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On Tractable Problems of Diversity Optimization
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Abstract: Finding diverse solutions in combinatorial problems recently has received some attention. In this
paper we study the following type of problems: given an integer k, the problem asks for k solutions such that
the sum of pairwise Hamming distances between these solutions is maximized. We investigate the tractabil-
ity of the “diverse version” of several classical combinatorial problems, such as finding bases of matroids,
arborescences in directed graphs, bipartite matchings, shortest st-paths in directed graphs, and minimum

cuts of undirected graphs.

1. Introduction

In many combinatorial problems, we usually seek a sin-
gle solution satisfying some prescribed constraints and/or
optimizing given an objective function. However, such a
solution may not be adequate for real-world problems since
several intricate constraints emerging in real-world problems
are overly simplified or even ignored to make those problem
amenable. To address this issue, seeking multiple solutions
is a straightforward but promising approach. One of the
best known approaches to do this is k-best enumeration [9)].
Here, an algorithm is called a k-best enumeration algorithm
for some optimization problem if given an integer k, the al-
gorithm finds k feasible solutions & = {S1,...,Sk} such
that every feasible solution not in S is not strictly better
than that in S. There are many k-best enumeration al-
gorithms for various optimization problems (see [9] for a
survey). One potential drawback of k-best enumeration al-
gorithms is the lack of diversity of solutions. Most of k-best
enumeration algorithms, such as Lawler’s framework [18],
recursively generate solutions from a single optimal solu-
tion X = {x1,x2,...,2:} by finding a solution including
{z1,...,zi—1} and excluding x; for each 1 < ¢ < ¢t. This
implies that solutions tend to be similar to each other in
nature.

Motivated by this, (explicitly) optimizing diversity of so-
lutions has received considerable attention in the literature.
There are many results for finding “diverse” CSP or MIP
solutions [6], [15], [19], [22], [23]. According to [3], Michael
Fellows proposed the Diverse X Paradigm, where X is a
placeholder for an optimization problem. Based on this pro-
posal, they studied the parameterized complexity of several
diverse versions of combinatorial problems, such as VERTEX
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COVER, FEEDBACK VERTEX SET, and d-HITTING SET, and
showed that these problems are fixed-parameter tractable
parameterized by the solution size plus the number of solu-
tions [3]. Baste et al. [2] also discussed the fixed-parameter
tractability of diverse versions of several combinatorial prob-
lems on bounded-treewidth graphs.

Before describing our results, we need to define known di-
versity measures and discuss known results relevant to our
results. There are mainly two diversity measures in these
theoretical studies. Let U be a finite set. Let Si,..., Sk be
(not necessarily disjoint) subsets of U. We define

d(Si,..., 8= >

1<i<j<k

|S:iAS51,

where A is the symmetric difference of two sets. Also, define

dmin(Sl,n-,Sk) = min

|SiAS;].
1<i<j<k

Fomin et al. [10] showed that the problem of finding two
maximum matchings M7, M2 maximizing its symmetric dif-
ference in bipartite graphs can be solved in polynomial
time, whereas it is NP-hard on general graphs and gave an
FPT-algorithm with respect to parameter |M;AMa|. Also,
Fomin et al. [11] gave FPT-algorithms for finding k solutions
for several problems related to matroids and matchings such
that the weighted symmetric difference between any pair of
them is at least d, parameterized by k + d (i.e., the running
time of these algorithms is f(k,d)n®®), where f is some
computable function and n is the input size). In particular,
they showed that finding k bases of a matroid maximizing
the weighted version of dpyin is NP-hard even on uniform ma-
troids. Contrary to this hardness result, Hanaka et al. [14]
showed that finding & bases of a matroid maximizing d is

solvable in polynomial time.*!

*1 In this problem setting, we assume that the independent oracle

can be evaluated in polynomial time.
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In this paper, we expand the tractability border of the
diverse version of classical combinatorial optimization prob-
lems.

