
Electronic Preprint for Journal of Information Processing Vol.29

Regular Paper

A Secure Cloud-centric IoT Framework for Smart Device
Registration

Songpon Teerakanok1,2,3,a) Tetsutaro Uehara1,4,b) Atsuo Inomata1,4,5,c)

Received: August 3, 2020, Accepted: February 2, 2021

Abstract: In this paper, a generic framework for IoT device registration is proposed. Unlike existing approaches, the
proposed method is designed to provide a high level of compatibility, allowing it to work well with devices from differ-
ent manufacturers. Furthermore, this framework requires only some commonly available technologies (like Bluetooth
or BLE) to perform, making it highly applicable to most of the current generation of smart devices available in the
market. With security and user-friendliness in mind, the developed registration protocol requires less user interaction
while maintaining a considerable high level of security against various types of attacks, i.e., eavesdropping, replay
attacks, modification, and man-in-the-middle attack.

Keywords: IoT security, internet of things, framework, network security, and cloud services

1. Introduction

The Internet of Things (IoT) has recently become part of our
daily life. It is ingrained in our routines, introducing a new and
smarter way to engage or interact with a machine [1]. Blend-
ing itself into our surroundings, IoT offers a higher quality of
services to its users. There are a large number of IoT-related de-
vices available in the market, ranging from personal gadgets (e.g.,
smartphone, Fitbit *1) and home appliances (e.g., smart thermo-
stat, doorbell) to the industrial level automation.

Developing an IoT solution that is capable of communicating
with a smartphone via Bluetooth or other wireless technology is
relatively simple and more comfortable than before, thanks to to-
day’s publicly available libraries and APIs. However, developing
an integrated IoT environment unifying all device controls into a
single point (e.g., one software/application) or allowing devices
from different vendors to communicate with each other is consid-
ered a challenging task.

1.1 Need for Standardization
Let us assume a user bought a Google Nest thermostat *2.

He/she wants to register this newly brought thermostat and con-
trol it through the Amazon Alexa [2]. To make it possible, Ama-
zon provides developers with a “skills” system *3, which allows
them to create applications using the Amazon-provided libraries

1 Cyber Security Laboratory, Kusatsu, Shiga 525–8577, Japan
2 Research Organization of Science and Technology, Ritsumeikan Univer-

sity, Kusatsu, Shiga 525–8577, Japan
3 Faculty of Information and Communication Technology, Mahidol Uni-

versity, Nakhonpathom, Thailand
4 College of Information Science and Engineering, Ritsumeikan Univer-

sity, Kusatsu, Shiga 525–8577, Japan
5 Osaka University, Cybermedia Center, Ibaraki, Osaka 567–0047, Japan
a) songpon.te@cysec.cs.ritsumei.ac.jp
b) t-uehara@fc.ritsumei.ac.jp
c) inomata@mail.osaka-u.ac.jp

and install these new skills into the user’s Amazon account. For
a big technology company like Google, building one or two ad-
ditional applications for each of their products may not be a big
problem. However, it is very different for some startups and small
companies.

What if the same user wants to change his/her IoT control sys-
tem from Alexa to HomeKit *4, which is a smart home integra-
tion system provided by Apple? Can the same user command the
Nest thermostat using his/her voice through Apple’s Siri *5? Un-
fortunately, the answer is no, due to the incompatibility between
Google Nest products and Apple’s HomeKit application.

Currently, small companies and startups are usually questioned
whether their products support Alexa, Siri, or Google Home. To
successfully release a new product, the company needs to develop
and maintain applications on various platforms to make sure that
they can deliver high-quality services to all groups of customers.
This is a very challenging problem regarding productivity and re-
source management. Each company needs to invest more time,
human resources, and also money in developing their products,
leading to the problem of limited productivity in the IoT industry.

Instead of following rules and proprietary protocols set by
these big technology companies, what if developers, vendors and
these large companies are required to implement their system to
support only one generic/non-proprietary framework or a stan-
dard protocol? By following the framework or standard, it should
allow makers or developers to creatively design and develop their
IoT products to their full extent with much higher productivity.

1.2 Challenges in IoT Registration
The first step in providing compatibility between IoT devices

*1 https://www.fitbit.com
*2 https://store.google.com/us/product/nest thermostat e
*3 https://developer.amazon.com/en-US/alexa/alexa-skills-kit
*4 https://developer.apple.com/homekit
*5 https://www.apple.com/siri

c© 2021 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.29

is to develop a generic registration process of IoT devices. Ide-
ally, this IoT registration process should allow all IoT devices
from different vendors to seamlessly register with the same user’s
account on an IoT management application of their choice (e.g.,
Google Home, Alexa, HomeKit).

Today’s registration process is usually done by utilizing a pre-
defined secret (QR [3], or secret SSID code, for example) that
comes together with the product (often written in the manual).
This approach offers an excellent way to register a newly bought
IoT device into the user’s smart home account (e.g., Amazon
or Google account). These secret codes, however, can be lost.
Also, users have to keep all these secret information safe all the
time in case they want to sell their IoT devices to someone, or
change/modify their account, which might require them to rein-
stall and register some devices all over again.

