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Abstract: B-cells inducing antigen-specific immune responses in vivo produce large amounts of antigen-specific anti-
bodies by recognizing the subregions (epitope regions) of antigen proteins. These antibodies can inhibit the functioning
of antigen proteins. Predicting epitope regions is beneficial for the design and development of vaccines aimed to induce
antigen-specific antibody production. However, prediction accuracy requires improvement. The conventional epitope
region prediction methods have focused only on the target sequence in the amino acid sequences of an entire antigen
protein and have not thoroughly considered its sequence and features as a whole. In the present paper, we propose a
deep learning method based on long short-term memory with an attention mechanism to consider the characteristics of
a whole antigen protein in addition to the target sequence. The proposed method achieves better accuracy compared
with the conventional method in the experimental prediction of epitope regions using the data from the immune epitope
database.
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1. Introduction

B-cells, which induce antigen-specific immune responses in
vivo, produce large amounts of antigen-specific antibodies by
recognizing the subregions (epitope regions) of antigen proteins.
Antibodies can inhibit the functioning of an antigen protein by
binding it to its epitope region [1]. A substance that mimics the
structure and function of an epitope can be considered as a “vac-
cine” to an organism that is aimed to induce specific antibodies in
vivo. Various studies focused on epitopes have been conducted
to design safe and effective vaccines. Conducting the three-
dimensional structural analysis of antibody-antigen complexes by
X-ray [2] or nuclear magnetic resonance (NMR) spectroscopy [3]
is deemed as the most reliable way to identify epitopes recog-
nized by B-cells. However, this procedure is expensive in terms
of time, cost, and labor. Therefore, to address this problem,
a computer-based epitope prediction has been introduced. Re-
cently, various linear B-cell epitope prediction methods have been
proposed [4], [5], [6], [7], [15]. Although their performance has
been improved, the employed features are limited to those as-
sociated with the target amino acid sequence, and therefore, the
representation capability of such models is insufficient.

In the present paper, we propose a method for linear B-cell epi-
tope prediction using an attention-based long short-term memory
network (LSTM) [16] (a deep learning approach) to incorporate
not only the target amino acid sequence but also the long-range
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features of a whole protein.
In addition, the attention mechanism [17] is realized to enable

automatically estimating the points to be emphasized while pre-
dicting each amino acid in and out of candidate epitopes. Fur-
thermore, to address the problem of data sparseness, we extend
the method to enable the simultaneous consideration of the phys-
ical and chemical features of an entire antigen protein in a deep
learning network.

Our empirical results on the Immune Epitope Database
(IEDB) [18], [19] indicate that the proposed method achieves bet-
ter prediction accuracy than the existing method BepiPred2.0 [4].
Some of the datasets used in the present study are available to the
public *1.

2. Task Definition

2.1 Task Definition
In the present study, the prediction of linear B-cell epitopes

was based on the long-chain amino acid sequences that consti-
tuted antigenic proteins. The approximate length range of epi-
tope regions registered in IEDB is from 5 to 20 amino acids [18],
[19], [20]. Although the proposed method could be applied re-
gardless of the length of an epitope region, in the problem setting
of this research, we limited the length of a candidate epitope pep-
tide (corresponding to the short amino acid sequences) to 8-14
amino acids. This is because the number of data for peptides
with less than 7 amino acids is too small, and the number of data
for peptides with 15 amino acids is too large to compare fairly.
We addressed the problem of classifying peptides of 8–14 amino
acids into two categories: with antibody inducing activity (posi-

*1 https://www.kaggle.com/futurecorporation/epitope-prediction.
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Table 1 Statistics of the used dataset.

length Number of peptides Number of proteins Ratio of positives
8 2,271 135 0.197
9 242 128 0.675
10 3,276 180 0.227
11 346 125 0.204
12 758 172 0.492
13 245 186 0.736
14 337 127 0.458
total 7,475 646 0.293

tive) and without such activity (negative).

