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Abstract: Comprehending the behavior of an object-oriented system solely from its source code is troublesome owing
to its dynamism. To aid comprehension, visualizing program behavior through reverse-engineered sequence diagrams
from execution traces is a promising approach. However, because of the massiveness of traces, recovered diagrams
tend to become very large causing scalability issues. To address these issues, we propose an object grouping technique
that horizontally summarizes a reverse-engineered sequence diagram. Our technique constructs object groups based
on Pree’s meta patterns in which each group corresponds to a concept in the domain of a subject system. By visual-
izing interactions only among important groups, we generate a summarized sequence diagram depicting a behavioral
overview of the system. Our experiment showed that our technique outperformed the state-of-the-art trace summariza-
tion technique in terms of reducing the horizontal size of reverse-engineered sequence diagrams. Regarding the quality
of object grouping, our technique achieved an F-score of 0.670 and a Recall of 0.793 on average under the condition
of #lifelines (i.e., the horizontal size of a sequence diagram) < 30, whereas those of the state-of-the-art technique were
0.421 and 0.670, respectively. The runtime overhead imposed by our technique was 129.2% on average, which is
relatively smaller than other figures found in the reference literature.
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1. Introduction
Software documentation is a vital source of information for

program comprehension; however, such documentation tends to
become outdated because numerous modifications can occur af-
ter an application is released. Generating reverse-engineered se-
quence diagrams from execution traces is a promising approach
that can help developers comprehend the behavior of a system.
Because an execution trace contains a vast amount of informa-
tion, the trace information must be summarized or abstracted in
order to generate reverse-engineered sequence diagrams of a rea-
sonable size [1], [2].

The vertical size of a reverse-engineered sequence diagram
increases according to the execution time, while the horizontal
size increases in proportion to the number of generated objects.
Most existing approaches focus on reducing the vertical size of
reverse-engineered sequence diagrams, using strategies such as
compacting repetitive behavior [3], [4], [5] and dividing an en-
tire trace into several phases [6], [7], [8], [9]. To improve prac-
ticality, horizontal reduction is also important. Some approaches
perform horizontal reduction using techniques such as grouping
objects [10], [11] and visualizing only interactions related to core
(important) objects [12].

In this paper, we propose a technique for reducing the horizon-
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tal size of reverse-engineered sequence diagrams, with the goal of
helping developers comprehend a behavioral overview of a sys-
tem. Our technique constructs object groups based on Pree’s meta
patterns [13], [14] that are the most primitive design patterns. In
our technique, each group corresponds to a concept in the domain
of a subject system. In conjunction with the existing core object
identification technique [12], we identify important object groups
and visualize only intergroup interactions. Performing these tasks
generates a summarized version of a reverse-engineered sequence
diagram. The summarized diagram depicts a behavioral overview
of the subject system and is expected to be a valuable tool for de-
velopers in an early stage of program comprehension.

To improve maintainability in object-oriented programming,
a concept is often divided into several classes by using design
patterns [14], [15]. For instance, in a game application, the con-
cept of player is divided into several state classes such as normal
state and death state by using the GoF (Gang of Four) state pat-
tern. From the perspective of maintainability, implementing a
concept with several classes is beneficial; however, from the per-
spective of program comprehension, it produces numerous design
elements to understand, which can confuse developers and in-
crease the amount of effort required for program comprehension
tasks. Our technique constructs object groups based on Pree’s
meta patterns, in which each group corresponds to a concept. By
reunifying divided concepts as object groups, we generate a sum-
marized sequence diagram that depicts a behavioral overview of
a system at the concept level.

We evaluated the feasibility and effectiveness of our technique
with traces generated from various types of open source software.
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The results showed that our technique outperformed the state-
of-the-art trace summarization technique in terms of horizontal
summarization of reverse-engineered sequence diagrams. With
regard to the quality of object grouping, under the condition of
#lifelines (i.e., the horizontal size of a sequence diagram) being
less than 30, the F-score and Recall of our technique were 0.670
and 0.793 on average, respectively, whereas those of the state-of-
the-art technique were 0.421 and 0.670, respectively. Our tech-
nique imposed a runtime overhead of 129.2% on average which is
relatively small compared with recent scalable dynamic analysis
techniques.

The main contributions of this paper are as follows:
• We propose an algorithm for constructing object groups

based on Pree’s meta patterns, where each object group cor-
responds to a concept. This is the first object-grouping al-
gorithm that leverages Pree’s meta patterns in the literature,
leading to many opportunities to summarize object behavior.

• We present a new and effective algorithm for drawing a
summarized sequence diagram that depicts a behavioral
overview as intergroup interactions among important object
groups.

• The feasibility and effectiveness of our technique are eval-
uated using traces generated from various types of open
source software.

This paper is an extended version of our previous work [16].
The main differences from our previous work are as follows:
• Clarification and an extension of the algorithms for meta pat-

tern detection and object grouping.
• A quantitative evaluation using traces generated from vari-

ous open source applications.
The remainder of this paper is organized as follows. In Sec-

tion 2, we briefly provide the background knowledge required for
describing our technique. Section 3 elaborates our trace summa-
rization technique. We evaluate our technique in Section 4 and
discuss the threats to validity in Section 5. Section 6 describes
key related work and Section 7 concludes this paper.