Aside from scanning the QR code, some companies (Apple,
for example) provided an ultra short-range wireless technology-
based (e.g., NFC [4]) registration process that requires no pre-
defined secret information. Although the technique may require
additional hardware support (NFC reader, for example), this reg-
istration technique is very efficient in terms of both security and
user-friendliness. From a user perspective, the user can register a
new IoT device easily by just opening a smart home management
application on his/her phone and physically touch the target IoT
device with his/her mobile phone to register the device. How-
ever, one drawback of this approach is that some IoT devices are
located in the hard to access location (e.g., ceiling) rendering ultra
short-range communication-based method impractical. Also, not
all mobile devices come with such technology. Therefore, this is
also another limitation of the mentioned registration process.

1.3 Contributions
In this paper, a generic framework for IoT device registration is

presented. The framework is designed based on a typical cloud-
centric IoT infrastructure that aims to provide a high level of com-
patibility between IoT devices, making it applicable to most IoT
products, regardless of their brands or manufacturers. With the
goal of high user-friendliness in mind, the main contribution of
this work is to develop a secure and easy method for users to reg-
ister their IoT products to their accounts. The developed frame-
work is intentionally designed to create separation between IoT
devices, the controller (i.e., software/application), and the cloud
service. This approach makes each component replaceable and
easier to manage. Lastly, the proposed communication protocol
utilizes various cryptographic algorithms (i.e., hashing, encryp-
tion, and digital signature) offering a high level of security during
data exchange between IoT devices, controller application, and
cloud servers.

1.4 Organization
The rest of this paper is organized as follows. Section 2 in-

troduces the current trend in IoT registration schemes. Next,
Section 3 explains the concept of cloud-centric IoT architecture
adopted in this work. In Section 4, the details of our proposed
IoT framework are presented and briefly discussed. Next, results
from our developed proof of concept system and some discussion

are presented in Section 5. Sections 6 and 7 provide discussions
regarding limitations and security aspects of the proposed frame-
work respectively. Section 8 provides a brief discussion regarding
user-friendliness aspects of our work. Finally, this paper is briefly
summarized in the last Section 9.

2. Current trends in IoT Registration

In this section, trends and current approaches in IoT devices
registration are discussed. At present, there are two main trends
in IoT registration. Section 2.1 introduces the use of predefined
shared secret information in the registration process. The follow-
ing Section 2.2 presents a user-friendly alternative utilizing close-
range communication technology in registering IoT devices to the
user’s account.

2.1 Shared Secret-based Approach
As the name suggested, a shared secret-based approach uses

the predefined piece of information as a critical factor in secur-
ing an IoT registration process. This secret information usually
comes in the form of codes, numbers, or digit sequences. QR
code is an excellent example of techniques that belonged to this
group.

This approach relies on the fact that each IoT device is hard-
coded with some secret information. When the user issues a reg-
istration process by submitting the same or another piece of secret
information that is consistent with the hardcoded information to
the IoT device, the target device will trust and treat that user as its
owner. After exchanging some further information with the de-
vice and the service provider (e.g., cloud server), the registration
process is completed.

The method of registering IoT devices to the user’s account
using a shared secret is considerably straightforward and can be
used with devices located in difficult to access location (e.g., high
wall, ceiling). Depending on the product and design, it does not
mean that this approach is considered user-friendly. Using shared
secrets with IoT products having a screen or monitor is quite sim-
ple; for some devices, it becomes more complex and less user-
friendly when a user is trying to register a product without a
screen.

Let us give an example of a registration process of the smart air
conditioner, Panasonic CS-X228C *6, recently released in 2018.
The user begins the registration process by turning on the wireless
adapter on the device by pressing a small button located inside
the hole (same as a reset button on a network router) on the re-
mote control using a small pin. Second, the user then disconnects
his/her mobile phone from the current wifi network. Next, using
the Eolia application from Panasonic, the user connects his/her
phone to Panasonic CS-X228C’s wifi network using the SSID and
password written in the manual. Lastly, the user finishes the reg-
istration process by selecting and providing a password to his/her
home wifi network for the smart air conditioner to connect. As we
will see, even though the predefined secret information is used, it
does not guarantee the user-friendliness of the registration pro-
cess.

*6 https://panasonic.jp/aircon/p-db/CS-X228CS spec.html

c© 2021 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.29

Fig. 1 A simplified overview of cloud-centric IoT architecture.

2.2 Close-range Communication Approach
To provide a better level of user-friendliness, close-range

communication technologies, such as near field communication
(NFC), or RFID, are utilized. The registration process begins
with a user opening the mobile application on his/her smartphone.
Starting the registration process from the smartphone, the user
then physically touches the IoT device with his/her phone to com-
plete the process.

This approach offers a high level of user-friendliness and secu-
rity. Unlike the shared secret-based approach, this technique re-
quires much less user interaction leading to a secure and smooth
registration process. This method, however, is still considered
less practical when using on devices located in hard to access lo-
cations (e.g., wall, ceiling).

Not only must the controlling device (e.g., smartphone) sup-
port these close-range communication technologies, such as
NFC, IoT devices also need to be equipped with such technolo-
gies making this approach becomes impractical with some group
of IoT devices.

3. Cloud-centric IoT Architecture

This section discusses the concept and details of the cloud-
centric architecture of IoT technology, which is the basis of our
research [5], [6]. Figure 1 shows a simplified concept of a cloud-
centric architecture of today’s IoT technology. In this model, the
entire system is separated into three primary components: de-
vices, service, and application [7].