2.2 Employed Dataset
Information on whether or not an amino acid peptide exhibited

antibody-inducing activity (marked by an activity label) could be
obtained from IEDB [18], [19], [21], which was used in many
previous studies. Accordingly, this information was used as the
label data. We also obtained the epitope candidate is part of a
protein (called “peptide” in this paper) and its activity label data
from the B-cell epitope data provided in IEDB. The presented an-
tibody proteins were restricted object type linear peptides with no
defects in parent protein and also restricted to IgG that constituted
the most recorded type in IEDB. For convenience, we excluded
records representing different quantitative measures of antibody
activity for the same peptide from experiments. The epitope
data obtained from IEDB corresponded to the five types of ac-
tivity: “Positive-High,” “Positive-Intermediate,” “Positive-Low,”
“Positive,” and “Negative.” However, due to the limited num-
ber of data elements marked with the “Positive-High,” “Positive-
Intermediate,” and “Positive-Low” labels, we equally considered
these labels as “Positive”, thereby attributing the task to a binary
estimation. In Table 1, we represented “the number of peptides,”
“the number of proteins,” and “the ratio of positives” in the con-
sidered data including each length. Notably, the number of sig-
nificant digits was three. As shown in column “the ratio of pos-
itives” in Table 1, we noted that there was a difference between
the positive ratio values corresponding to various lengths.

Concerning this population, we extracted the dataset corre-
sponding to 10 different random states with the ratio of the learn-
ing data to the evaluation data at approximately 10:1. The data
were split without duplication across all sets. In each dataset,
there were no duplications of proteins across train and test data.
Furthermore, we excluded the peptides with high homology from
each dataset, using CD-HIT [23]. CD-HIT is the tool, which de-
termines degree of homology between two sequences. In this
study, we calculated degree of homology for all combinations of
peptide sequences in the train and test dataset by CD-HIT. Simi-
lar to the previous study [24], we set 40% as a maximum degree
of homology and used the data as no homology sequences data.

One of the 10 data sets created as described above is shown in
Table 2.

3. Related Work and Issues

The early computer-based linear B-cell epitope prediction
methods focused solely on the physicochemical properties of
the amino acids constituting protein [22]. In contrast to these
manually derived predictions based on specific indices, machine

Table 2 One of the datasets after homology deletion.

length Number of peptides train peptides test peptides
8 1,967 1,860 107
9 161 144 17
10 3,121 2,981 140
11 152 135 17
12 643 537 106
13 207 182 25
14 244 205 39
total 6,495 6,044 451

learning methods incorporating the information from the amino
acid sequences themselves achieved high performance [4], [5],
[6], [7], [8], [9], [10], [11], [12], [13], [14], [15]. Various
methods based on machine learning algorithms were proposed,
including those using random Forest, BepiPred-2.0 [4], sup-
port vector machine (SVM) method, LBtope [5], SVMTriP [6],
COBEpro [7], BCpred [8], AAPpred [9],Bayesb [10], LEPS [11],
BEST [12], BEORACLE [13], SVM and AdaBoost-Random for-
est method, LBEEP [14], Recurrent Neural Network (RNN) [25]
and ABCpred [15]. Although the performance of these methods
could not be unconditionally compared due to different datasets
used in the experiments, BepiPred-2.0 achieved the best re-
sults [4] in that there is a significant difference in AUC between
BepiPred-2.0 and others. In several previous studies, short amino
acid sequences (1-3 amino acids), before and after the target pep-
tide, were added as features. However, the long-range features of
antigen proteins were not incorporated.

To process the long-distance information outside of peptides
in antigenic proteins, several approaches considering amino acid
sequences as series data were proposed. For example, ABCpred
based on RNN corresponding to a type of deep learning did not
include the amino acid sequence information outside an epitope.
One of the related problems lied in inability to handle long-
distance information appropriately, as it caused the problem of
vanishing gradient during the learning process of RNN. In the
present study, we consider the target peptide and the amino acid
sequences before and after the target peptide as the new target
peptide and address the problem of vanishing gradient by apply-
ing LSTM [16].