2. Background
2.1 Pree’s Meta Patterns

Pree’s meta patterns [13], [14] provide a classification of
template-hook structures that are commonly used in object-
oriented programming. Figure 1 shows the classification con-
sisting of seven types of template-hook structural patterns. Pree’s
meta patterns are the most primitive design patterns. More con-
crete design patterns (e.g., the GoF design patterns [15]) are real-
ized by using some of the meta patterns. For example, the GoF
decorator pattern is an instance of the 11-RCon pattern.

In our technique, by identifying template-hook objects in-
volved in the same meta pattern, we construct object groups that
each correspond to a concept.

2.2 Core Object Identification
We previously presented a core object identification technique

(COIT) [12]. By analyzing reference relations and dynamic prop-
erties, the COIT identifies core objects that are important in com-
prehending the design overview of a system. The COIT visu-

Fig. 1 Pree’s meta patterns. T , H, t(), and h() denote a template class, a
hook class, a template method, and a hook method, respectively. TH
denotes that a template class and a hook class are unified into one
class. The name in the parentheses below each pattern is the abbre-
viated name used in this paper.

alizes only interactions related to core objects and thereby gen-
erates a summarized sequence diagram that depicts a behavioral
overview.

The core identification process consists of the following two
steps: (1) eliminating temporary objects and (2) estimating the
importance of each object.

In step (1), the COIT analyzes reference relations and lifetimes
for each object to identify temporary objects. By analyzing refer-
ence relations among objects in a manner similar to compilers’ es-
cape analysis, the COIT identifies the dynamic scope for each ob-
ject and assigns an escape state to each object. The escape states
are categorized into three types: GlobalEscape, ReferenceEscape,
and Captured. GlobalEscape (resp. ReferenceEscape) denotes an
object that is referenced from another static (resp. non-static) ob-
ject. An object is marked as Captured if the object is not refer-
enced from any other objects.

Based on the escape state and lifetime for each object, the
COIT identifies an object oi as a temporary object if it satisfies
the following condition.

(EscapeState(oi) = “Captured”

∧ Lifetime(oi) < Lifetimemax(O) · Lt-long)

∨ (EscapeState(oi) = “ReferenceEscape”

∧ Lifetime(oi) < Lifetimemax(O) · Lt-short)

Here, O is a set of all the objects. Lifetimemax returns the maxi-
mum lifetime over all the objects. Lt-long and Lt-short are threshold
factors for deciding whether an object is long-lived, short-lived,
or neither. The above condition means an object oi is identified as
a temporary object if oi satisfies one of the following conditions:
oi is referenced from no other objects and is not long-lived; oi is
referenced only from other non-static objects and is short-lived.

In step (2), the COIT estimates the importance of each non-
temporary object based on the access frequency. Important ob-
jects are expected to be heavily accessed from other objects.
The COIT calculates the importance value of each object as
the harmonic mean of the write, read, and method-invocation
frequencies. By building an importance-based object ranking
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R = ⟨o1, o2, . . . , on⟩, the COIT identifies an object oi as a core
object if the importance of oi is greater than the threshold It.

3. Recovering a Summarized Sequence Dia-
gram by Constructing Object Groups

In this section, we describe the details of our technique for re-
covering a summarized version of a reverse-engineered sequence
diagram. Our technique consists of the following components:
( 1 ) Meta pattern detection (Section 3.1).
( 2 ) Construction of object groups based on meta patterns (Sec-

tion 3.2).
( 3 ) Visualization of intergroup interactions among important ob-

ject groups (Section 3.3).
Figure 2 shows an overview of our technique. Given a sub-

ject program, our technique first statically analyzes the source
code to detect all meta pattern instances. By utilizing the detected
patterns and an execution trace, it constructs object groups corre-
sponding to concepts in the domain of the subject program. Then,
leveraging a core identification technique, it identifies important
object groups. Finally, intergroup interactions only among impor-
tant objects are visualized, resulting in a summarized version of
a reverse-engineered sequence diagram that depicts a behavioral
overview of the subject program.

3.1 Meta Pattern Detection
Because Pree’s meta patterns employ a structural classification,

we can identify the meta patterns via static analysis. Algorithm 1
shows our meta pattern detection algorithm. First, we detect hook
methods (l.1). Then, we identify meta patterns by detecting tem-
plate methods that invoke the hook methods (l.2).

In hook method detection, by visiting all the method declara-
tion nodes in an abstract syntax tree (AST), we check whether
each method overrides/is-overridden-by another method. If a
method overrides/is-overridden-by another method, the method is
identified as a hook method (ll.3–15). Note that we do not treat all
constructors and all methods declared in the topmost type (e.g.,
Object#equals(. . . ) and Object#toString(. . . )) as hook methods.