The device component represents IoT devices, including a
wide range of devices such as sensors, home appliances, and
industrial automation. Generally, each device may be equipped
with different hardware making it supports diverse technologies
and protocols. Some devices may support only wifi communica-
tion, while the other offers both wifi and Bluetooth or NFC.

The service component refers to the cloud services from any
service provider (AWS from Amazon, Google Cloud, Microsoft
Azure, and Apple iCloud, for example), including any proprietary
cloud server. All major companies have their strategies, tech-
nologies, and communication protocols, which most commercial
devices in the IoT business are required to support.

To control IoT devices, users issue a command to the devices
through the control or management application/software via a ser-
vice. There is a large number of IoT-related software in the mar-
ket. Amazon Alexa, Google Assistant, and Apple’s Siri are per-

fect examples of controlling applications that are currently avail-
able in the market. Many devices come with a particular control
application of its own; Philips Hue light bulb, for example.

The communication procedure of the cloud-centric architec-
ture is generally centered on the cloud server. On one side, IoT
devices, such as sensors and home appliances, collect data and
useful information from their surroundings and feed them to the
cloud server. The server then uses this information to decide what
to do with the devices automatically, e.g., locking the door when
there is no one at home. On the other side, users monitor the
working state (e.g., door locking status) and additional informa-
tion about their IoT devices by pulling data from the cloud server.
Additionally, users can issue commands over the internet through
the cloud server to remotely manage or control their IoT devices.
The command can be made through a mobile application, web
service, or even voice control.

Regarding the development of IoT technology, the current state
of IoT development is under intense competition. Big companies
like Amazon and Google are trying to develop their system (i.e.,
devices, cloud service, and control application) and attempting
to invite more developers to join them by providing API and li-
braries for developments. Since users will most likely choose to
buy integrated IoT solutions from one of these companies, there-
fore, small developers have no choice but to create a system of
their own while trying to support most of, if not all, technologies
of these big companies. Otherwise, their products will be left
unsold.

At this point, standardization appears to be a desirable solution
to this problem of limited productivity in IoT development [8].
However, making a standard for the entire IoT environment is
still an extremely challenging task. There are some available
standards in the network-layer; MQTT v5.0 [9] for machine-to-
machine (M2M) communication, for example. Also, in Decem-
ber 2019, Apple, Google, Amazon, Zigbee Alliance, and some
board members formed a working group to develop an internet
protocol (IP)-based open standard for smart home device com-
munication [10]. This standard is expected to solve the incompat-
ibility problem between devices at the network level; as a result,
this IP-based standard may become one of the most crucial in-
frastructures for IoT development in the near future.

On the other hand, the problem of incompatibility in the upper
level (i.e., services and application) remains unsolved, since there
is currently no widely accepted standard for it. The problem in

c© 2021 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.29

service and application levels can be divided into two main parts:
device registration (first contact between a user and his/her IoT
device), and services handling (i.e., delivering services to a user
after completion of device registration). In this paper, we focus
only on the first part, the device registration process.

In this research, a generic framework and a secure communi-
cation protocol for IoT device registration are proposed. The pro-
posed framework was designed to work with widely supported
communication technologies like Bluetooth, BLE [11], and wifi,
making it applicable to many currently available IoT technolo-
gies. The following Section 4 presents our proposed framework
and communication protocol in detail.

4. Proposed Framework

This section presents and discusses our proposed IoT registra-
tion framework and its underlying communication protocol in de-
tail. First, the overview of our proposed framework is introduced
in Section 4.1, following with our developed registration protocol
in Section 4.2.

4.1 Overview
Although this work is based on cloud-centric architecture, our

proposed IoT registration process revolves around the user (user’s
control device such as a smartphone or smart home speaker like
Amazon’s Alexa, to be precise). In this section, the term user and
user’s control device will be used interchangeably.

The registration process begins by a user first discovering and
verifying his/her ownership to the target IoT device via an inse-
cure channel, by using some commonly available methods, such
as Bluetooth, Bluetooth low energy (BLE) [12], or wifi. The user
then asks the IoT device to generate a one-time secret key for se-
cure communication, which will be used later in the last phase of
the registration. Next, the IoT device sends the newly generated
key to the cloud server via the user’s control device. At this stage,
the key is encrypted; the user is unable to read its content.

After checking the integrity of this one time key, the server then
replies to the user with the verified secret key. Subsequently, a se-
cure data exchange between the user and the IoT device is made
using the previously confirmed key. This marks the completion
of a registration process of an IoT device.

The registered IoT device can now communicate with the
server directly by creating a new secret key from pieces of data
obtained during the registration process. Figure 2 shows an
overview of an entire registration process.

4.2 IoT Registration Protocol
This section gives details of our proposed IoT device registra-

tion protocol. The protocol is divided into six different phases.

Fig. 2 An overview of our proposed IoT registration process.

The following Sections 4.2.1 to 4.2.6 explain each phase of our
developed protocol in detail.
4.2.1 Phase 1: Discovery

The IoT registration begins with a user attempts to discover an
IoT device located nearby. First, let us assume that all compo-
nents (i.e., user, IoT and cloud server) have a pair of asymmetric
cryptographic keys (public and private keys) of their own. Also,
as an example, we will use Bluetooth as a means for a user to
communicate with an IoT device. The method of communica-
tion can be changed and substituted with other techniques such
as wifi, or Bluetooth low energy (BLE), for example. Figure 3
shows the details of the proposed protocol in phase 1.