Let S C 2Y be a set of solutions. The common goal of our
.., 8, €8
..Sk), where dy, is the weighted ver-

problems is to find a set of k solutions S1,S2,.
maximizing dq, (S1, . .
sion of the diversity measure d (see Section 2). We show that
if S consists of either (1) the bases of a matroid, (2) the ar-
borescences of a directed graphs, (3) the set of t-matchings
of a bipartite graph, or (4) the set of st-paths in a directed
graph, then the problem can be solved in polynomial time.
The algorithm for (1) is a straightforward extension of the
algorithm of [14] to the weighted Hamming distance and that
for (3) is an extension of [10] that allows to find more than
two diverse bipartite matchings in polynomial time. On the
negative side, we show that if S consists of the set of mini-
mum cut of a graph, then the problem is NP-hard even if the
size of a minimum cut is three. To tackle this intractability,
we study DIVERSE MINIMUM CuUTS from the perspective of
fixed-parameter tractability. We show that DIVERSE MIN-
IMUM CUTS is polynomial-time solvable if the input graph
G has a minimum cut of size at most two, fixed-parameter
tractable parameterized by k plus the edge-connectivity of
G, and W[1]-hard parameterized by k only.

2. Preliminaries

Let G = (V, E) be a (directed) graph. We denote by V(G)
and F(G) the sets of vertices and edges of G, respectively.
For X C V, the set of edges between X and V'\ X is denoted
by Eq(X,V\ X).

Let U be a finite set and let w : U — N>q. Let S1,...,S%
be (not necessarily disjoint) subsets of U. We define

duw(S1,...,8K) = Y w(SiAS)),

1<i<j<k

where w(X) = > w(x). This notation extends the di-
versity measure d defined in the previous section.

Let k be a positive integer and let S C 2Y be sub-
sets of U. We expand each element e in U into k copies:
Let U* = {e1,...,ex : e € U}. We define a function
f:U" — U such that f(e;) = eforalle; € U*. We say that
S* C U™ is a k-packing of U* with respect to S if S* can be
partitioned into Si,..., Sk such that {f(e*):e* € S;} € S
forall 1 <i<k.

We consider a weight function w* : U* — Z such that
w*(e;) =w(e) - (k—2i+1)fore € U and 1 <i < k. Then,
we have the following lemma.

Lemma 1. There are Si,...,S% € S with
dw(S1,...,Sk) > t if and only if there is a k-packing
S* of U™ with respect to S such that w*(S™) > t.

Proof. Suppose that there are Si,...,S, € S with
dw(S1,...,Sk) > t. For each e € U, we denote by m(e) the
number of occurrences of e in the collection {S1,...,Sk}.
Then, we have
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dw(S1, .., Sk) = Y (w(e) - m(e) - (k —m(e)))
ecU
= (wle)- > (k—2i+1)
ecU 1<i<m(e)

-y Y e

€U 1<i<ml(e)
= w*(S").

Conversely, assume that there is a k-packing S* of U™
with respect to & with w*(S*) > ¢. We assume more-
over that, for each e € U, S* contains consecutive ele-
,em} C S*
and {em+1...,e,}NS* = 0. This assumption is legitimate
as w(e;) > w(e;) for 1 <4 < j < k. We denote the multi-
plicity m of e by m(e). Let {S7,...,S;} be a partition of
S* such that S; = {f(e*) :e* € S;} € Sfor1 <i < k.
For each e € U, the contribution of e to w*(S™) is indeed
w(e) - > 1 <ij<m(ey(k — 2+ 1). Hence, we have

W)=Y Y

ecU 1<i<m(e)

= dw(S1,...,S)

ments e1,...,en for some m, that is, {e1,..

w” (e;)

as in the “only-if” direction. O

3. Diverse Matroid Bases

As an application of Lemma 1, we consider the following
problem.

Definition 1. Given a matroid M = (E,Z) with a weight
function w : E — N> and an integer k, WEIGHTED DI-
VERSE MATROID BASES asks for k bases Bi,..., By of M
such that dy (B, ..., By) is maximized.

In [14], they consider a special case of WEIGHTED DI-
VERSE MATROID BASES where each element in the ground
set I/ has a unit weight and give a polynomial-time algo-
rithm for it, assuming that the independence oracle Z can
be evaluated in polynomial time. This result is obtained by
reducing the problem to that of finding disjoint bases of a
matroid, which can be solved in polynomial time.

