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Abstract: Obstacle detection is an essential process in consumer’s autonomous mobility systems such as autonomous
vehicles inside the dedicated lane to acquire the location of obstacles, and it has become a popular topic in this decade
with the blooming of various object detection algorithms and the enhancement of sensor quality. To maintain high
accuracy of obstacles’ detection in mobility systems outdoor, a sensor fusion system is required to essentially support
environmental influence such as lousy weather as well as high moving speeds and adaptably deal with clutter and miss
detection based on the incoming measurements from heterogenous sensors with Camera, LiDAR and Radar. Since
no current literature about Gaussian mixture probability hypothesis density (GMPHD) handles the above low accu-
racy fusion problem due to environmental influence for heterogeneous sensors, we propose the concept of integrating
GMPHD to heterogeneous sensor fusion with three architectures, Track-to-Track-Fusion (T2TF), Measurement-to-
Track-Fusion (M2TF) and Track-to-Association-Fusion (T2AF) and further evaluate their performances respectively
in terms of their fusion improvement abilities to determine their practicalities for mobility systems by using the sim-
ulation datasets which reproduce ordinary and poorer conditions with the degradation of sensors’ performance in the
assumption of environmental influences.
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1. Introduction

For autonomous navigation in mobility systems, the full and
precise comprehension of the obstacle position in obstacle de-
tection is of paramount importance to make a proper driving de-
cision to maneuver the car safely to a destination. To strengthen
the obstacle detection dedicated for the autonomous mobility sys-
tems under the adverse environmental influence, several types
of sensors including camera, Lidar, and millimeter-wave Radar
were exploited to formalize the standard sensor system by previ-
ous researchers in a bid to compensate for the deficiencies from
each of those sensors and to fulfill better detection quality accord-
ingly [1], [2] Even though such system with heterogeneous sen-
sors could well assist itself to acquire necessary measurements for
detecting the surrounding obstacle, the perfect comprehension of
the obstacle with high accuracy in such deployment for the fusion
has become more challenging when the performance of sensors
are still at the same time subject to the environmental influence
along with the existence of clutter, scattering miss detection and
other miscellaneous sensors’ inabilities such as the measurement
error and narrow Field of View (FOV). In other words, there
are still several arduous issues for sensor fusion system to deal
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with for the enhancement of the sensor measurement reliability
by adapting the different environments in mobility systems along
with the problems of reducing the false alarm, estimating the ac-
curate positions of the objects as well as interpolating the missed
detection. Furthermore, the adoption of multi-heterogenous sen-
sors with Camera, Radar, and LiDAR in the fusion system implies
the special necessity to handle several types of sensors with dif-
ferent detection properties during fusion when the representations
and qualities of the measurements from those types of sensors are
usually dissimilar from each other. Therefore, sensor fusion with
heterogeneous sensors in mobility system has become a promi-
nent subject to resolve the problems of detection accuracy and the
effective association between incoming measurements from di-
verse types of sensors for a good tolerance of the possible change
of sensor properties due to environmental influence including sys-
tem moving speed and poor weather with low illumination.

In this decade, several pieces of research regarding sensor fu-
sion with Gaussian mixture probability hypothesis density (GM-
PHD) are published to solve the above detection reliability prob-
lems that we are concerned for an only homogenous type of sen-
sor due to its original structure for a single type of sensor model.
[3], [12] GMPHD is attributed to a new emerging paradigm of
Random Finite Set (RFS) based on the rigorous mathematical
foundation for stochastic multi-object problems—point process
theory [4]. Among all prevalent RFS-based algorithms, GMPHD
demands relatively low computational load without explicitly re-
quiring additional data association to obtain a closed-form PHD
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recursion [5] for fair tracking performance by reducing the clut-
ter and enhancing the detection accuracy and we think that it is
suitable for our problem with outdoor mobility system. Thus, it
was chosen as our primary approach to developing multi-object
tracking-based sensor fusion. As the majority of the latest re-
searches only focus on the GMPHD fusion problem of the station-
ary environment with a homogenous type of sensor, Our contribu-
tion in this paper is to specifically address heterogeneous sensor
fusion problems due to environmental influence and propose new
architectures which integrate GMPHD technique for the hetero-
geneous sensors in the application of consumer mobility systems
with an improvement of detection accuracy by estimating the cor-
rect position of obstacle and counteracting the fault of each sen-
sor under the adverse environmental influence. We further stud-
ied its applicability to heterogeneous sensor fusion in mobility
environment moving at different speeds and situating in differ-
ent illumination to determine whether the best architecture could
address the need of the consumer autonomous mobility systems
and enhance the detection performance in terms of improvement
rate among our approaches of three architectures with GMPHD.
The contribution of our research will be helpful for the develop-
ment of obstacle detection algorithm in fundamental autonomous
mobility systems such as autonomous driving vehicles and buses
inside the dedicated lane which only requires the location of the
nearest objects when it is challenging for the existing fusion sys-
tem to comprehend the location of obstacle accurately based on
the problems mentioned above.

This paper aims to present the architectures of heterogeneous
sensor fusion integrated with GMPHD in the application of mo-
bility systems such as autonomous driving vehicles and buses in-
side the dedicated lane for the consumers. In Section 2, the se-
lection of the tracking algorithm for sensor fusion and the theory
of GMPHD are presented. In Section 3, the general problems to
the heterogeneous sensor fusion are illustrated to emphasize the
challenges and the issues in which our sensor fusion in the mo-
bility systems might suffer. In Section 4, three proposed architec-
tures with GMPHD integration for heterogeneous sensor fusion
are explained in terms of their implementations to unravel the
fusion problem. In Section 5, the simulations of different envi-
ronments for mobility systems are described. We examined the
improvement effectiveness of three architectures for sensor fusion
respectively under the assumption of environmental influence and
further discuss the impact of our result on consumer products. In
Section 6, the existing related works to the problem of sensor fu-
sion are presented.

2. Gaussian Mixture Probability Hypothesis
Density for Sensor Fusion

2.1 The Selection of Tracking Algorithms for Sensor Fusion
To estimate the object location with incoming measured ob-

ject points from sundry sensors, tracking is a crucial step to asso-
ciate all those points for the same object from different sensors.
There are several popular data association approaches for track-
ing algorithms available in the past. The general ways include
Global nearest neighbor (GNN), joint probability data associa-
tion (JPDA), and Multiple hypothesis tracking (MHT). Despite

Table 1 Performance comparison for autonomous Angles-Only Multi-
Target Tracking.

the high availability of the existing data association approaches
for tracking the measurement points, the computational cost for
the real-time result and the tracking performance for the correct
association is also one of the concerning issues that we are facing
during tracking, and many researchers in the past tried to solve
the problem by balancing these two aspects. For instance, clas-
sical MHT cannot run in real-time and demands enormous com-
putational resources due to the accumulation of hypotheses from
the pedigree of association history even though it has more supe-
rior performance than JPDA and GNN and comparable to state-
of-the-art methods in recent years [16]. As a result, a consider-
able number of techniques to handle its computational problem in
MHT had been proposed. For example, Fast MHT algorithm [17]
endeavored to resolve the computational intractability issue in the
original MHT by clustering and eliminating unlikely hypotheses.
Another example of a solution to the problem in MHT, the roll-
out algorithm [18], was exploited to maximize the measurement-
to-track association likelihood and enhance the time efficiency of
MHT, Tabu Search and Gibbs sampling [19] enhanced the track-
ing performance and further improved the computational effi-
ciency in MHT. Compared to MHT, a similar intractable prob-
lem also happens in JPDA even though JPDA is considered as
the approach which has relatively worse tracking performance
but better computational efficiency due to its less combinatorial
complexity. One of the papers in the past proposed a JPDA em-
bedment with a simple tracking framework to reduce its process-
ing time [20]. For GNN, it requires the least computational cost,
but it could only perform well in a less cluttered environment.
Therefore, the GNN data association is only adopted for a sim-
ple case with fewer clutters from the data measurements and some
researchers proposed Suboptimal Nearest Neighbor (SNN) to im-
prove the tracking performance of the GNN-based method [21].