The protocol starts as soon as the IoT is powered, or the pair-
ing/advertising button is pressed. The IoT device makes itself
discoverable to the nearby control devices by broadcasting a pre-
defined registration service id (RSID) information. In this paper,
we define RSID as a specific UUID for IoT device registration
service that is publicly known by everyone in the system (includ-
ing attackers).

Subsequently, the user looks for available IoT devices by fil-
tering broadcast messages with RSID. When the user found an
IoT device, an insecure connection between the user and the IoT
is made. Using the generated one-time random number (Ω), the
user hashes and signs Ω and sends it to an IoT together with the
user’s public key (PbU ) and an INIT request indicating the start of
an IoT-side registration process. Finally, the IoT device replies to
the user with a message, EPbS

(S k,H(Ω)), containing a secret key
(S k) and H(Ω) which are encrypted using the server’s public key
(PbS ).
4.2.2 Phase 2: Server-side Initialization

As shown in Fig. 4, the second phase of our proposed protocol
involves a data exchange between the user and a cloud server. It
is assumed that the communication between the user and cloud
server is made through a secure channel.

Fig. 3 Phase 1: IoT device discovery.

Fig. 4 Phase 2: server-side initialization.

c© 2021 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.29

Fig. 5 Phase 3: key generation.

This phase starts by the user sending an INIT request to-
gether with the encrypted message, EPbS

(S k,H(Ω)), obtained
from phase 1, Ω, and the user’s id (UID) to the server. After de-
crypting the message and verifying the integrity of Ω with H(Ω)
in the encrypted message, the server subsequently generates a
pair of random numbers (K and K′) and replies to the user with
S ignPrS

(H(PbU ,K)), ES k (K), and K′. Note that the server maps
K and K′ with UID and remembers them throughout the rest of
the registration process.
4.2.3 Phase 3: Key Generation

In this phase, the user forwards S ignPrS
(H(PbU ,K)) and ES k (K)

to the IoT device. The IoT retrieves K by decrypting ES k (K).
Next, the IoT device verifies both the user’s public key and K by
computing H(PbU ,K), and then confirms it with a digital signa-
ture sent by the user.

Subsequently, if the verification succeeds, a secure communi-
cation key (CK) is generated using the IoT device’s ID (DID),
K, and a newly created random number θ. Lastly, the IoT replies
to the user with two messages encrypted with the cloud server’s
public key, EPbS

(H(CK, θ)), and EPbS
(θ,DID). Figure 5 shows

details of the key generation process.
4.2.4 Phase 4: Key Verification

This phase of the proposed protocol starts with the user
forwarding two encrypted messages, EPbS

(H(CK, θ)), and
EPbS

(θ,DID), to the server together with UID, K′, and a newly
generated random number α.

Subsequently, the cloud server figures out K using the given
UID and K′. Next, the server obtains θ and DID by decrypting
EPbS

(θ,DID) with its private key. The server then generates the
same secure communication key (CK′).

Ideally, CK′ should be identical to CK created in phase 3. Af-
ter the key generation, the cloud server verifies the correctness of
this key by computing H(CK, θ) and compares it with H(CK, θ)
obtained from the encrypted message EPbS

(H(CK, θ)). In case
the confirmation is completed without any error, the communi-
cation key (CK′) is sent back to the user together with some
service-related information, such as details of the server’s API
for post-registration communication. This step marks the end of
the server’s side registration process. Figure 6 shows the details
of the key verification process.
4.2.5 Phase 5: Secure Data Exchange

At this stage, both the user and IoT have the same communi-
cation key (CK) and are ready for a secure data communication.
Using CK as an encryption key or a password, the secure connec-

Fig. 6 Phase 4: key verification.

Fig. 7 Phase 5: secure data exchange between an IoT device and the cloud
server.

Fig. 8 Phase 6: post-registration.

tion between the user and an IoT device is finally established.
The user then sends a random number α generated in phase 4,

network-related information (e.g., wifi’s SSID and its password)
and other required sensitive information to an IoT device. The ex-
change of all confidential information between the user and IoT
will be done here through the secure channel. Finally, This marks
the end of the IoT device registration. The overall details of this
phase are shown in Fig. 7.
4.2.6 Phase 6: Post Registration

This phase is, in fact, beyond the scope of our proposed regis-
tration protocol. However, this section will discuss and demon-
strate how the IoT device can communicate with the cloud server
directly through the internet.

As we knew, both the cloud server and the IoT received the
random number α during phases 4 and 5, respectively. Therefore,
we can utilize this information combining with some information
known by both sides, such as DID, and K, to create a new se-
cret communication key (DCK) known only by the device and
the server. Subsequently, the IoT device can establish a secure
connection and can now securely communicate with the cloud

c© 2021 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.29

server directly through this channel. Figure 8 shows an example
of processes during the post-registration phase.

5. Prototype & Results

We built a proof of concept system to demonstrate the practica-
bility of the proposed framework and the developed registration
protocol. The test system consisted of three main components,
i.e., IoT device, a user’s control device, and the server.

5.1 Testing Environments & Configurations
The prototype of an IoT device was achieved using a Rasp-

berry Pi 3 (Model B) running Android Things OS (v. 1.0.15). We
implemented a user’s control device using Kotlin on a HUAWEI
JDN2-W09 tablet, running Android 9.0 (API level 28). Lastly, a
HTTP server is created using NodeJs (v. 12.13.1).