Theorem 1 ([7], [21]). Let M = (E,T) be a matroid and
let w: E — Z. Suppose that the membership of Z can
be checked in polynomial time. Then, the problem of de-
ciding whether there is a set of mutually disjoint k bases
Bi,..., By of M can be solved in polynomial time. More-
over, if the answer is affirmative, we can find such bases
that maximize the total weight (L.e., D7, ;) > cp, w(e))
in polynomial time.

By applying Lemma 1, we have a polynomial-time algo-
rithm for WEIGHTED DIVERSE MATROID BASES as well.
Theorem 2. WEIGHTED DIVERSE MATROID BASES can
be solved in polynomial time.

Proof. The proof is almost analogous to that in [14]. Let
M = (E,Z) be a matroid and let e € E. Define J =
TU{(F\{eh)u{e'} : FeZAe€ F}. Then, (EU{e'},J)
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is also a matroid [14], [20]. We define k copies e1, ez, ..., ek
for each e € E and E* = {e1,...,e; : e € E}. Then, the
pair M* = (E*,Z") is a matroid if Z* consists of all sets
F C 2" such that F contains at most one copyofer,...,ex
for each e € E and U, . f(ei) € Z, where f(e;) = e for
ec Fand1<i<k.

To find a set of k bases Bi,..
dw(B1,..
weight k-packing with respect to the base family of M™ un-
der a weight function w* with w*(e;) = w(e) - (k —2i 4+ 1)
for e € F and 1 < i < k, which can be solved in polynomial
time by Theorem 1. O

., By of M maximizing
., Bi), by Lemma 1, it suffices to find a maximum

4. Diverse Arborescences

Theorem 2 allows us to find diverse spanning trees in undi-
rected graphs as the set of spanning trees of a graph forms
the set of bases of a graphic matroid. In this section, we
develop a polynomial-time algorithm for a directed version
of this problem. Let G = (V| E) be a directed graph and let
r € V. We say that a subgraph T of GG is an arborescence
(with root r) if for every v € V, there is exactly one directed
path from r to v in T'. In other words, an arborescence is a
spanning subgraph of GG in which each vertex except r has
in-degree one and its underlying undirected graph is a tree.
In this section, we consider the following problem.

Definition 2. Given an arc-weighted directed graph D =
(V, A) with weight function w : A — N>o, r € V, and
an integer k, WEIGHTED DIVERSE ARBORESCENCES asks
for k arborescences T1,...,Tx of D with root r such that
dw(E(Th),..., E(Ty)) is maximized.

Theorem 3. WEIGHTED DIVERSE ARBORESCENCES can
be solved in polynomial time.

The proof of Theorem 3 is almost analogous to that in
Theorem 2. We define a directed graph D* with vertex set
V from D = (V, A) such that for e = (u,v) € A, we add k
parallel arcs e1,...,e; directed from u to v to D’. Then,
we set w*(e;) =w(e) - (k—2i+1)forec Aand 1 <i < k.
By Lemma 1, it is sufficient to find a maximum weight k-
packing of the arc set of D* with respect to the family of
arborescences of D*, which can be found in polynomial time

by the following result.

Theorem 4 ([8]). Given an arc-weighted directed multi-
graph D = (V,A) with weight function w : A — Z,
r € V, and an integer k, the problem of finding k arc
disjoint arborescences T1,...,T, with root r maximizing
w(UJy<;<p E(T3)) is solved in strongly polynomial time.

5. Diverse Bipartite Matchings

A matching of a graph G = (V,E) is a set M C E of
edges such that no two edges share their end vertices. In
this section, we consider the following problem.
Definition 3. Let G = (AU B, E,w) be an edge-weighted
bipartite graph with w : £ — N>¢, where A and B are color
classes of G. Let k, p be positive integers. We denote by M
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the collection of all matchings of G with cardinality exactly
p. DIVERSE BIPARTITE MATCHINGS asks for & matchings
My, ..., My € M maximizing d, (M, ..., My).

As mentioned in Section 1, the problem of finding
two edge-joint perfect matchings in a general graph is
known to be NP-complete [16]. In this section, we de-
sign a polynomial-time algorithm for DIVERSE BIPARTITE
MATCHINGS by applying Lemma 1.