As data association involves the tradeoff between computa-
tional cost and implementation complexity, the tracking algo-
rithm with good balance is, therefore, the critical criteria for our
selection of sensor fusion algorithm to support a higher number of
incoming measurements. In our study, PHD (probability hypoth-
esis density) method has become popular in this decade and it was
proven efficient. Based on Table 1 which shows a performance
comparison of the precision and runtime for tracking 3 targets
with low clutter environment on a single image by different Multi-
Target Tracking algorithms in MATLAB, [22] PHD (probability
hypothesis density) method keeps fair computing time when it
maintains higher precision among all the methods and this result
means it has relatively strong ability to remove the false alarm
measurement. Among existing implementations of PHD method,
RFS-based GMPHD is prominent for its detection accuracy im-
provement with fair computational time and we therefore only
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focus on the algorithm as our main component for the sensor fu-
sion in the application of mobility systems.

2.2 The Theory of Gaussian Mixture Probability Hypothe-
sis Density for Sensor Fusion

GMPHD is an analytic solution to the PHD recursion under
Gaussian assumption and PHD is an approximation to multitarget
Bayes filter with the first-order statistical moment of the multi-
target posterior density [22]. The derivation of PHD filter is at
first provided to understand its fundamental concept before mov-
ing on to its approximation in the view of computational tractabil-
ity.

Suppose the random finite set for multi-target (estimation tar-
get) set Xk and multi-target observation (measurement) set Zk at
time k are as follows [6],

Xk = {xk,1, xk,2, . . . , xk,M(k)} ∈ F (χ) (1)

Zk = {zk,1, zk,2, . . . , zk,N(k)} ∈ F (Z) (2)

where F (χ) is the collections of all finite subsets of target states
χ with M(k) states and F (Z) is the collections of all finite sub-
sets of observation states Z with N(k) states. Each target xk−1,·
in multi-target set Xk−1 generates a Bernoulli RFS S k|k−1(xk−1)
at time k with survival probability pS ,k(xk−1) and new targets at
time k are modeled by an RFS of spontaneous births Γk. Hence,
the multi-target state Xk at time k according to the previous state
Xk−1 [5], [6],

Xk =
⋃

xk−1∈Xk−1

S k|k−1(xk−1) ∪ Γk (3)

Similarly, each measurement zk,· in observation set Zk is gener-
ated by Bernoulli RFS Dk(xk) with detection probability pD,k(xk)
based on each target xk in the set Xk at time k and spurious mea-
surement set Fk [5], [6],

Zk =
⋃

xk∈Xk

Dk(xk) ∪ Fk (4)

Based on the theory of Bayes recursion with multi-target set Xk

and multi-target observation set Zk at time k, the optimal multi-
target Bayes filter is derived given by the recursion as follows,

pk|k−1(Xk | Z1:k−1)

=

∫
fk|k−1(Xk | X)pk−1(X | Z1:k−1)μs(dX)

(5)

pk(Xk | Z1:k) =
gk(Zk | Xk)pk|k−1(X | Z1:k−1)∫
gk(Zk | X)pk|k−1(X | Z1:k−1)μs(dX)

(6)

where pk( · | Z1:k) is the multi-target posterior density, pk|k−1( · | ·)
is the multi-target prior density fk|k−1( · | · ) is the multi-target
transition density, gk|k−1( · | · ) is the multi-target likelihood and
μs is an appropriate reference measure on the subset Fk [6], [24].

However, multi-target Bayes filter is computationally in-
tractable and it only works when the number of targets is
small [6], [25], various approximations such as Sequential
Monte Carlo (SMC), Cardinalized probability hypothesis density
(CPHD), multi-Bernoulli, PHD, and Dynamic factorization have
been proposed in the past [24], [26], [27]. As PHD is more ma-
ture, swifter, and more computationally efficient compared to the

rest of other existing approximation tactics [5], [24], [26], [28],
we only remark on this filter and further elaborate it under the
linear Gaussian multi-target model.

The PHD filter propagates a first-order statistical moment of
the multi-target posterior [22] with the theory of finite-set statis-
tics (FISST) to approximate the optimal multitarget Bayes fil-
tering in the recursion (5) and (6). FISST is a systematic, uni-
fied, and intuitive approach to multi-sensor-multi-target detec-
tion, tracking, and information fusion based on the mathemati-
cal foundation for stochastic multi-object problems, point process
theory [4], [29]. Thus, the following approximated intensities νk
and νk|k−1 are approximated with the first moment of multi-target
posterior density pk from Eq. (6) and multi-target predicted den-
sity pk|k−1 from Eq. (5) respectively through PHD recursion,

vk|k−1(x) =
∫

pS ,k(xk−1) fk|k−1(xk | xk−1)vk−1dxk−1

+ γk(xk)
(7)

vk(x)

= [1 − pD,k(xk)]vk|k−1(xk)

+
∑
z∈Zk

pD,k(xk)gk(z | xk)vk|k−1(xk)

κk(z) +
∫

pD,k(xk−1)gk(z | xk−1)vk|k−1(xk−1)dxk−1

(8)

where fk|k−1(· | ·) is the multi-target transition density, gk|k−1(· | ·)
is the multi-target likelihood, pS ,k(xk−1) is a survival probability
at time k given that state x at previous time k − 1, pD,k(x) is a
detection probability given state x at time k, κk(z) is an inten-
sity of clutter RFS Fk and γk(x) is an intensity of the birth RFS
Γk [5], [6]. From Eqs. (7) and (8), its approximation based on
FISST demonstrates the computationally cheaper approach with-
out combinatorial computations from an unknown association of
the Bernoulli RFS [6]. However, PHD filter does not offer any
closed-form solution and suffers a curse of dimensionality due to
the complexity of numerical integration [6], [30].

To obtain the closed-form solution, particle PHD filters such
as Auxiliary particle PHD filter [31] and SMC-PHD filter had
been developed in the past but they suffer from highly demand-
ing computational cost even though they support highly nonlinear
problems, and they are closer to the original PHD filter. For this
reason, we ruled out the approach of particle PHD filters, and
our study mainly adopted GMPHD which is another closed-form
solution to PHD recursion under the linear Gaussian multitarget
model. Equation (9) shows the Gaussian approximation of Eq. (7)
with the form of N( · ; m, P) which represents a Gaussian density
with weight w, mean m, covariance P, and the number of compo-
nents of the Gaussian intensity J.

vk|k−1(x)

= γk(x) + pS ,k

Jk−1∑
i=1

w(i)
k|k−1N(x; mi

k|k−1, P
(i)
k|k−1)

(9)

γk(x) =
JΓ,k∑
i=1

w(i)
Γ,kN(x; mi

Γ,k, P
(i)
Γ,k) (10)

Where, γk(x) in Eq. (10) is the Gaussian mixture birth PHD with
weights w(i)

Γ,k, means mi
Γ,k, and covariances P(i)

Γ,k of each Gaussian

c© 2021 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.29

Fig. 1 The flow of Kalman filter for GMPHD estimation.

mixture hypothesis respectively. vk|k−1(x) in Eq. (9) is a predicted
PHD at time k based on the estimated PHD at time k − 1 with
survival rate pS ,k, weights w(i)

k|k−1, means mi
k|k−1, and covariances

P(i)
k|k−1 of each Gaussian mixture hypothesis and combined with

Gaussian mixture birth PHD γk(x).
Meanwhile, the following Eq. (11) shows the Gaussian approx-

imation of Eqs. (8).

vk(x)

= (1 − pD,k)vk|k−1(x)

+ pD,k

∑
z∈Zk

Jk|k−1∑
i=1

w(i)
k (z)N(x; mi

k(z), P(i)
k )

(11)

w(i)
k (z) =

w(i)
k|k−1(z)q(i)

k (z)

λF,k +
∑Jk|k−1

l=1 w
(l)
k|k−1(z)q(l)

k (z)
(12)

q(i)
k (z) = N(x; Hkm(i)

k|k−1, S
(i)
k|k−1)/pK,k(z) (13)

Where vk(x) in Eq. (11) is the posterior PHD with sensor detec-
tion rate pD,k, the weight w(i)

k (z), mean mi
k(z) and the covariance

P(i)
k of the estimated PHD from the incoming measurement set Zk

and the predicted PHD vk|k−1(x) in Eq. (9).
For simplicity, the technique of standard Kalman filter with

both linear prediction model and linear update model for each
type of sensor shown in Fig. 1 is exploited in this paper to ac-
quire the closed-form solution of Bayes filtering recursion under
the assumption of linear Gaussian model for vk|k−1(x) in Eq. (9)
and vk(x) in Eq. (11). In Fig. 1, Xk−1 is the set of estimated object
points xk−1 at time k − 1, Xk is the set of estimated object points
xk at time k after filtering and Zk is the set of sensor measurement
points zk at time k. The calibratable parameters including birth
density γk(x), survival rate pS ,k, detection rate pD,k, clutter rate
pK,k(z) in the models are changed based on the object trajectory
presumption and sensor measurement properties.