At the beginning of the registration process, the IoT device
communicates with the user’s control device using close range

Fig. 9 The log results on a developed HTTP server.

Fig. 10 The communication log between an IoT device (Raspberry Pi 3 running Android Things 1.0.15)
and the user’s control device (HUAWEI JDN2-W09 running Android 9.0 API 28).

communication (e.g., Bluetooth, BLE) via an insecure channel.
On the other hand, the experiment is tested with an assumption
that the communication between user’s control device and the
cloud server is secured. Finally, after the registration, the IoT
device can now establish a secure communication directly to the
cloud server over the internet (see Fig. 2).

5.2 Results
The following Figs. 9 and 10 show the log results of our proof

of concept system. According to Fig. 9, on the server-side, we
started the test by running the HTTP server on port 3315. The
server keeps listening to any incoming request. When the regis-
tration request arrives, the server records the user’s information
(e.g., UID). Once the registration is completed, the server uses a
different API to send/receive data from registered IoT devices.

Figure 10 shows a snapshot of the process and the flow of data
between an IoT device and the user’s control device perspective.
Initial data are shown in Fig. 10 and are retrieved from real de-
vices during an experiment. However, we edited and formatted
most of the data contents to provide better readability (i.e., most
of the JSON and all encrypted data have been removed, and some
sensitive information like wifi’s SSID and password have been
omitted).

We first start the test on the IoT-side by running a developed
Android application on the device. As soon as the application is
invoked, the IoT device begins to advertise itself on the Bluetooth
network. At the same time, the user’s control device also starts
searching for a Bluetooth device broadcasting RSID information.

The registration process is completed once the IoT device ob-

c© 2021 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.29

Table 1 Security aspects of the proposed framework (compared with traditional approaches).

Methods
Security Aspects

Additional Resources
Eavesdroping Modification Replay Attack MITM

proposed method ✓ ✓ ✓ ✗ not required
shared secret ✓ ✓ ✓ ✓ required (secrets)
close-range ✓ ✓ ✓ n/a required (hardwares)
(e.g., NFC)

Table 2 A breakdown of security aspects in our framework (see Fig. 12).

Attack Surfaces
Security Aspects

Eavesdroping Modification Replay Attack MITM
C1 ✓ ✓ ✓ ✗

C2 ✓ ✓ ✓ ✓

C3 ✓ ✓ ✓ ✓

tains both the network-related information (i.e., wifi’s SSID and
password) and the service-related information (i.e., server’s API).
With SSID and password to the nearby wifi router, the IoT device
can now connect itself to the internet. Furthermore, using the
given server’s API, the IoT will automatically know which server
and API to send its data. As a result, after the Bluetooth connec-
tion between the user’s control device and an IoT was cut off, the
IoT device can automatically send its information to the server
without involving the user’s control device.

5.3 Discussions
In the previous Section 5.2, we demonstrate the real imple-

mentation of the proposed framework using a simple prototype.
By utilizing the developed framework, we successfully divide all
components into three main tiers; device tier (i.e., IoT devices),
control tier (i.e., user’s control devices and applications), service
tier (e.g., cloud service). This concept of multi-tier separation
provides benefits to the development of an IoT system in term of
flexibility by getting rid of the tight coupling problem where de-
vices from different vendors and platforms are not made compat-
ible with each other. Using our proposed framework, developers
can now focus on creating their products without worrying too
much about the compatibility problems as long as they follow the
proposed protocol.

In the following Section 6, we discuss drawbacks and current
limitations of our framework. Furthermore, Sections 7 and 8 dis-
cuss the security and user-friendliness aspects of the proposed
framework in details.

6. Design Constraints & Limitation

In this section, we discuss about the constraints and limitations
of our framework. Currently, there are three major limitations in
our design at the moment.

First, the developed framework is currently developed for the
smart devices and gadgets (e.g., home/office appliances or per-
sonal gadgets) having a relatively high computational power. Due
to the use of numerous cryptographic operations, this makes our
framework not an appropriate solution for some industrial sys-
tems relying on ultra-low power devices, like sensors.

Second, the proposed method can only mitigate the man-in-
the-middle (MITM) attack, but cannot completely solve the prob-
lem. In some situations where an attacker is already positioned
nearby the victim (i.e., user) and timing the attack correctly,

Fig. 11 Data intercepted by the attacker during each phase.

MITM attack can be successfully executed (see Section 7 for fur-
ther details and explanations).

Finally, in term of user-friendliness, the proposed method is
considered as a semi-automatic approach which still requires hu-
man interactions to complete the registration process; e.g., ask-
ing a user to type the network ssid and password. Therefore, the
method is also prone to human errors. Section 8 explains this
problem in more details.

7. Security Analysis

Previously, details and implementation of the proposed frame-
work and its IoT registration protocol are introduced in Sections 4
and 5. In this section, we now discuss the security aspect of our
developed protocol against various attacks. Some remaining risks
and security challenges are also discussed. Tables 1 and 2 pro-
vides a quick summary of the security aspects of our framework.

Before we begin, first, let us assume that the communication
between the user and the cloud server is secured. Also, we as-
sume that attackers can intercept all data exchange between the
user and the IoT device. Figure 11 shows data intercepted by
attackers during each phase.