We construct a bipartite multigraph G* from G by re-
placing each edge e = {a,b} € E with k parallel edges
et,...,ep. We set w*(e;) = w(e) - (k— 2i+ 1) for each
e € Fand 1 <14 < k. By Lemma 1, it suffices to show
that there is a polynomial-time algorithm that computes a
maximum weight k-packing of E* with respect to M, where
M is the collection of matchings M of G with cardinality
exactly p. This problem can be solved in polynomial time
by reducing to the minimum cost flow problem as follows.

Let G* = (AU B, E*) be bipartite and let w* : E* — Z.

We construct a directed acyclic graph from G* by orienting
each edge {a,b} of G* directed from a to b, where a € A
and b € B. Each arc (a,b) in G* has capacity one and cost
—w*({a,b}). We also add a source vertex s, sink vertex ¢,
and then arcs (s, a) for each a € A and (b, ) for each b € B.
The arcs incident to the source or the sink have capacity
k and have weight zero. Now, we set the flow requirement
from s to t to kp. Thanks to the integral theorem of the min-
imum cost flow problem, we can find, in polynomial time, a
maximum weight subgraph H* of G* such that H* has ex-
actly kp edges and each vertex has degree at most k. From
this subgraph H*, we need to construct a maximum weight
k-packing of E* with respect to M. The following lemma
ensures that it is always possible.
Lemma 2. Let H* be a bipartite graph with kp edges.
Suppose the maximum degree of a vertex in H* is at most
k. Then, the edges of H* can be partitioned into k& match-
ings of cardinality exactly p. Moreover, such a partition can
be computed in polynomial time from H*.

Proof. Tt is known that every bipartite graph of maxi-
mum degree at most k has a proper edge-coloring with k
color, and such an edge-coloring can be computed in poly-
nomial time [5], [12]. We can assume that each color is
used at least once by recoloring an edge whose color is
used at least twice. Then, the edges of H* can be de-
composed into k non-empty matchings My,..., M. If
|My| = -+ = |Mg| = p, we are done. Suppose that there
is a pair of matchings M; and M; with |M;| > p and
|M;| < p. The union of M; and M; induces a subgraph
of H* of maximum degree at most two. As |M;| > |M;],
the subgraph contains an augmenting path P = (v1,...,v:)
with {ve,ve41} € M; for odd ¢ and {ve,ve41} € M;
for even £. Let M] = (M; \ E(P)) U (E(P)N M;) and
M; = (M; \ E(P)) U (E(P) N M;). Then, we have match-
ings M, and M} with |M]| = |M;| —1 and |Mj| = |M;|+1.
By repeating this argument, we have a desired set of match-
ings. O
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Therefore, E(H*) = M1 U---U Mj, is a maximum weight
k-packing of E(H™) with respect to M, which implies the
following theorem.

Theorem 5. There is a polynomial-time algorithm that,
given a bipartite graph G and positive integers k,p,
computes (not necessarily edge-disjoint) k matchings
My, ..., M}, with cardinality p such that d.,(Mi,..., M)
is maximized.

6. Diverse Shortest st-Paths

This section is devoted to solving the following problem.

Definition 4. Let G = (V, E) be a directed graph with
specified vertices s,t € V. Let £ : E — Nx>q be a length
function on edges. Let P be the set of all shortest paths
from s to ¢t in (G, £). Given an integer k and a weight func-
tion w : & — N>q, DIVERSE SHORTEST st-PATHS asks for
k paths P, ..., P, € P such that d,(E(P1),...,E(Py)) is
maximized.

Theorem 6. DIVERSE SHORTEST st-PATHS can be solved
in polynomial time.

We first compute the shortest distance label dist : V' —
N>¢ from s in polynomial time. For each edge e = (u,v) €
E with dist(u) # dist(v) + £(e), we remove it from G. We
also remove vertices that are not reachable from s in the
removed graph. This does not change the optimal solutions
since every path in P does not include such vertices and
edges. Then, the obtained graph, denoted by G’ = (V', E'),
has no directed cycles, and every path from s to ¢ belongs
to P. From this directed acyclic graph G’, we construct
an weighted directed multigraph G* by replacing each edge
e = (u,v) with k copies e1,...,ex and setting w*(e;) to
w(e)(k—2i+1)fore€ £ and 1 <1i < k. By Lemma 1, it
is sufficient to find a maximum weight k-packing of £* with
respect to P.

