tories by the proposed method, predicted trajectories by
the proposed method without the GPS landmark mod-
ule and ground truth trajectories by ARCore. Figure 9
shows the transitions of the MAEs with time. Our pro-
posed method can achieve our goal that it can eliminate
gyro’s accumulated errors in window areas while without
the GPS landmark module, the errors caused by the gyro

would continuously increase.

5. Discussion

5.1 GNSS data collected in movement

In the previous study, we investigated the relationship
between GNSS data and indoor positions. We collected
GNSS data in some specific areas indoor and kept stand-
ing for long time [19]. However, in this study, we collected
GNSS data during movement and since our window areas

are not large enough, in general, we passed through a win-
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dow area no more than 10 seconds. As a result, it is not
as accurate as data collected during standing. Therefore,
sometimes signal strength may keep unchanged or collapse

and they are outliers.

5.2 Limitations

All of our data collection environments in this study are
in concrete buildings, which interfere with GNSS signals.
In addition, it may not work effectively in buildings with
few windows and in buildings where windows are in the

corners.

5.3 Future work

In the future, we still have some problems to solve. We
will improve the accuracy of the motion system and a
more intelligent method to detect outliers in the two GPS
related models to improve versatility of the trajectory pre-
diction model. In addition, to improve the current system,
we plan to use more map information such as walls and
in such a way, starting position information cannot be re-
quired, which will be an important contribution for pedes-
trian dead reckoning. Furthermore, we will try to explore
a tri-dimension motion system including going upstairs or

downstairs in the future.

6. Conclusion

In this research, we propose a new PDR method
which is combined with GPS information. Our proposed
method can reduce accumulated errors caused by gyro
shift. We investigated the performance of the proposed
method with different walking routes. The models we
used in the neural network based PDR module are better
than other DNN models. The accuracy of the window
proximity detection module is 81.84% and the accuracy
of direction classification module is 88.03%. The mean
absolute errors of predicted trajectories can be controlled

into 2 meters by our proposed method.
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