In addition, one of the essential problems associated with ma-
chine learning is that it is difficult to derive accurate predictions
when the amount of training data is limited. In the previous
study [5], physicochemical properties, such as type, composition,
hydrophobicity, polarity, and the stability of amino acids in pep-
tides, were employed as features in SVM. The proposed method
further solves this problem by extending the model to include in
a neural network the physical and chemical features of an entire
antigen protein in addition to the amino acid sequence informa-
tion.

4. Proposed Method

4.1 Overview of Proposed Method
While predicting epitopes, the features and amino acid se-

quences within an epitope may not provide sufficient information
for prediction. In the present study, we develop a method based
on LSTM with an attention model in which the amino acid se-
quences inside and outside the epitope are considered as series
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Fig. 1 Network structure of the proposed model. “Sec.” number in the fig-
ure indicates the corresponding section that describes each part.

Fig. 2 Structure of an LSTM block at a certain series point t, where xt is
the input at point t corresponding to the tth amino acid in this case;
ct is the memory cell that preserves the long-range information; ht is
the embedded vector of the hidden state; σ is sigmoid function; tanh
is the hyperbolic tangent function; × is the Hadamard product of the
matrix, and + is the simple addition.

data to handle the long-range information on proteins.
Figure 1 represents the overall scheme of the proposed

method. In the following sections, we introduce LSTM and at-
tentional mechanisms, and then describe the proposed method in
detail.

4.2 LSTM
RNN [25] is a deep learning method that can be used to handle

series data. However, it is not applicable to long-range series in-
formation due to the problem of vanishing gradient, meaning that
the gradient becomes small as a result of backpropagation during
training.

LSTM [16] is an RNN model that can handle the long-range
sequence information using memory cells and gates. Figure 2
represents a schematic diagram of blocks (rectangles described
as “LSTM” in Fig. 1) at the point t, where t denotes a time series
point in the focus of attention in LSTM. Concerning memory
cells (denoted as ct in Fig. 2), we can observe that they pass only
through simple addition and the Hadamard product by following
a backpropagation flow (the flow to ct−1 in Fig. 2). The backprop-
agation of simple addition is set to 1 on partial differentiation so
that the gradient does not change, while the partial differentiation
of the Hadamard product depends only on the output of a forget-
ting gate (the “Forget gate” in Fig. 2). That is, the gradient of
an element which is considered to be forgotten by the gate be-
comes small, while being maintained and transmitted in the past
direction otherwise. Therefore, a memory cell can propagate the
information that should be stored for a long time without losing
it. In the present study, bi-directional LSTM [26] that is defined

as a combination of the forward and backward LSTM models is
implemented to combine the information obtained from the series
corresponding to opposite directions.

4.3 Attention Model
Although LSTM has the ability to retain the long-range infor-

mation in contrast to RNN, the detailed information in an input
series tends to be lost, as it cannot be represented as a compressed
vector (hT ), where T denotes the last point in the series. There-
fore, we implement an attention mechanism that can refer directly
to the information of an input series. Using such an attention
mechanism, it is possible to memorize the vector output from
an LSTM block at each series point and then multiply them by
weights to obtain a context vector defines what element in the
context is to be focus on (the “Attention” part in Fig. 1). LSTM
with an attention mechanism has achieved remarkable results in
various application fields, including natural language process-
ing [17]. In the present study, we introduce an attention mech-
anism to consider which parts of proteins should be emphasized
in the model.