To reduce the redundant computational resource, the Gaussian
mixture hypotheses are purged and merged after each fusion at
each time step. The criteria for hypothesis purging are to limit the
number of hypothesis Npurge and to remove the hypothesis with
weight below the purging threshold wpurge. For hypothesis merg-
ing, the criterion is to merge two hypotheses with the difference
L less than merging threshold Lmerge. The formula of difference L

is as follows.

L(x1
k , x

2
k) = (m1

k − m2
k)(P1

k)
−1

(m1
k − m2

k) (14)

Where m1
k and P1

k are the mean and covariance of hypothesis x1
k

respectively and m2
k is the mean of hypothesis x2

k at time k.
Despite the credit of fairly good computational efficiency and

tracking performance in GMPHD, the critical mission in this pa-
per is the implementation and the practical integration of GM-
PHD tracking algorithm for heterogeneous sensor fusion archi-

tectures including M2TF, T2TF, and T2AF which the details are
shown in Section 4 since this problem has rarely been fulfilled
in the current works of literature due to the original GMPHD
structure which is only customized to homogeneous sensor fu-
sion and merely caters to the same prediction and update models.
On the other hand, the uttermost issues are the strategies for the
constituent of key models inside GMPHD for multiple dissimilar
types of sensors and their performance of detection improvement.

3. Problem Formulation

This section presents the existing issues for the development of
multi-target tracking-based heterogeneous sensor fusion (multi-
sensor fusion). In Section 3.1, we define the system requirements
of heterogeneous senor fusion in mobility systems by explaining
three significant environmental influence which generally con-
tributes to the sensor fusion issues in terms of low detection rate
(False negative measurements) and clutter (False positive mea-
surements) and they primarily cover most sensor detection issues
in mobility systems. In Section 3.2, the problems in heteroge-
neous Sensor fusion architectures with GMPHD are explained in
detail.

3.1 Problems of Sensor Fusion Performance under the En-
vironmental Influence

3.1.1 Sensor Fusion Performance on Moving Mobility Sys-
tems

The tracking-based algorithm in the local filtering and a sen-
sor fusion layer function as the role of removing the clutter and
recovering objects’ trajectories from sensor measurements [5] so
as to enhance detection rate and distinguish the true position of
object targets from a set of spurious measurements. As the first
appearance object detected by sensors in mobility systems is usu-
ally moving at a higher speed when the mobility systems are op-
erating, GMPHD implementation from the majority of existing
methods in the literature such as Ref. [13] are no longer func-
tioning well with its original default setups when they are always
dedicated for the tracking problem in stationary environment and
thus those methods easily mistake the incoming sensor measure-
ments moving at higher speed as clutter. Focusing on GMPHD
strategy with heterogeneous sensor fusion in mobility systems,
the problem for sensor fusion is how the system could still main-
tain the fair improvement ability of any erroneous detection in the
higher speed environment of the mobility systems.
3.1.2 Optical Sensor Detection Rate due to Environmental

Illumination
The uncertain detection rate in sensors is always the issue

of false-negative detection which miss the object measurements,
and we found out that only color optical sensors are commonly
susceptible to the problem of the unstable detection rate due to
low amount of surrounding light source whereas radioactive sen-
sors would not, and their detection rate are resiliently constant
notwithstanding the kinds of environmental influences in most
situations. In mobility systems, it is common that the illumina-
tion of the environment always fluctuates due to adverse weather
conditions and insufficient lighting inside the operation area. This
issue leads to the degradation of most color optical sensors’ de-
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tection performance. As these sensors’ properties cannot be sta-
bly controlled and change unpredictably in reality due to the in-
fluence of light source from the surrounding environment, it be-
comes our concerning problem for improving the ability of pro-
posed heterogeneous sensor fusion architectures with GMPHD
and pre-defined models for the sudden optical sensors’ detection
rate change. For example, the camera on mobility systems often
cannot perform well in a dark environment but radioactive sen-
sors such as Radar and LiDAR still function perfectly well. We
would like that our proposed sensor fusion algorithm with GM-
PHD could still be able to improve the detection error effectively
with sudden slight detection rate abatement under this adverse
condition.
3.1.3 High Number of Radioactive Sensors’ Clutters due to

Surrounding Radioactive Noise
The sensor clutter is the sensor issue of false-positive alarms

that falsely detect the existence of an object. Among all the
sensors, Radar and LiDAR have the common issue of relatively
higher random clutter due to the surrounding radiation noise re-
gardless of its resilient detection rate and this is a tremendous is-
sue to deal with and therefore provides accurate and useful object
position measurements. An optical sensor with an object detec-
tion algorithm does not have such kind of problem as it would
not be affected by radioactive noise by only recognizing the ob-
ject with color and patterns. For this problem, we exploited our
proposed sensor fusion algorithm with GMPHD, and our con-
cerned problem is how much random noise/ clutter our different
fusion architectures in the application of mobility systems could
reduce while fusing with other sensors’ measurements to improve
the detection accuracy.

3.2 Problems in Heterogeneous Sensor Fusion Architec-
tures

For multi-sensor fusion, the fusion architectures influence not
only the communication efficiency owing to the bandwidth re-
quirement but also error certainty estimation and information cor-
relation between measurements. The decision of fusion architec-
tures might therefore affect the ability of detection accuracy im-
provement due to environmental influence for mobility systems.
There are two mainstream architectures of sensor fusion in the
past, Centralized fusion architectures, and Hierarchical fusion ar-
chitectures. Centralized fusion architectures transmit the object
measurements from each deployed sensor directly to a global
fusion node. (Shown in Fig. 2) They provide local stovepiped
processing centers that limit network-centric development [15].
This architecture has its relatively simple structure with all the
measurements from different types of sensors handled in global
track but our concerned problem in this paper is whether this sim-
ple structure with GMPHD still provides fair detection accuracy
improvement under the environmental influence in mobility sys-
tems.

Hierarchical architectures combine all the track estimates
from each local centralized fusion processing node, forming a
subordinate–superior relationship [15] (Shown in Fig. 3). This
relationship forms the robust technique which further abates the
estimation error and enhances the tracking performance. Even

Fig. 2 The structure of centralized fusion architecture.

Fig. 3 The structure of hierarchical fusion architecture.

though this architecture has a more complex structure, we are
also concerned whether this more complex structure with extra
local fusion and the implementation of GMPHD still provides
better detection accuracy improvement under the environmental
influence in mobility systems.

Despite the availability of these two architectures’ foundations,
most of those with GMPHD integration in the literature only pay
attention to the homogeneous sensor. In other words, the most
challenging problem is to handle the choice of architecture which
is more adaptive to the issues of high mobility system operational
speed in Section 3.1.1, optical sensor issue mentioned in Sec-
tion 3.1.2, and high radioactive sensor noise in Section 3.1.3 for
heterogeneous sensors fusion with GMPHD in mobility systems.