7.1 Attack Surface
As mentioned in Section 4.1, the proposed IoT registration

framework consists of three components: the IoT device, the
user’s control device (also called “IoT Controller”), and the cloud
server. Figure 12 shows the attack surfaces associated with each
component.

According to Fig. 12, there are many attack surfaces associ-
ated with each component. We divided these surfaces into three
main groups: software, memory & storage, and communication.
Each category also has several potential attacks of its own. For
example, attackers may launch a supply chain attacks on the IoT
device’s firmware to allow them to gain root privilege or to allow

c© 2021 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.29

Fig. 12 Attack surfaces associated with each component.

them to exploit the device and system at will. There are several
studies, prevention, and countermeasure techniques proposed in
the literature regarding attack surfaces on software and memory
& storage, which are not included in the scope of this paper.

In this work, we introduce a generic framework for IoT reg-
istration. Inside the framework, an underlying IoT registration
protocol was presented. The goal of this protocol, according to
Fig. 10, is to utilize the communication channel C1 and C2 to
exchange information among all components (i.e., the target IoT
device, a user (IoT controller), and the cloud server) in order to
safely establish a new communication channel C3. Since the pro-
tocol relies heavily on the security of the communication chan-
nels C1, C2, and C3, in this section, we will focus our security
analysis on potential attacks on theses channels.

7.2 Potential Attacks on Communication Channels
We categorized communication-related attack surfaces into

two subcategories: long-range and close-range communication.
As the name suggested, long-range communication-related attack
surfaces allow attackers to launch their attack from far away (any
distance). On the other hand, attacking using close-range com-
munication (e.g., Bluetooth, RFID) requires the attackers to stay
near the victims or the target machine to execute their attacks.

In this section, we will discuss security and potential attacks
on the communication channel, C1, C2, and C3. Note that some
and most common attacks (eavesdropping, for example) can be
launched at both close and long-range communication. On the
other hand, some attacks may be limited to a close-range com-

munication channel only.
Eavesdropping (close & long-range). According to Fig. 11,

among all information that an attacker can intercept, most of them
are encrypted or signed, making it impossible or very difficult for
an attacker to read or modify their contents.

Modification (close & long-range). The proposed protocol
was designed with the concept of sharing incomplete information
in which each party (i.e., IoT, user, and server) tries to give the
other two parties digested (irreversible) information or data frag-
ments. At the same time, that particular party is the only one that
holds the original or complete piece of information. Therefore,
if the attacker tries to modify or substitute any digested informa-
tion, the other party that is holding the original data will notice
automatically.

For example, there are two pieces of crucial information sent
through an insecure channel during the discovery phase, i.e., the
user’s public key PbU and H(Ω). Regarding the discovery phase,
the main objective of this stage is to send an IoT device a user’s
public key and one-time token H(Ω). H(Ω) is initially signed with
the user’s private key. Therefore, only the public key sent together
with this token can be used to decrypt this message. This allows
the IoT device to believe that the given token is associated with
the user’s public key.

At the end of the discovery phase, H(Ω) is sent once again,
but in the encrypted form, EPbS

(S k,H(Ω)). Since the user knows
the actual value of Ω while the adversary does not, he/she cannot
secretly modify or substitute H(Ω) with other information.

Replay attack (Re-execution) (close & long-range). To pre-

c© 2021 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.29

Table 3 A comparison between the proposed framework and traidiontal approaches in term of user-
friendliness and practicability.

Methods
User-friendliness Aspects

User inputs Operational Distance Additional Resources
proposed method less any not required
shared secret many any required (secrets)
close-range (e.g., NFC) few short required (hardwares)

vent against replay attack, all messages (except the user’s pub-
lic key, PbU ) transmitted through an insecure channel (i.e., during
phases 1 and 3) contains at least one of the one-time random num-
bers: Ω, Θ, α, or K. Since these numbers are randomly generated
and will be used only once, it is considered meaningless to replay
any hashed or encrypted messages in our protocol.

Man-in-the-middle attack (MITM) (close range). In this
work, commonly accessible wireless technologies like Bluetooth
or BLE are adopted during the registration process. Although
these wireless technologies can provide users with a smooth and
user-friendly registration process; however, they also make the
proposed method slightly prone to attack, such as MITM.

Let us assume that a user A has an unregistered (newly bought)
IoT device D. The user A then turns on the device and tries to ini-
tiate the IoT registration process. To perform MITM, an attacker
first waits for the IoT device to broadcast its RSID message to
the network (in this case, the Bluetooth local network) meaning
it is ready to be registered. The attacker then quickly responds to
the IoT device and tries to perform a fake registration tricking the
IoT device to think that it is being registered by its legitimate user.
This fake registration will make the IoT device stop broadcasting
its RSID message.

Next, the attacker will try to masquerade him/herself as the IoT
device by broadcasting an RSID message to the network. The
user seeing the RSID broadcast message will now think that the
device broadcasting RSID message right now is the IoT device
he/she wants to register in the first place. As a result, the attacker
successfully gains control over the IoT device without the user
noticing.