4.4 Utilization of the Physical and Chemical Features of
Amino Acid Sequences

In general, the problem of machine learning methods is that
they cannot be used to learn sufficiently in the cases when the
amount of training data is limited. In the present study, we
incorporate the physical and chemical features within peptides
and whole antigenic proteins to enable robust predictions even
when the amount of data is limited. The physical and chemi-
cal features of the peptides considered in this study are the fol-
lowing: β-turn [27], relative surface accessibility [28], antigenic-
ity [29], and hydrophilicity [30]. They are obtained using an
epitope prediction application programming interface (API) pro-
vided by IEDB [19]. The total antigen protein features are con-
sidered as they are expected to affect the ease of binding between
proteins and the epitopes. The following four features: isoelectric
point, aromaticity, hydrophobicity, and stability, are obtained us-
ing the Biopython library [31]. A total of eight of the physical and
chemical features are integrated into the network of the proposed
method, as described the next section.

4.5 Epitope Prediction of Antigen Protein Using Attention-
based LSTM Network

LSTM described in Section 4.2 is employed to preserve the
long series information, and the attention mechanism introduced
in Section 4.3 enables the prediction mechanism of notable loca-
tions. Then, incorporating the physical and chemical features, as
suggested in section 4.4 allows enabling robust estimation even
when the amount of training data is limited. In this section, we
demonstrate how these three features can be combined in a single
model to perform epitope predictions that are the subject of the
present research.

In Fig. 1, the input sequence information describes each amino
acid (A, G,..., S) inside and outside a peptide, and a LSTM block
at each sequence point receives the amino acid information. In
LSTM, the amino acid information at the point in a series and
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that before and after this point are combined into an embedded
vector (ht). This allows capturing the long-range amino acid se-
quence information.

Then, we apply the attention mechanism to estimate which
amino acids are particularly noteworthy for the purposes of epi-
tope estimation. For example, as the information corresponding
to an inside peptide is considered to be more important than that
associated with an outside one, it is possible to assign a higher
weight to an inside peptide to propagate the information.

The final embedding vector obtained using LSTM with the
attention mechanism and the physical and chemical features of
the amino acid sequences, described in Section 4.4 (denoted as
“peptide/protein features” in Fig. 1) are combined with the dense
layer, and finally the presence of an epitope is judged using the
sigmoid function (the “Activate” layer). In the model learning
phase, the model parameters at each learning step are employed
to perform the above estimation, and then the model backprop-
agates the loss to epitope determination and updates the model
parameters in each layer.

5. Evaluation Experiments

5.1 Experimental Conditions
To evaluate the applicability of the proposed methods, we com-

pared with the baseline approach on the same dataset. In this ex-
periment, we used BepiPred-2.0 [4] as the baseline model. Ta-
ble 3 represents the comparison of the features considered in
BepiPred-2.0 and in the proposed method. Here, in this exper-
iment, we adopted 16 amino acid residues as the window size
that scored the highest in our preliminary experiments.

Each model finally outputted a value in the range between 0.0
and 1.0 that indicates epitopicity. When this value was greater
than 0.5, it is regarded as epitope, and when it was less than 0.5,
it was considered as non-epitope. BepiPred-2.0 calculated pre-
dictions on the basis of amino acids, so that we used the average
of the prediction scores for each amino acid as the predicted score
of a target peptide. The trained model for BepiPred-2.0 was pub-
lished as API [19], and we employed it to obtain results for eval-
uation, as described in Section 2.2.

We analyzed the performance concerning each antigen in terms
of binary accuracy, similarly as Ref. [15]. To compare the perfor-
mance of two models, the paired t-test was applied to their ac-
curacy estimates on individual datasets. A confidence interval of
95% was considered to identify a significant difference between
two compared models. Then, to focus on the prediction of posi-
tive labeling, we utilized the three indicators of positive labeling
as described below:
• Sensitivity (Sens.) = True Positive / (True Positive + False

Negative)
• Positive Prediction Value (PPV) = True Positive / (True Pos-

itive + False Positive)
• F1 value = 2 × PPV × Sensitivity / (PPV + Sensitivity)

Additionally, we evaluated the area under the curve (AUC) to
address the problem of bias in datasets. The chance rate in the
present study was set as shown in the “Positive ratio” in Table 1
if all predictions were 1. Otherwise, it was set to 1− “positive
ratio” if all predictions were 0. Notably, the chance rate was also

Table 4 Accuracy and p-value of BepiPred-2.0 and the proposed methods.
The highest scores among the compared methods in “Accuracy”
columns and the value in “p-value” columns where there is a 5%
significant difference are shown in bold. Macro average of accu-
racy for each method is shown in the first line as “Total.”