For those architectures with GMPHD in which only homoge-
nous sensors are required, the same prediction models and the
same update models for each sensor are usually needed without
any substantial change. As a result, no other special arrange-
ment is indispensable in such architecture for better fusion per-
formance as the same models could cater well for multiple same
types of sensors with good consistency on local and global track
estimation inside the architectures. However, the problem be-
comes more uncertain and arduous when it comes to heteroge-
neous sensors. For the case of heterogeneous sensors, each sen-
sor has different properties from each other and the composition
of architecture to satisfy different properties of sensors becomes
uncertain because of the same global fusion track with incoming
measurements in different local tracks from the dissimilar types
of sensors with variant FOV, clutter rate, error covariance, and
detection rate. Furthermore, the synchronization fusion order for
those different prediction and update models based on dissimilar
types of sensors’ performances and abilities in the architecture is
also an influential factor to affect the ability of detection perfor-
mance improvement.

Therefore, opting for the most appropriate architecture and the
techniques of fusion management with GMPHD integration are
significant issues in this paper to address the enhancement issue
on sensor fusion performance based on tracking estimation and
also maintain its performance under the influence of environmen-
tal speed as well as the adverse scenario with high adaptability in
our sensor fusion for consumers’ mobility systems.

3.3 The Scope of Our Performance Requirements
Our research mainly focuses on the tracking performance of

the sensor fusion result under the adverse environmental influ-
ence based on our chosen GMPHD. Since our chosen method
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has already been proven to have more efficient computational cost
with fair tracking performance compared to other existing meth-
ods in Table 1, we expect that the same technique with different
architectures should cost a similar amount of computation cost
and it is not the main scope of this paper.

Therefore, our main scope of requirement in this paper is
the performance comparison of the proposed fusion architectures
with GMPHD techniques based on the problems in Section 3.2
with regard to the ability of detection accuracy improvement in
terms of low detection rate (False negative measurements) and
clutter (False positive measurements) under the adverse environ-
mental influence explained in Section 3.1. Comparing our results,
we targeted to find out the best architecture with GMPHD inte-
gration for the practical deployment in mobility systems.

4. Proposed Architectures for the Integration
of GMPHD to Heterogeneous Sensor Fusion

In this section, the implementation details, and the concerns of
three proposed architectures M2TF, T2TF, and T2AF based on
the fundamental fusion architectures with the integration of GM-
PHD and the implementation of standard Kalman filter to hetero-
geneous sensors are presented. In each architecture with GM-
PHD, we especially focus on the novel design for the forming of
Gaussian components in prediction and update models based on
Eqs. (9) and (11) respectively with the implementation of Kalman
filter in this section.

4.1 Measurement-to-track Heterogeneous Sensor Fusion
(M2TF) with GMPHD Integration

The structure of measurement-to-track fusion (M2TF) is illus-
trated in Fig. 4 based on Centralized fusion architectures with the
integration of the GMPHD algorithm. In this architecture, the
object point measurements from each type of sensor at each time
step are sequentially fed into a single GMPHD globally.

Since the original GMPHD algorithm itself does not require
any data association to group the corresponding measurements
for each of the same target objects, the asynchronistic models are
exploited, and object point measurement set from each type of
sensor at each time step updates the global fusion track sequen-
tially as the flow of the corresponding functions shown in Fig. 5.

In M2TF architecture, only a single GMPHD for global fusion
is required. The challenging part of this architecture is to develop
two essential models in global fusion with the implementation
of GMPHD for heterogeneous sensors with different properties,
which models are the global prediction model based on Eq. (9)
and the global update model based on Eq. (11).

For global prediction modeling vtk|k−1(x) of sensor type t, the
composition of birth Gaussian components in γk(x) based on the
corresponding sensors’ FOV are appended into a global track.
The velocity of each birth component should be the same as the
speed of mobility systems when the first appearance point is most
likely to vary based on the current velocity of the mobility sys-
tems. The survival rate pS ,k and prediction error covariance Pk|k−1

remain the same throughout the whole estimation. However, sur-
vival rate pS ,k should not be too low, and the target states are
supposed to survive for a certain period especially when other

Fig. 4 The structure of measurement-to-track fusion with GMPHD integra-
tion.

Fig. 5 The measurement management of measurement-to-track fusion with
GMPHD integration.

Fig. 6 The structure of track-to-track fusion with GMPHD integration.

types of sensors might not successfully capture the object due to
the limited area of FOV. In other words, only the change of birth
model γk(x) is conducted based on the sensor type of incoming
measurements for each prediction step in recursion.

For global update model vtk(x) of sensor type t, the global track
is retrieved for the fusion with incoming measurements Zk. Based
on the sensor type of incoming measurements, the corresponding
detection rate pD,k, the density of Poisson false alarm pK,k(z) and
error covariance S k|k−1 are applied to each measurement point and
update target states correspondingly.

In this architecture, the number of computation steps is lower
as only a single GMPHD is required to estimate all the incoming
measurements from disparate sensors, and no extra data associa-
tion and clustering are needed. Since the global fusion is shared
among different sensors, we hypothesize that the slight change of
single sensor properties due to the environmental influence would
not largely be detrimental to the final fusion performance because
of the normal operations from other sensors.

4.2 Track-to-Track Heterogeneous Sensor Fusion (T2TF)
with GMPHD Integration

The structure of track-to-track fusion (T2TF) is illustrated in
Fig. 6 based on Hierarchical fusion architectures with the GM-
PHD algorithm. In this architecture, the raw measurements from
each sensor at each time step are pre-filtered with local filtering
in advance given that the raw measurements are the point object.

Since this architecture with GMPHD does not require data as-
sociation to group the corresponding measurement for the same
object as M2TF structure does, the asynchronistic models are ex-
ploited and the filtered measurements from each type of sensor
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Fig. 7 The measurement management of track-to-track fusion with GM-
PHD integration.

at each time step sequentially update the global fusion track as
shown in Fig. 7.

In T2TF architecture for heterogeneous sensors on the mobil-
ity systems, GMPHD for local filtering and global fusion are re-
quired. In other words, the challenging part of this architecture
is not only to build up prediction and update models for accu-
rate global fusion as M2TF illustrates but also the prediction and
update models in local filtering for each sensor before fusion.

For each local prediction model vtk|k−1(x) of sensor type t, the
composition of birth Gaussian components in γk(x) based on the
corresponding sensors’ FOV are appended into a local track for
each sensor and the velocity of each component in the first ap-
pearance tend to be the same as the speed of mobility systems.
This technique further distinguishes the clutters which potentially
have unalike velocity. The survival rate pS ,k and prediction error
covariance Pk|k−1 remain the same.

For each local update model vtk(x) of sensor type t, the local
track from each sensor is retrieved for the fusion with incoming
measurements. Based on the sensor type of incoming measure-
ment, the corresponding detection rate pD,k, the density of Pois-
son false alarm pK,k(z) and error covariance S k|k−1 are applied to
each measurement point and update the target state correspond-
ingly.

For the global prediction model vgk|k−1(x), all the parameters are
the same as the local prediction model vtk|k−1(x) based on the sen-
sor type t of incoming measurements and the speed of the mobil-
ity systems. However, more different configurations are required
in the global update model vgk(x). As we noticed that the local
filtering dedicated for each sensor has already enhanced the accu-
racy of the local track by reducing clutter and improved detection
rate, the corresponding detection rate would be therefore higher,
and the density of Poisson false alarm relatively decreases in the
global update model to update the global track with an incoming
filtered local track from the local filtering in respective heteroge-
neous sensors for fusion.

This architecture could further swiftly weed out the random
clutter because of the strong involvement of two steps filtering
and therefore we assume this architecture performs well in a high
Signal Noise Ratio (SNR) environment. Regarding the sensor
properties change due to the environmental influence, we hypoth-
esize that the global fusion in this architecture would be more
versatile to the abnormality in local GMPHD filtering in a bid
to maintain a decent quality of measurement improvement under
those influences.