Lemma 3. Let G* and w : E* — N3 be as above. Then,
there is a polynomial-time algorithm that finds a maximum
weight k-packing of E* with respect to P.

Proof. We reduce the k-packing problem to the minimum-
cost flow problem, which can be solved in a polynomial time.
The source and the sink vertices of G* are defined as s and t,
respectively. For each e € E*, we assign the capacity value
of 1 (to prevent edge sharing) and the cost value of —w™*(e).
The flow requirement is set to k. Then we can find a flow
[+ E¥ — R>o maximizing > 5. f(e) - w*(e) in polyno-
mial time. Moreover, it is well known that f is integral, that
is, f(e) € Nx>q for every e € E*, as the capacity is integral.
Since the all of the edges in E* has a capacity of 1, f can be
., P, which
implies that the maximum weight k-packing with respect to

decomposed into k edge-disjoint st-paths Py, ..

P can be found in polynomial time as well. O

7. Diverse Minimum Cuts

In previous sections, we design polynomial-time algo-
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rithms for several diverse version of well-known combinato-
rial problems. In this section, we discuss the diverse version
of the minimum cut problem.

Definition 5. Let G = (V, E) be an edge-weighted graph
with weight function w : E — Nx>o, and let k& be an inte-
ger. DIVERSE MINIMUM CUT asks for £ minimum edge cuts
C1,...,C C E such that d(C1, ..

In contrast to results in previous sections, DIVERSE MINI-
MUM CUT is intractable. Let A(G) be the size of a minimum
cut of G.

., Ck) is maximized.

Theorem 7. DIVERSE MINIMUM CUT is NP-complete even
if M(@) =3.

The problem obviously belongs to NP. The NP-hardness is
shown by performing a polynomial-time reduction from the
maximum independent set problem on cubic graphs, which
is known to be NP-complete [13]. For a graph H, we denote
by a(H) the maximum size of an independent set of H. Let
H be a graph in which every vertex has degree exactly three.
Let H' be the graph obtained from H by sudividing each
edge twice, that is, each edge is replaced by a path of three
edges. The set of vertices in H' that do not appear in H
is denoted by D. The following folklore lemma ensures that
the value of «v increases exactly by m.

Lemma 4 (folklore). Let m be the number of edges in H.
Then, a(H') = a(H) + m.

We construct a graph G from H' by adding a new ver-
tex v* and connecting v* and a vertex in D. Note that the
degree of v* in H' is more than three.

Lemma 5. G has k edge-disjoint cuts of size three if and
only if H' has an independent set of size k.

Proof. Let G = (V,E). Suppose first that H' has an
independent set S of size k. Since every vertex in S ap-
pears also in G, we can construct a cut of the form C; =
Ec({vi},V \ {v}) for each v; € S. As S is an independent
set of GG, these k cuts are edge disjoint. Moreover, these cuts
have exactly three edges since every vertex in S has degree
three in G.

Conversely, suppose G has k edge-disjoint cuts
C1,C2,...,Cr, C E with |C;] = 3 for 1 < ¢ < k.
It is sufficient to prove that each of these cuts forms
Ci = Eg({v},V \ {v}) for some v € V \ {v*}. Let
Ci = Eg(X,V \ X) for some X C V. Without loss of
generality, we assume that v* € V' \ X. In the following, we
show that X contains exactly one vertex. Since every vertex
in D is adjacent to v*, X contains at most three vertices of
D. Suppose first that |X N D| = 3. Since every vertex of D
has a neighbor in D, V' \ X has a vertex in D that has a
neighbor in X N D. However, as every vertex of X N D is
adjacent to v™, there are at least four edges between X and
V' \ X, contradicting to the fact that |C;| = 3.

Suppose next that | X N D| = 2. Let u,v € X N D
be distinct. If w is not adjacent to v, there are two
vertices v’ and o' in (V \ X) N D that are adjacent
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to u and v, respectively. This implies C; contains four
edges {u,u'}, {v,v'}, {u,v*}, {v,v*}, yielding a contradic-
tion. Thus, u is adjacent to v. Let u' and v’ be the
vertices in V' \ (D U {v*}) that are adjacent to u and
v, respectively. Observe that at least one of v’ and v/,
say u', belongs to X as otherwise there are four edges
{w, v}, {v,v'}, {u,v*}, {v,v*}) between X and V \ X.
Since |X N D| = 2 and v’ has three neighbors in D, the
other two neighbors of u’ belongs to V' \ D, which ensures
at least four edges between X and V' \ X.