Length Method Accuracy p-value
Total BepiPred-2.0 0.489 —

proposed 0.695
w/o Attention 0.673

8 BepiPred-2.0 0.526 0.204
proposed 0.649
w/o Attention 0.774

9 BepiPred-2.0 0.462 0.002
proposed 0.688
w/o Attention 0.638

10 BepiPred-2.0 0.550 0.005
proposed 0.673
w/o Attention 0.657

11 BepiPred-2.0 0.503 0.002
proposed 0.677
w/o Attention 0.644

12 BepiPred-2.0 0.395 0.001
proposed 0.790
w/o Attention 0.582

13 BepiPred-2.0 0.488 0.000
proposed 0.783
w/o Attention 0.708

14 BepiPred-2.0 0.495 0.005
proposed 0.725
w/o Attention 0.705

Table 5 Sensitivity, positive prediction value, F1 value, and Area under
the curve of the BepiPred-2.0 and proposed methods. The high-
est scores among the compared methods are shown in bold. Macro
average of the score in each method is shown in the first line as
“Total.”

Length Method Sens. PPV F1 AUC
Total BepiPred-2.0 0.384 0.768 0.479 0.569

proposed 0.775 0.725 0.705 0.706
w/o Attention 0.644 0.752 0.656 0.713

8 BepiPred-2.0 0.530 0.736 0.546 0.576
proposed 0.858 0.547 0.610 0.822
w/o Attention 0.733 0.640 0.644 0.801

9 BepiPred-2.0 0.337 0.898 0.479 0.595
proposed 0.819 0.788 0.790 0.626
w/o Attention 0.697 0.839 0.732 0.709

10 BepiPred-2.0 0.285 0.449 0.311 0.499
proposed 0.393 0.578 0.400 0.792
w/o Attention 0.292 0.580 0.350 0.745

11 BepiPred-2.0 0.409 0.980 0.574 0.694
proposed 0.763 0.838 0.780 0.628
w/o Attention 0.682 0.855 0.744 0.693

12 BepiPred-2.0 0.339 0.689 0.409 0.470
proposed 0.698 0.790 0.676 0.739
w/o Attention 0.557 0.736 0.581 0.619

13 BepiPred-2.0 0.406 0.900 0.553 0.605
proposed 0.951 0.805 0.871 0.661
w/o Attention 0.752 0.859 0.777 0.716

14 BepiPred-2.0 0.381 0.726 0.484 0.545
proposed 0.940 0.730 0.806 0.677
w/o Attention 0.796 0.756 0.764 0.712

high due to the bias in labels in the data.

5.2 Experimental Results and Discussions
The experimental results corresponding to the BepiPred-2.0

and the proposed methods are provided in Tables 4 and 5. As
a reference, the results of the proposed method without the atten-
tion model (in each table, “w/o Attention”) were also included in
a bottom line for each length.

We observed that the proposed method achieved the highest ac-
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Table 3 Comparison of the features used in BepiPred-2.0 and in the proposed method.

BepiPred-2.0 Proposed

Embedding Not used

Each amino acid in the target peptide
and 16 amino acid before and after the peptide
are embedded into a 20-dimensional vector.
By concatenating the decoded vector (256-dimension)
via LSTM and the attention decoder
and peptide and protein features (8-dimension) as below,
the output is obtained in the form of 264-dimensional embeddings.