Fig. 8 The structure of track-to-association fusion with GMPHD integra-
tion.

Fig. 9 The measurement management of track-to-association fusion with
GMPHD integration.

4.3 Track-to-Association Heterogeneous Sensor Fusion
(T2AF) with GMPHD Integration

The structure of track-to-association fusion (T2AF) is illus-
trated in Fig. 8 based on Hierarchical fusion architectures with
GMPHD and global fusion with data association. In this architec-
ture, the raw measurements from each sensor at each time step are
first filtered with local tracking given that the raw measurements
are the point object which indicates a single point per object and
then sequentially fed into the data association algorithm for the
fusion step.

Since this architecture with GMPHD requires data association
in the final fusion step to group the corresponding measurement
for the same target object, the synchronistic data association mod-
els are exploited and the filtered measurements from each type of
sensor at each time step collectively update the global fusion track
with data association as shown in Fig. 9.

The challenging part is to set up two models, the local predic-
tion model, and the local update model for local filtering in re-
spective heterogeneous sensors with the implementation of GM-
PHD.

The local prediction models vtk|k−1(x) are specifically built for
each type of sensor t. For each prediction model in local filtering
in each sensor, the birth models based on information of FOV of
respective sensors and the velocity of mobility systems are ap-
pended to the existing local track. For each update model vtk(x)
in local tracking of each sensor t, the detection rate pD,k, the clut-
ter rate based on the density of Poisson false alarm pK,k(z) and
error covariance S k|k−1 for local tracking are set up to update the
local track as per the sensor properties. As for the global fusion,
GNN is the suggested data association approach to associate fil-
tered points in a high Signal noise ratio environment and we as-
sume local filtering with GMPHD has already efficiently tackled
almost all clutters and miss-detection issues beforehand.

The architecture requires fewer computation steps provided
that the cheaper data association is utilized. Nevertheless, GM-
PHD in local filtering from each sensor plays a key role in deal-
ing with the problem of miss detection and clutter in this archi-
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tecture. In this architecture, we hypothesize that the ability of
random clutter removal is weak when data association in global
fusion does not have such ability. All the handles of clutter mea-
surements rely on local filtering. However, it might handle the
miss detection well to interpolate the points with a single step of
filtering during fusion.

5. Simulation and Performance Evaluation

5.1 Simulation Environment for Sensor Measurements
To determine the suitability of whether our three sensor fusion

architectures with GMPHD are applicable to the consumer mobil-
ity systems product, various scenarios for detection performance
evaluation are simulated based on the consideration of three as-
pects, 1. The nature of target obstacles from initial origins with
different moving velocities, 2. Sensor properties (detection rate
and clutter number) of Camera, Radar, and LiDAR which imi-
tate the configuration of real hardware in most autonomous mo-
bility system, and 3. Speeds of mobility systems from 0 km/h to
90 km/h based on the standard braking distance and the existing
laws for the speed of large vehicles [32].
5.1.1 The Properties of Target Obstacles

For the simulation of the nature of target obstacles, we assume
every single object is interpreted as a single measurement point
by all the sensors, and three object points are set up to move ac-
cording to the pre-defined initial position and predefined velocity.
The number of objects in the setup is based on the frontest objects
which possibly exist.

To determine the trajectory of each object, the constant veloc-
ity model with small random noise ε is created to simulate how
the objects move in the scene. The constant velocity model is
shown as follows in Eq. (15),

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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where t is the time duration at each time step, X0:k−1 and Y0:k−1

are the set of previous position state of X1:k and Y1:k respectively
and Ẋ0:k−1 and Ẏ0:k−1 are the set of previous velocity state of Ẋ1:k

and Ẏ1:k respectively.
The assumptions of those objects’ properties for all the simu-

lation scenes are shown as follows in Table 2.
Based on Eq. (15), the trajectories of three objects are com-

puted throughout the lifetime of sensor detection and their visual-
ization with the moving directions in arrows are shown in Fig. 10.
5.1.2 Sensor Properties in Simulation

The sensor deficiency based on the property for its type of sen-
sor is the crucial factor for our sensor measurement simulation
when it could reflect the sensor problem which our fusion system
needs to address. The simulation of the defects for each sensor in-
cludes detection rate, Field of View (FOV), sensor measurement
error with error covariance, and clutter rate.

It is worth noting that our clutter rate in the sensors of our
simulation is set up according to the number of random clutter
appearances per frame. Furthermore, FOV in our simulation is
defined by the distance range only for simplicity and each rect-

Table 2 The assumption of Objects’ properties.

Fig. 10 The visualization of the trajectories of three objects.

Fig. 11 The illustration of FOV for sensors in simulation.

angular FOV area for each of the sensors has been illustrated as
follows in Fig. 11.

In autonomous mobility systems, Camera, Radar, and Lidar
are usually equipped as the essential sensors to comprehend the
positions of obstacles in the vicinity of the system [1]. There-
fore, we chose them as our target types of sensors and gener-
ate the simulation measurements for our evaluation. For camera
measurements, we presume that stereo disparity and the convolu-
tional deep neural network such as YOLO have been applied to
decipher the color on raw RGB images and therefore each object
and its depth on the image would be interpreted as a single point
in the corresponding bird eye view location. For the measure-
ments from LiDAR and Radar, we presume the measured points
for each object were combined as a single position point through
clustering in the corresponding bird eye view location.

To focus on the problem due to environmental influence in the
simulation dataset, the detection problem in Camera based on
the problem in Section 3.1.2 is determined by detection rate in
the simulation and the simulation of clutter in Radar and LiDAR
based on the problem in Section 3.1.3 is determined by the value
of clutter rate for the corresponding sensor.
5.1.3 Speed for Mobility System in Simulation

We focus on the speed requirement of vehicles as our target au-
tonomous mobility system in our simulation since it usually has
the fastest speed among those systems based on the problem in
Section 3.1.1. As the object detection algorithm and sensor in
current technology are not able to stably measure the position of
the faraway objects up to 300 meters, we would not further sim-
ulate the environment with more than 100 kilometers per hour
since it requires a longer braking distance which is over 524 me-
ters [32].
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Fig. 12 The visualization of the trajectories of three objects under moving
system with the speed 90 km/h.

For the speed of the simulation in our concerned mobility sys-
tems, the standard for a low-speed vehicle (LSV) is referred to
in this paper because of their short braking distances. Accord-
ing to the Federal motor vehicle safety standards in the U.S., one
of the criteria relevant to speed for LSV is “a speed attainable in
1.6 km (1 mile) is more than 32 kilometers per hour and not more
than 40 kilometers per hour on a paved level surface [34]. Hence,
40 kilometers per hour is chosen as the simulation speed for our
performance evaluation.

To further understand the case when the system runs over rea-
sonable speeds, 60 kilometers per hour and 90 kilometers per
hour are also considered in this paper to evaluate how the tracking
performs. However, it is irrational to consider the case when the
vehicle runs over 100 kilometers per hour due to braking distance
and the inadequate FOV mentioned earlier and we, therefore, did
not advance those cases in our evaluation. Figure 12 illustrates
the trajectories of 3 corresponding detected objects from Fig. 10
moving at relative velocity involving each original object speed
and system speed 90 kilometers per hour. For the purpose of fair
evaluation, all corresponding measurements of each object trajec-
tory step in all cases would be also retained under higher system
speeds. The trajectory for each object is the same and no mea-
surement would be missed after the system speeds are applied
into the simulation. This implies that all simulations captured the
whole object trajectories from the actual starting point to ending
point but different measurement positions due to the different sys-
tem moving speeds.

5.2 Performance Evaluation for Sensor Fusion
In our evaluation, Generalized Optimal Sub-Pattern Assign-

ment (GOSPA) was utilized as a performance indicator of the
tracking algorithm. Compared to the traditional optimal sub-
pattern assignment (OSPA) [33], GOSPA metric enables us to
express the penalty in optimization over assignments rather than
permutations between estimation set and ground truth. As missed
targets and false targets are the most concerned attributes for
the fusion performance of our algorithms, we took advantage
of GOSPA to determine how our sensor fusion architectures im-
prove the detection performance with its assignment’s preference.