To summarize, MITM can be successfully executed when there
is an attacker nearby listening to the Bluetooth RSID broadcast
message and then launching an attack before the user initiates
the IoT registration process. It can be said that MITM can be
executed if the mentioned conditions are fullfilled and the tim-
ing is right. Unlike a secret-based approach or ultra-close range
communication-based method (like NFC), our proposed method
is considered prone to this type of attack. Limiting the advertis-
ing/discoverable duration of the IoT device, or reducing the sig-
nal strength to shorten the advertising range can help mitigate this
problem by reducing the risk of being attacked. Furthermore, the
IoT developers/manufacturers can also add a pairing button or a
tiny LED signal light to their devices to assist users during the
registration.

8. User Friendliness

In this section, we discuss the user-friendliness aspects of the
proposed framework. To define the term user-friendliness, in this
research, the IoT registration method is considered user-friendly
if it satisfies the following three main requirements. First, the

registration process should involve only little to no human inter-
action in order to reduce the chance of human error. Second,
the procedure during an IoT registration should be simple and
straightforward without any misleading steps. Lastly, the IoT reg-
istration process should be generic, meaning users should be able
to apply the very same process with any IoT devices. Hence, there
is no need for them to repeatedly learn the entire process every-
time they try to register a new product. Additionally, the regis-
tration should be non-proprietary (or vendor neutral). Therefore,
users are not required to have many different applications down-
loaded and installed for each individual IoT device; this will make
managing and controlling IoT devices less complicated.

To evaluate the user-friendliness of the proposed framework,
three major factors are put into consideration: 1) number of user
inputs, 2) operational distance, and 3) additional resources re-
quirement. The number of user inputs indicates how many times a
user needs to give the input to the system. A higher quantity leads
to a higher chance of human errors which can cause a failure dur-
ing the registration. Next, the operational distance refers to how
far (from the target IoT device) a user can be during the registra-
tion. This factor reflects the flexibility of the registration method
especially with some IoT devices that are usually installed in the
hard to access location like an air conditioner. Finally, additional
resources requirement refers to whether the method requires addi-
tional resources in order to perform the registration or not. These
additional resources may come in the form of information (e.g.,
secret code, PIN) or even additional pieces of hardware. Table 3
provides a quick overview of our approach regarding the three
mentioned factors.

In this work, the goal of our work is to minimize the amount
of human interaction while still maintaining a high security. To
make the IoT registration system user-friendly, the proposed
method consists of only few steps and requires only a few user’s
inputs during the entire registration process. Here, we provide
an example of how user-friendliness can be achieved in practice.
We compare our approach with the shared secret-based approach
(i.e., PANASONIC CS-X228C air conditioner) as a reference.
Table 4 shows a brief comparison between these two approaches.

In Table 4, we use the following four criteria to evaluate and
compare user-friendliness aspects between the two approaches:
1) number of steps, 2) number of inputs, 3) loss of connectivity,
and 4) vendor neutrality. The number of steps shows how many
steps a user has to take in order to complete a registration for an
IoT device. Similar to Table 3, the number of user inputs refers
to how many times a user has to give inputs to the system (e.g.,
typing a password) to complete the registration. Third, in some
case, an IoT device registration requires the user to disconnect
his/her smartphone (or any control device) from the current wire-
less network in order to join a temporary network created by the

c© 2021 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.29

Table 4 User experiences (a case study of PANASONIC CS-X228C).

Methods
User-friendliness Aspects

Steps User inputs Loss of connection Vendor neutral
proposed method 5 1 time no yes
shared secret (PANASONIC
CS-X228C)

6 3 times yes no

Fig. 13 A case study of PANASONIC CS-X228C compared with the proposed framework.

IoT device. This momentary loss of connectivity to the network
or the internet can cause disruptions in the other services running
on the user’s control device. Therefore, we include this factor
as one of the main aspect for evaluation. Lastly, as the name
implied, vendor neutrality represents the whether the method is
considered vendor specific (proprietary) or vendor neutral (non-
proprietary). Figure 13 demonstrates the registration process of
our framework compared with the secret-based method.

According to Fig. 13 and Table 4, the shared secret approach
(i.e., PANASONIC CS-X228C) requires a total of 6 steps with 3
user’s inputs to complete the registration process. During the reg-
istration, the user needs to disconnect from his/her current wifi
network in order to initiate the registration process. Furthermore,
the user has to download and install the “Eolia” application from
the vendor prior to the registration.

On the other hand, using the proposed framework, the user re-
quires 5 steps to complete the registration (with only 1 time in-
put). In addition, our approach does not require the user to join
the temporary wifi network; it does not cause a disconnection or
any disruption to other running services. The proposed method
requires neither shared secret information or the proprietary ap-
plication. The framework and its registration protocol can be
adopted and implemented by any vendor/developer. Therefore,
if application developers implement the same registration proto-
col in their IoT control applications (e.g., Alexa, HomeKit), this
will allow users to choose the control application of their choice

while still enjoying the benefit of cross-vendor compatibility.

9. Conclusion

In this work, a framework for IoT device registration is pro-
posed. Unlike existing methods, our framework is designed as
a generic framework to overcome the problem of incompatibil-
ity between devices, making it applicable to most of today’s IoT
devices and smartphones.

Utilizing existing technologies, the proposed method is de-
signed to use commonly available communication technologies
like Bluetooth while also requiring no predetermined secret in-
formation (such as codes or passwords) to perform. With the fact
that our proposed method requires no special hardware supports
(e.g., NFC, or RFID), this makes the proposed method more ap-
plicable to most devices in the market.