Features about peptide
Molecular weight in amino acids,
Hydrophobicity, Polarity

β-turn, Relative surface accessibility,
Antigenicity, Hydrophilicity

Features about protein
Relative surface accessibility,
Secondary structure

Isoelectric point, Aromaticity,
Hydrophobicity, Stability

Table 6 Sensitivity, positive prediction value, F1 value, and Area under the
curve of the proposed methods. The highest scores among the com-
pared methods are shown in bold. Macro average of the score in
each method is shown in the first line as “Total.”

Length Method Sens. PPV F1 AUC
Total proposed 0.775 0.725 0.705 0.706

w/o 8 features 0.665 0.615 0.600 0.686
w/o 4 protein features 0.714 0.667 0.644 0.695
w/o 4 peptide features 0.757 0.734 0.704 0.704

curacy concerning all lengths compared to BepiPred-2.0, as rep-
resented in Table 4.

These results indicated that the proposed method significantly
outperformed BepiPred-2.0 except for length 8, when p-values
below 0.05 were considered statistically significant. Moreover, as
shown in Table 5, the proposed method outperformed BepiPred-
2.0 in terms of sensitivities, F1 scores, and AUC for almost
all lengths. Although the scores at particular lengths were be-
low BepiPred-2.0 in terms of PPV, the AUC scores of the pro-
posed model were higher than those of BepiPred-2.0 in almost
all lengths. Therefore, we concluded that there was room for im-
provement through adjusting the threshold.

Next, we compared the results of the proposed method with
and without the attention model. Although only a small differ-
ence in PPV was observed between them, the sensitivity was less
than that of the proposed method, suggesting that the importance
of the attention model could play an important role in epitope
prediction. These issues are planned to be addressed in the future
research.

5.3 Contribution of the Features
Table 6 shows the results of the experiments without four pep-

tide features, four protein features, and all of them in order to
examine the contribution of the features. It confirms that both the
peptide and protein features are effective. In addition, the protein
features were more effective than the peptide features, because
the peptide features are derived from the peptide sequence, while
the protein features are completely different information.

5.4 Example of Detection by the Proposed Method
In this section, we discuss a prediction case for the proposed

method. First, we considered the predicted results of BepiPred-
2.0 and LSTM, including the peptides with no label data existing,
as represented in Fig. 3, respectively. As an example of a tar-
get protein, a 10-length peptide in protein P02662 was analyzed.
The horizontal axis in these figures represents the starting point
of a peptide in a protein, and the vertical axis denotes the pre-

Fig. 3 A. Plot of the predicted value of protein P02662 by the proposed
method (panel A) and BepiPred-2.0 (panel B).

dicted value of the target peptide. Here red, blue and gray maps
indicate the positive data, negative data, and no data for a label
respectively. For example, a plotting point at the point, where
the horizontal axis is 1 denotes the point where the amino acids
from the 1st one to 10th are regarded as a peptide representing an
estimation value, and it does not have the label data in the dataset.

The results of BepiPred-2.0, as represented in Fig. 3 demon-
strated that the positive red and negative blue examples tended to
be placed in opposite positions for corresponding to the move-
ments of the peaks and valleys of the predictions on the verti-
cal axis. However, concerning the proposed method, as shown in
Fig. 3, it could be seen that the tendency of peaks and valleys, and
the tendency of the red/blue color classification were relatively
similar. In addition, if the threshold is determined appropriately,
rather than being set identical (0.5) for all proteins, it is expected
that the accuracy may be improved further. Table 7 represents
the peptides and their correct and estimated values concerning
the three protein examples: P02662, P62314, and P22796. Here,
P02662 is the same target as Fig. 3. As indicated in Table 7, the
proposed method was able to recognize a peptide as non-epitope,
unlike BepiPred-2.0. Concerning P62314, the answer labels were

c© 2021 Information Processing Society of Japan
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Table 7 Example of epitope prediction: “Start” denotes the start position of
a peptide. “Ans.” is an answer label indicating that the target pep-
tide is an epitope. Each value in the “Proposed” and “BepiPred-
2.0” columns represents an estimated value, and estimated value is
marked in bold if it matched to an answer label.