Let X be the ground truth set, X̂ be the estimated set from sen-
sor fusion and τ be the possible assignment set between X and
X̂ with combinatorial optimization algorithms such as Hungarian
algorithm, the GOSPA metric for α = 2 is formulated as follows,

d(c,2)
p (X, X̂) =
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γ∈τ
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where α determines the error due to cardinality mismatch, p rep-
resents the dimension of the L-norm and c is the maximum al-
lowable localization error [33]. In our performance evaluation of
our sensor fusion algorithms, we assigned value p as 2 and value
c as 10. A lower GOSPA value implies a lower error between X

and X̂.
To illustrate the improvement rate after sensor fusion, the least

GOSPA with the least error among the measurements from all
sensors before fusion and GOSPA from fusion tracking results
are obtained to compute the difference for improvement compar-
ison.

5.3 Simulation Dataset and Evaluation Results
In this section, four different speeds of mobility systems are

evaluated based on the problem in Section 3.1.1 with only camera
detection properties change for each case to examine the detec-
tion improvement ability of the proposed architectures for sen-
sor fusion with GMPHD. We specially selected the cases with
changing camera detection properties based on the problem in
Section 3.1.2 because the detection property of optical sensors is
always subject to illumination change when the mobility systems
frequently encounter relatively dark environments while LiDAR
and Radar are resilient to environmental influence. Meanwhile,
we assume LiDAR and Radar have a relatively high number of
clutters compared to Camera due to surrounding radioactive noise
based on the problem in Section 3.1.3. For our simulation dataset,
the environment is in fulfillment of three criteria, 1. speed of mo-
bility system, 2. moving nature of target objects, and 3. sensor
properties, and they are mentioned in Section 5.1. We ran our fu-
sion scripts for all the evaluation cases on the computer with In-
tel(R) Core (TM) i7-9700F CPU @ 3.00 GHz and 32 GB RAM,
the average fusion time of our evaluation result is around 82 mil-
liseconds per each fusion step. The fusion time is longer than the
processing time stated in Table 1 because of more sensor num-
ber and higher clutter number in our measurements but it is still
acceptable for real-time application. In this evaluation, we used
the same set of GMPHD model parameter setups for the architec-
tures in all three cases for the purpose of testing its adaptability
to the sudden sensor properties’ change. Those parameter setups
for prediction model vtk|k−1(x) based on sensor t include survival
rate pS ,k with 98%, birth model γk(x) based on t type sensor’s
FOV and resolution in normal case and prediction error covari-
ance Pk|k−1 with diag(1, 1, 0.5, 0.5). Those parameter setups for
update model vtk(x) based on sensor t include detection rate pD,k,
the density of Poisson false alarm pK,k(z) and error covariance
S k|k−1 based on t type sensor’s properties in normal case. For the
rest of the GMPHD parameter setup, the Gaussian purging weight
wpurge was set as 0.08, the number of hypothesis Npurge was set as
25 and the merging threshold Lmerge was set as 5.
5.3.1 Evaluation of Normal Case

For the normal case, we assume that all the sensors perform
normally and excel in their general functions without any sub-
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Table 3 Configuration of sensor properties in normal case.

Fig. 13 The simulation measurements from all sensors at 0 km/h in normal
case.

Fig. 14 The simulation measurements from all sensors at 90 km/h in normal
case.

stantial influence from the surrounding environment. We suppose
the fusion system performs its best detection improvement in this
case and the system sensors are expected to be most of the time
the same as the configuration of sensor properties in this case.
The parameter configurations with detection rate, FOV distance,
and clutter rate for every single sensor are detailed in Table 3
shown below.

Based on the sensor properties detailed in Table 2, the simu-
lation measurements from all sensor for the detected object are
shown in Fig. 13 and Fig. 14 as the examples of the stationary en-
vironment and 90 km/h vehicle’s speed environment respectively
based on the objects’ properties in Table 2 for the better result
comparison.

In the results shown in Fig. 15, we found that the architecture
M2TF performs superiorly compared to the rest of the two archi-
tectures and has a significant improvement in GOSPA. To focus
on its improvement rate to the tracking result from the smallest
GOSPA before fusion, the architecture GOPSA values in M2TF
for the mobility systems speed at 0 km/h, 20 km/h, 60 km/h, and
90 km/h decreases by around 42.05%, 53.1%, 44.9%, and 48.95%
respectively. In other words, the sensor fusion architecture M2TF
remarkably reduces the localization error, the number of false de-
tection, as well as the number of miss detection, compared to the
ground truth data.

Overall, the architecture M2TF which performs better among

Fig. 15 GOSPA performance evaluation for tracking and fusion at different
speeds in normal case.

Fig. 16 Fusion result with M2TF architecture for mobility system at 0 km/h
in normal case.

Fig. 17 Fusion result with M2TF architecture for mobility system at
90 km/h in normal case.

all architectures has 47.5% GOSPA improvement on average
from 5.30 to 2.78 to the relatively good tracking performance
with all different speeds of mobility system when T2AF and
T2AF have 37.32% improvement from 5.30 to 3.32 and 0% im-
provement on average respectively. It is worth noting that even
though the architecture T2AF does not have an excellent improve-
ment overall especially when the mobility system is moving, it
has a 31.55% improvement from 3.9 to 2.67 for the stationary
mobility system environment. To better understand the best per-
formance of architecture M2TF in our result, Fig. 16 and Fig. 17
illustrate the exemplary fusion result of M2TF with the mobil-
ity system environment at stationary and fastest speed 90 km/h
respectively.
5.3.2 Evaluation of Abnormal Case with Camera Detection

Rate 75%
For the abnormal case with camera detection of 75% due to low

illumination, we assume that all the sensors perform normally ex-
cept the camera, and the detection rate of the camera is lowered
from the original 95% to 75%, the parameter configurations for
each sensor are detailed in the following table.

Based on the sensor properties detailed in Table 4, the simu-
lation measurements from all sensor for the detected object are
shown in Fig. 18 and Fig. 19 as the examples of the stationary en-
vironment and 90 km/h vehicle’s speed environment respectively
based on the objects’ properties in Table 2 for the better result
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Table 4 Configuration of sensor properties in abnormal case with camera
detection rate 75%.

Fig. 18 The simulation measurement for mobility system at 0 km/h in ab-
normal case with camera detection 0.75.

Fig. 19 The simulation measurement for mobility system at 90 km/h in ab-
normal case with camera detection 0.75.

comparison.
In the result shown in Fig. 20 below, we found that the architec-

ture T2AF performs superiorly with an average 30.15% GOSPA
improvement from 6.7 to 4.68 compared to the rest of the two
architectures when the mobility system is stationary. However, it
performs the worst with higher GOSPA when the mobility sys-
tems operate at higher speeds even though it has excellent fusion
performance when the mobility system is stationary. This in-
sinuates that the achievement of satisfactory fusion performance
in T2AF architecture is contingent on the speed of the mobility
systems. The rest of the architectures M2TF and T2TF demon-
strate their improvement abilities and perform stably regardless of
the mobility system speed. Both architectures M2TF and T2TF
have similar performance overall with smaller GOSPA on average
for all cases when the mobility systems are moving at different
speeds.

On the whole, the architecture M2TF which perform better
among all architectures has a 27.37% improvement on average
from 6.87 to 4.99 to the relatively good tracking performance in
Sensor 2 before fusion when T2TF has 20.82% on average from
6.87 to 5.37, It is worth noting that even though the architecture
T2AF does not have an excellent improvement overall especially
for the case when the mobility system is moving, it performs well
in the stationary mobility system environment. To better under-

Fig. 20 GOSPA performance evaluation for tracking and fusion at different
speeds in abnormal case with camera detection rate 75%.

Fig. 21 Fusion result with T2AF architecture for mobility system at 0 km/h
in the case with camera detection rate 0.75.