Regarding the developed registration protocol, the framework
offers an IoT registration service with high user-friendliness
while maintaining a high level of security against eavesdropping,
replay attack, and modification. Also, even though our approach
currently cannot provide full protection against the man-in-the-
middle attack, we can reduce the risk and mitigate this problem
efficiently by setting a discoverable duration and reduce the signal
strength of the IoT device during the discovery stage.

c© 2021 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.29

References

[1] Mattern, F. and Floerkemeier, C.: From the Internet of Computers to
the Internet of Things, Lecture Notes in Computer Science, Vol.6462,
pp.242–259 (online), DOI: 10.1007/978-3-642-17226-7 15 (2010).

[2] Green, P.: Alexa, Where Have You Been All My Life? (2017).
[3] Tiwari, S.: An Introduction to QR Code Technology, International

Conference on Information Technology (ICIT), pp.39–44, IEEE (on-
line), DOI: 10.1109/icit.2016.021 (2016).

[4] Benyo, B., Vilmos, A., Kovacs, K. and Kutor, L.: NFC Appli-
cations and Business Model of the Ecosystem, IST Mobile and
Wireless Communications Summit, pp.1–5, IEEE (online), DOI:
10.1109/ISTMWC.2007.4299324 (2007).

[5] Gupta, R. and Garg, R.: Mobile Applications Modelling and Secu-
rity Handling in Cloud-Centric Internet of Things, International Con-
ference on Advances in Computing and Communication Engineering,
pp.285–290, IEEE (online), DOI: 10.1109/ICACCE.2015.119 (2015).

[6] Kantarci, B. and Mouftah, H.T.: Sensing services in cloud-centric In-
ternet of Things: A survey, taxonomy and challenges, IEEE Inter-
national Conference on Communication Workshop (ICCW), pp.1865–
1870, IEEE (online), DOI: 10.1109/ICCW.2015.7247452 (2015).

[7] Happ, D., Karowski, N., Menzel, T., Handziski, V. and Wolisz, A.:
Meeting IoT platform requirements with open pub/sub solutions, An-
nals of Telecommunications, Vol.72, No.1-2, pp.41–52 (online), DOI:
10.1007/s12243-016-0537-4 (2017).

[8] Wood, A.: The internet of things is revolutionising our lives, but stan-
dards are a must (2015).

[9] MQTT: MQ Telemetry Transport (2020).
[10] Apple: Amazon, Apple, Google, Zigbee Alliance and board members

form working group to develop open standard for smart home devices
(2019).

[11] Chandan, A.R. and Khairnar, V.D.: Bluetooth Low Energy (BLE)
Crackdown Using IoT, International Conference on Inventive Re-
search in Computing Applications (ICIRCA), pp.1436–1441, IEEE
(online), DOI: 10.1109/ICIRCA.2018.8597189 (2018).

[12] Lee, J.-S., Dong, M.-F. and Sun, Y.-H.: A preliminary study of low
power wireless technologies: ZigBee and Bluetooth Low Energy,
IEEE Conference on Industrial Electronics and Applications (ICIEA),
pp.135–139, IEEE (online), DOI: 10.1109/ICIEA.2015.7334098
(2015).

Songpon Teerakanok received his M.E.
and D.Eng. degrees in Information Sci-
ence and Engineering from Ritsumeikan
University in 2016 and 2019, respectively.
Currently, he is serving as an assitant pro-
fessor at Research Organization of Sci-
ence and Technology, Ritsumeikan Uni-
versity. Regarding his past research, he

was also a former research student at the Centre for Network
Research (CNR) (Prince of Songkla University, Thailand) from
2009 to 2013. He is now also a current member of the Cyber Se-
curity Laboratory at Ritsumeikan University. His research inter-
est covers Cryptography, Privacy, Location-based Service (LBS),
and Digital Forensics.

Tetsutaro Uehara received his B.E.,
M.E., and D.Eng. degrees from Kyoto
University in 1990, 1992, and 1996, re-
spectively. He was an assistant professor
on the Faculty of Systems Engineering,
Wakayama University from 1996 to 2003.
From 2003 to 2005, he was an associate
professor at the Center for Information

Technology of the Graduate School of Engineering, Kyoto
University. From 2006 to 2011, he was an associate professor at
the Academic Center for Computing and Media Studies, Kyoto
University. From 2011 to 2013, he was a Deputy Director of
Standardization Division in the Ministry of Internal Affairs and
Communication, Japan. He has been a professor at College of
Information Science and Engineering, Ritsumeikan University
from 2013. He has also been the vice president of the Institute
of Digital Forensics from 2017. His research interest covers
Systems Security, Digital Forensics, Privacy, Education in Infor-
mation Ethics, and Information System Management in Local
Government.

Atsuo Inomata received his Ph.D. in in-
formation science from Japan Advanced
Institute of Science and Technology,
Japan, in 2008. He was an associate pro-
fessor of Nara Institute of Science and
Technology until 2016 and then became a
professor of Tokyo Denki University until
2019. Currently, he is serving as a profes-

sor at the cybermedia center and headquarters of information se-
curity, Osaka University and a visiting professor at Ritsumeikan
University. Furthermore, he is a director of JPCERT coordina-
tion center (JPCERT/CC) and a representative director of Wire-
less LAN Certification Organization (WiCert). His research inter-
est includes elliptic cryptography and IoT security. He is a holder
of CISSP and RISS.

c© 2021 Information Processing Society of Japan