Protein Start Peptide Ans. Proposed BepiPred
P02662 56 SKDIGSESTE 0 0.435 0.594
P02662 58 DIGSESTEDQ 0 0.411 0.588
P02662 74 QMEAESISSS 0 0.495 0.610
P02662 76 EAESISSSEE 0 0.417 0.611
P02662 168 FYQLDAYPSG 1 0.718 0.497
P02662 170 QLDAYPSGAW 0 0.680 0.475
P02662 172 DAYPSGAWYY 1 0.727 0.463
P02662 174 YPSGAWYYVP 1 0.795 0.461
P02662 176 SGAWYYVPLG 1 0.763 0.469
P02662 178 AWYYVPLGTQ 1 0.764 0.487
P62314 70 LPDSLPLD 0 0.428 0.497
P62314 71 PDSLPLDT 0 0.441 0.502
P62314 72 DSLPLDTL 0 0.419 0.505
P62314 73 SLPLDTLL 0 0.398 0.504
P62314 74 LPLDTLLV 0 0.376 0.500
P62314 77 DTLLVDVE 0 0.381 0.488
P62314 78 TLLVDVEP 0 0.380 0.488
P62314 80 LVDVEPKV 0 0.379 0.504
P62314 81 VDVEPKVK 0 0.392 0.516
P62314 91 KREAVAGR 0 0.399 0.663
P22796 34 IVNTLNGFYRSL 1 0.523 0.425
P22796 37 TLNGFYRSLNIL 0 0.496 0.450
P22796 46 NILISLTDLEIW 1 0.573 0.418
P22796 49 ISLTDLEIWSNQ 1 0.669 0.438
P22796 55 EIWSNQDLINVQ 0 0.627 0.542
P22796 58 SNQDLINVQSAA 0 0.398 0.558
P22796 79 WRERVLLNRISH 0 0.419 0.583
P22796 82 RVLLNRISHDNA 0 0.410 0.565
P22796 94 QLLTAIDLADNT 1 0.645 0.453
P22796 157 CSASFCIMPPSI 1 0.701 0.454

often negative; however BepiPred-2.0 incorrectly gave a high es-
timated score, while the proposed method outputted the nega-
tive one. However, concerning the peptides QLDAYPSGAW in
P02662 and EIWSNQDLINVQ in P22796, the proposed method
also provided negative incorrectly. It is necessary to investigate
and mitigate the causes of such cases of incorrect estimation in
the future.

6. Conclusion

In the present paper, we proposed a new model for B-cell epi-
tope prediction considering the following features:
( 1 ) Not only peptides but also proteins were processed as the

amino acid sequence data and were modeled using an LSTM
method based on attention model.

( 2 ) The combination of the physical and chemical features of
peptides and whole proteins enabled robust predictions even
on a limited amount of learning data.

We demonstrated that the proposed model achieved superior per-
formance compared with the existing method (BepiPred-2.0).
This proposed method can also be applied to the prediction of
interactions between the partial and whole protein sequences.

The issues to be addressed in the future research include the
need to confirm the effectiveness of the proposed method through
conducting experiments based on applying it to antibody proteins
other than IgG, as well as through considering the case when the
physical and chemical features of an amino acid sequence are
unified with the comparative method. In the experiments, we
excluded peptides which were either too short or too long from

the experiment for stable training. Dealing with the prediction of
peptide with chain lengths other than 8–14 will be considered as
an issue to focus on in future research.

Furthermore, we will focus on modeling the protein three-
dimensional structures used for the prediction of nonlinear epi-
topes [34] that are deemed to be a predicting source of informa-
tion. In addition, we would like to further improve the prediction
accuracy of the proposed method by utilizing the protein three-
dimensional structures. Some of the datasets used in this paper
are now available on https://www.kaggle.com/futurecorporation/
epitope-prediction.
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