Fig. 22 Fusion result with M2TF architecture for mobility system at
90 km/h in the case with camera detection rate 0.75.

stand the performance of the best fusion architectures for this ab-
normal case in the result, Fig. 21 and Fig. 22 illustrate architec-
ture T2AF fusion result at stationary environment and architec-
ture M2TF fusion result at the fastest speed 90 km/h respectively.
5.3.3 Evaluation of Abnormal Case with Camera Detection

Rate 50%
For the abnormal case with camera detection of 50%, we as-

sume that all the sensors perform normally except the camera,
and the detection rate of the camera drops from the original 95%
to 50%, the parameter configurations for each sensor are detailed
in Talbe 6 shown below.

Based on the sensor properties detailed in Table 5, the simu-
lation measurements from all sensors for the detected object are
shown in Fig. 23 and Fig. 24 as the examples of the stationary en-
vironment and 90 km/h vehicle’s speed environment respectively
based on the objects’ properties in Table 2 for the better result
comparison.

In Fig. 25, the GOSPA improvement tendency is similar to the
normal case and the abnormal case with camera detection 75%
although all the GOSPA values are relatively higher overall com-
pared to the normal case and the case with a 75% camera detec-
tion rate change. On the other hand, both architectures M2TF and
T2TF have similar performance regardless of the mobility system
speed overall with smaller GOSPA with a 17.57% improvement
rate from 7.23 to 5.96 and 18.67% improvement from 7.23 to
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Table 5 Configuration of sensor properties in Abnormal case with camera
detection rate 50%.

Fig. 23 The simulation measurement for mobility system at 0 km/h in ab-
normal case with camera detection rate 0.5.

Fig. 24 The simulation measurement for mobility system at 90 km/h in ab-
normal case with camera detection rate 0.5.

Fig. 25 GOSPA performance evaluation for tracking and fusion at different
speeds in abnormal case with camera detection rate 50%.

5.88 on average respectively. We further found that the GOSPA of
the architecture T2AF performs superiorly with 28.98% improve-
ment from 7.59 to 5.39 compared to the rest of the two archi-
tectures and has a significant improvement in GOSPA when the
mobility system is stationary. However, the architecture T2AF
performs worst with higher GOSPA when the mobility systems
operate at a higher speed. To better understand the performance
of the best fusion architecture’s improvement for this abnormal
case in the result, Fig. 26 and Fig. 27 illustrate architecture T2AF
fusion result at stationary environment and architecture M2TF fu-
sion result at the fastest speed 90 km/h respective.

Overall, the architecture T2TF performs better among all ar-
chitectures on average when M2TF has a similar improvement on
average. Similar to the normal cases and other abnormal cases, it
is worth noting that even though the architecture T2AF does not

Fig. 26 Fusion result with T2AF architecture for mobility system at 0 km/h
in abnormal case with camera detection 0.5.

Fig. 27 Fusion result with M2TF architecture for mobility system at
90 km/h in abnormal case with camera detection 0.5.

have an excellent improvement overall, it performs well in the
stationary mobility system environment.

5.4 Discussion of Our Research on the Consumer Products
of Autonomous Mobility Systems

5.4.1 The Validity of Simulation Environment to the Con-
sumer Products of Target Autonomous Mobility Sys-
tem

In our simulation environment for the performance evaluation,
our control parameters for the simulation include the number of
target objects, speed of mobility systems, and the sensor setup.
Each of those setups in the simulation signifies the requirements
of the detection performance under the environmental influence
explained in Section 3.1 on the targeting consumer autonomous
mobility systems and we presented each of their validities to the
consumer product in this section.

For the number of target objects in the simulation environment,
we set up 3 target objects because only the frontest objects con-
cern the safety control of mobility systems all the time to de-
cide an appropriate system operation. Specifically, we focus on
a scenario similar to Fig. 28 which does not require complicated
path planning and the vehicles only move back and forth along
the dedicated lane. Under this environment shown in Fig. 28, de-
tecting only 3 objects at the front is more than enough to recog-
nize the dangerous object in the environment and stop the vehicle
safely. Therefore, this simulation property is useful for our target
system which only operates along the dedicated lane without the
need for complicated path planning.

Furthermore, it is more practical to set up a fewer target object
based on the capability of our target setup with a low-resolution
sensor to reduce the cost in our target mobility system. The mis-
sion of detecting a higher number of objects requires more ex-
pensive high-resolution sensors which make the consumer prod-
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Fig. 28 Example of vehicle operation environment inside the dedicated
lane.

ucts of autonomous mobility systems more unaffordable and it
is unnecessary when our system in our goal only runs along the
dedicated lane explained above which detecting 2 to 3 closest ob-
stacles in the front are enough for the system safety control.

For the speed of mobility systems in the simulation environ-
ment based on Section 3.1.1, we targeted the speed of the ordi-
nary vehicle from 0 km/h to 90 km/h based on the law explained
in Section 5.1.3 when it could cover the wider spectrum of sys-
tem operational speeds. The wider speed coverage also implies its
support of the mobility systems with diverse levels of speeds and
scales. Therefore, the improvement ability from all the speeds in
the setup demonstrated the practicality of applying the sensor fu-
sion system into most types of operating mobility systems as our
target consumer product.

For the sensor setup in the simulation environment, we tar-
geted Camera, LiDAR, and Radar and this setup follows the ear-
lier research for the improvement of informative sensor mea-
surements with environmental adaptability. We controlled the
detection properties of the camera along with the clutter issue
and system speed in the evaluation of our fusion system. In the
setup, the Camera’s performance always depends on the ambient
light source and its detection rate (False negative) becomes more
volatile in the real environment based on Section 3.1.2 whereas
radiation sensors such as LiDAR and Radar can still maintain
a fair object detection rate most of the time under the most ad-
verse environmental influence. It is worthy of note that the least
detection rate of the camera in our evaluation is 50% as we as-
sume there is still room for the camera to detect with a reasonable
light source. Although we only explained how environmental il-
lumination aggravates camera performance in Section 3.1.2, other
similar examples for the environmental influence of illumination
in consumer products are sufficiently covered and they include
overcast weather conditions such as rain and fog, unrecognizable
objects due to the dazzling front light from the vehicles, and un-
recognizable objects near the tunnel exit due to the backlight ef-
fect shown in Fig. 29. Those examples all have equivalent prop-
erties, and they are also applicable to the illumination influence
with detection rate decrease in the evaluation of our paper. At
the same time, Radar and LiDAR have significantly more clutter
(False positive) than Camera due to surrounding radiation noise
explained in Section 3.1.3 for any situation, and this simulation
reflects the real situation in which 3 random clutters from the ra-
dioactive sensors are reasonable enough for interfering the detec-
tion of 3 objects in the fusion system of our consumer product
to deal with and the system should ensure no clutter while accu-
rately associating radioactive sensors’ measurements with other
sensor’s during fusion. All these sensors’ setups in the simulation
can be considered as simulating the false detection problems con-
sisting of false negative and false positive measurements which

Fig. 29 Unrecognizable object near the tunnel exit due to the backlight ef-
fect in exemplary optical sensor’s image.

help us understand how best our fusion system can perform by
improving them with GOSPA indicator in the evaluation.
5.4.2 The Impact of Our Result on the Consumer Products

of Autonomous Mobility System
In the evaluation, we used all the architectures with the same

GMPHD parameter configurations in all models based on the
normal case for the rest of the two cases with camera proper-
ties’ changes along with other environmental influences. This
setting is significant to the consumer product when the systems
cannot intelligently understand if the immediate sensor measure-
ment quality is adversely affected by the environment in practice
to automatically calibrate the models for detection accuracy en-
hancement.