Suppose that | X N D| = 1. Let w € X N D. In this case,
we show that X = {u}. To see this, consider the neighbors
of u. Since v* € V\ X and | X N D| = 1, at least two neigh-
bors of u, which are v* and a vertex in D, belong to V' \ X.
If the other neighbor v is in X, then by the assumption that
|X N D| =1, the two neighbors of v other than u belong to
V'\ X, which implies there are at least four edges between
X and V'\ X. Thus, all the neighbors of u belong to V'\ X.
Since G is connected, all the vertices except for u belong to
V' \ X as well. Thus, we have C; = Eg({u},V \ {u}).

Finally, suppose that X N D = (. In this case, at
least one vertex of V' \ (D U {v*}) is included in X. Let
uw€ X\ (DU{v*}). Since X N D = {), every neighbor of u
belongs to V' \ D. Similarly to the previous case, we have
X = {u}, which completes the proof. O

Note that the proof of Lemma 5 also proves that G has
no cut of size at most two. Therefore, by Lemmas 4 and 5,
Theorem 7 follows.

When A(G) = 1, then DIVERSE MINIMUM CUT is trivially
solvable in polynomial time: We can select (not necessarily
edge-disjoint) k bridges maximizing d,. If A(G) = 2, the
problem in fact is solvable in polynomial time as well.
Theorem 8. DIVERSE MINIMUM CUT is polynomial time
solvable if A(G) < 2.

We reduce the problem to that of finding a subgraph of
prescribed size with maximizing the sum of convex functions
on their degrees of vertices.

Theorem 9 ([1]). Given an undirected graph H, an inte-
ger k, and convex functions f, : N>¢g — Q for v € V(H),
the problem of finding k-edge subgraph H’ of H maximizing
> vev ) fo(dm: (v)) is solvable in polynomial time, where
dp(v) is the degree of v in H'.

We first enumerate all minimum cuts of G in polynomial
time. Then, we construct a graph H whose vertex set corre-
sponds to E, and the edge set of H is defined as follows. For
each pair e, f € F, we add k parallel edges between e and
f to H if {e, f} is a cut of G. Obviously, the graph H can
be constructed in polynomial time. For each e € E, we let
fe(@) :=w(e)-i-(k—1) for 0 < i < kand fe(i) = oo fori > k.
.y Ck Q FE be
k cuts of G. For each e, we denote by m(e) the number of

Clearly, the function fe is convex. Let Cq,..
occurrences of e among C1,...,Cg. Since each edge in E

contributes w(e) - m(e) - (k —m(e)) to dw(C1,...,Ck), we
immediately have the following lemma.
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Lemma 6. H has a subgraph H’ of k edges such that
> wev(m fe(dr(€)) > t if and only if there are k edge
cuts C1,...,Cr C E of G with |C;| =2 for 1 <i < k such
that du(C1,...,Cl) > t.

By Lemma 6 and Theorem 9, DIVERSE MINIMUM CUT
can be solved in polynomial time, provided A\(G) < 2.

We also obtain the following fixed-parameter tractability
and intractability results, which are omitted in this paper.

Theorem 10. There is an 20F G O _ime algorithm
for DIVERSE MINIMUM CUTS, where n is the number of ver-
tices in G.

In other words, DIVERSE MINIMUM CuTs is fixed-
parameter tractable parameterized by k + A(G). The proof
of this theorem is made by combining algorithm for enu-
merating all minumum cuts in graphs [17] and a general
FPT result due to [14]. In contrast to this tractability, we
can show that the problem is unlikely to be fixed-parameter
tractable when parameterized by k only.

Theorem 11. DIVERSE MINIMUM CuTs is W[1]-hard pa-
rameterized by k.

Similarly to Theorem 7, we can reduce INDEPENDENT SET
on d-regular graphs, which is known to be W[1]-hard [4], to
Diverse MiNiMuM CUTS.
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