In our result, we found out that M2TF architecture with GM-
PHD performs stably in general with an average 47.50% GOSPA
improvement for normal case, 27.37% improvement for the ab-
normal case with 75% camera detection rate, and 21.83% GOSPA
improvement for the abnormal case with 50% camera detection
rate. Even though our result shows that the fusion system might
not perform as ideally as the normal case does for the rest of the
two cases, it can maintain relatively fair improvement ability with
more than 20% under the environmental influence of higher sys-
tem speed, lower camera detection rate as well as the clutter from
radioactive sensors among all proposed sensor fusion architec-
tures. Therefore, this evaluation result postulates M2TF fusion
architecture with GMPHD is more suitable for the application
of practical consumer mobility systems to improve the false de-
tection problems compared to the rest and it positively impacts
sensor measurement quality under the environmental influences
by reducing the random noise and recovering false negative mea-
surements in wider FOV area. Given the result, deploying this
proposed fusion system in autonomous mobility systems could
enable the efficient enhancement of the object detection safety in
autonomous mobility systems under the environmental influence
in contrast to the case when the system simply deploys those sen-
sors without fusion system and suffers dangerously low accuracy.
5.4.3 The Practical Relation Between the Heterogenous Sen-

sors and the Fusion System in Consumer Products
To practically deploy our proposed fusion system in the mobil-

ity system for high satisfaction of object detection performance
under the environmental influence, we have to ensure that not
only the proper model setting of sensor fusion system but the
quality of each heterogeneous sensor with pre-fusion detection
algorithm is also relatively resilient to the environmental change
in object detection by confirming acceptable biased rate of de-
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tection rate and clutter rate in the model from the realistic per-
formance to address the requirements of our fusion system. The
reason for that is because the fusion accuracy of the proposed
GMPHD architecture is relatively proportional to the original de-
tection quality of sensor measurements.

Furthermore, it is essential to confirm that the obtained object
measurement points from the chosen type and chosen number of
sensors’ deployment are informative and reasonable enough for
the fusion improvement ability in a probabilistic manner. In the
case of our heterogeneous sensor configuration, the fusion sys-
tem will work practically well with the default setup in the paper
for detecting 3 objects in the front at most 90 km/h with at least
50% camera detection rate with certain improvement according to
our evaluation. For the consumer product in some actual extreme
cases with the number of target object higher than 3, the mobility
system speed higher than 90 km/h, the detection rate lower than
50%, and the number of clutter higher than 3 per detection time,
our evaluation provides a valuable reference for developers. In
other words, our works provide a good reference of sensor types
and the number of sensors with using our fusion system for the
customized reference configuration to achieve higher detection
accuracy in most other cases. Therefore, setting up reasonable
heterogeneous sensors based on their detection properties for the
fusion system with appropriate architecture is of paramount im-
portance in this sense.
5.4.4 The Future Research for Our Fusion System in the

Consumer Products of Autonomous Mobility Systems
Since our case in consumer product only focuses on the fusion

system working in a dedicated lane with low-resolution sensors
in our current goal, we will exploit sensors of high resolution for
our fusion system in the future and apply our system in a wider
and more complicated environment when those kinds of sensors
usually become more affordable in our consumer products as time
goes by. Furthermore, we will focus more on the improvement of
other insignificant environmental influences such as bumpy roads
to advance our mobility systems with more real-world datasets
and mature advancements of fusion techniques.

On the other hand, our fusion system tries to probabilistically
recover the object detection measurement based on the incom-
ing preprocessing measurements from several types of sensors
and assumption model for those different sensor detection proper-
ties such as estimated detection rate and estimated clutter number.
This means that the object in the scene cannot be detected if all
the sensors in the system cannot obtain enough measurement for
our fusion system to conduct statical recovery for the improve-
ment of sensor detection accuracy in extraordinary cases. In our
result, the occasional miss detection still happens due to the prob-
abilistically unrecoverable detection which was mentioned above.
Since the improvement in our fusion system still depends on the
probabilistic assumption model of sensor properties as well as the
detection quality of incoming sensor data, it implies that the lim-
itation of our current fusion system is still yet to push the perfor-
mance of sensor detection improvement ability to its finest state
with probabilistic restriction in order to completely zero out the
issues of all false positive and false negative measurements un-
der the environmental influences. Therefore, we will strengthen

the performance of our current probabilistic GMPHD fusion al-
gorithm with the research direction of intelligently setting up a
probabilistic model without relying on the original sensor quality
and additionally pre-processing our heterogeneous sensor mea-
surements to attain more adaptable object detection performance
in the future.

6. Related Work

From the current literature, most of the proposed approaches
that tackle the heterogeneous sensor fusion problem are based on
track-to-track fusion which was originally proposed in Ref. [7].
Its variants include the refined data association with clustering [8]
and integrating the non-kinematic information [9]. Their pro-
posed techniques for the improvement of heterogeneous sensor
fusion did not focus on our problems of missed detection and
clutter in the fusion layer but only on the estimation of the posi-
tions of the target objects.

Furthermore, there are deep neural network-based fusion ap-
proaches such as Deep Multimodal Encoding [10] and Deep
Fusion [11]. Nevertheless, this machine learning-based strat-
egy requires enormous training data for creating the functional
weighted model and it is still complicated at this point to ensure
its faultlessness, safety, and high reliability due to its ambiguous
inductive properties driven by restrictedly available training data.
This ambiguity leads to impracticality and difficulty in creating
an error-free model through debugging and re-training. There-
fore, a deep neural network-based approach for sensor fusion is
not our study target in this paper.

Whilst most of the existing literature focus on tracking problem
of a homogeneous sensor with GMPHD such as Refs. [12], [13]
and our result showed the feasibility of exploiting GMPHD for
sensor fusion application, focusing on the fusion of homoge-
neous sensor is not applicable to practical tracking-based sensor
fusion system for the consumer mobility system product due to
incomprehensiveness of the environment in some abnormal cir-
cumstances with the detection ability constraint of a single type
of sensor.

Even though there is a similar approach in literature [14] with
one of our proposed GMPHD architectures for heterogeneous
sensors, their target is different from ours and they only focus
on the estimation of the contour shape of the object whereas our
target is about point object tracking which locates the exact posi-
tion of the object under the environmental influence. Therefore,
our results are not comparable when we are solving two different
problems.

7. Conclusion

This paper presents three architectures including T2TF, M2TF,
and T2AF of heterogeneous sensor fusion with the integration of
GMPHD in a bid to improve the detection ability in terms of the
issues of clutter and miss-detection under the environmental in-
fluence. We have gone through the details of these three archi-
tectures and further evaluated their improvement ability with the
same GMPHD parameter setup for all the cases. Our results have
demonstrated that they all have significant improvement ability
but performed differently during the speed change in mobility
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systems and the sudden change of one sensor properties due to
environmental influence.

In our empirical results with GOSPA, it has been shown that
the proposed sensor fusion architectures T2TF, M2TF, and T2AF
with GMPHD can effectively improve the detection performance
when the mobility system is stationary. However, the perfor-
mance of T2AF starts to deteriorate when the mobility system
speeds up from 0km/h even though it has an excellent 29.10%
GOSPA improvement on average for all stationary situations
compared to the rest. Among all architectures, M2TF architecture
with GMPHD performs remarkably in general with an average
45.50% GOSPA improvement for normal case, 25.09% improve-
ment for the abnormal case with 75% camera detection rate, and
21.83% GOSPA improvement for the abnormal case with 50%
camera detection rate. This result also implies that M2TF is the
best architecture with GMPHD integration which adapts to the
environmental influence.

This evaluation is significantly critical for the adoption of ap-
propriate sensor fusion architectures in consumer mobility sys-
tems since it reflects their abilities to keep the detection improve-
ment performance by reducing the clutter and filling the miss de-
tection especially when all the fusion setups remain unchanged
in reality and there is a sudden change in sensor properties due to
environmental influences and the moving speeds of systems. On
the other hand, our evaluation result has a significant impact on
helping the development of obstacle detection algorithm in fun-
damental consumer autonomous mobility systems when it is still
challenging for other existing fusion systems to associate well
sensor measurements to comprehend the obstacle accurately un-
der the common environmental influence we have mentioned in
this paper.
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