In meta pattern detection, by traversing all the method invoca-
tion nodes in an AST, we test whether each method invokes the
detected hook methods. If a method invokes the hook methods,
the caller method is treated as a template method, and a meta

Fig. 2 Overview of our technique.

pattern consisting of the template method and the invoked hook
methods is detected (ll.16–26).

We determine the type of each meta pattern by analyzing the
relationships between the template and hook classes (ll.27–37).
Note that the multiplicity of the relationship between the tem-
plate and hook classes is determined on the basis of the fields of
the template class. If a template class refers to a hook class via
a field whose type is not a subtype of java.util.(Iterable|Map), we
determine the multiplicity as 1 (i.e., 1:1 meta patterns); otherwise,
the multiplicity is treated as N (i.e., 1:N meta patterns). Although
our algorithm for determining multiplicity generates some false

Algorithm 1 meta pattern detection.
Input: a set of source code S = {s1, s2, . . . , sn}.
Output: a set of meta-patterns detected P = {p1, p2, . . . , pm}.
1: H ← detectHooks(S )
2: return detectMetaPatterns(S ,H)

3: function detectHooks(S )
▷ In: a set of source code S .
▷ Out: a set of sets HS s.t. H ∈ HS is a set of hook methods;

mh ∈ H overrides or is-overridden-by other methods in H.
4: HS← ∅
5: for each s ∈ S do
6: a← the AST of s
7: for each method declaration node n in a do
8: m← the method declared in n
9: if (∃H ∈ HS)[m ∈ H] then continue

10: Msuper ← all the methods overridden by m
11: Msub ← all the methods that override m
12: if Msuper , ∅ ∨ Msub , ∅ then
13: H ← {m} ∪ Msuper ∪ Msub

14: HS← HS ∪ {H}
15: return HS

16: function detectMetaPatterns(S ,HS)
▷ In: a set of source code S ; a set of sets of hook methods HS.
▷ Out: a set of meta patterns P, where p ∈ P is a triple ⟨mt ,H, t⟩,

mt is a template method, H is a set of hook methods,
and t is a meta-pattern type.

17: P← ∅
18: for each s ∈ S do
19: a← the AST of s
20: for each method invocation node n in a do
21: mi ← the method invoked in n
22: me ← the method enclosing the expression of n
23: if (∃H ∈ HS)[mi ∈ H] then
24: t ← detectPatternType(me,mi)
25: P← P ∪ {⟨me,H, t⟩}
26: return P

27: function detectPatternType(mt ,mh)
▷ In: a template method mt; a hook method mh.
▷ Out: a meta-pattern type t = ⟨c,m⟩, where c is a category name,

and m is multiplicity.
28: tt ← the type declaring mt (i.e., the template type)
29: th ← the type declaring mh (i.e., the hook type)
30: mul← the multiplicity of the reference from tt to th
31: if mh is invoked with the keyword ‘this.’ or ‘super.’ then
32: return ⟨“Unification”,mul⟩
33: if tt is equal to th then
34: return ⟨“Recursive Unification”,mul⟩
35: if tt is one of the subtypes of th then
36: return ⟨“Recursive Connection”,mul⟩
37: return ⟨“Connection”,mul⟩
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positives, the final result of object grouping is not affected be-
cause our grouping algorithm does not require multiplicity infor-
mation (described in Section 3.2).

3.2 Object Grouping based on Meta Patterns
3.2.1 Overview

We construct object groups by using the meta pattern informa-
tion detected in Section 3.1.

As mentioned in Section 1, in object-oriented programming,
a concept is often divided into several classes by using design
patterns to improve maintainability. Thus, we consider a set of
template and hook objects involved in the same meta pattern as
corresponding to a concept. Our grouping algorithm identifies
template/hook objects for each detected meta pattern and groups
those objects.

In a template-hook structure, the template method defines the
outline of a process and the hook methods correspond to the de-
tails of the process. Our technique groups the template/hook ob-
jects such that the behavior of the template method is retained and
the behavior of the hook methods is omitted after grouping. The
resulting summarized sequence diagram thereby depicts a behav-
ioral outline of a system.

We categorize the seven types of Pree’s meta patterns into the
following three pattern types in terms of behavioral aspects.
• Recursive patterns (consisting of 11-RUni, 1N-RUni, 11-

RCon, and 1N-RCon).
• Connection patterns (consisting of 11-Con and 1N-Con).
• Unification pattern (consisting of Uni).

For each pattern type, we describe our grouping approach in the
following sections.
3.2.2 Object Grouping for the Recursive Patterns

In a meta pattern of the recursive patterns, a template object
recursively refers to template/hook objects; that is, a reference
chain consisting of template/hook objects is constructed. Typ-
ically, the template and hook methods have the same method
signature. Once the template method is invoked, template/hook
method calls are propagated in the reference chain; as a result, a
chain of template/hook method calls is constructed.

For example, assume a concept of file system that consists of
two elements: directory and file. Typically, a file system is re-
alized using the GoF composite pattern (i.e., 1N-RCon pattern).
There is a FileBase class that declares some abstract methods for
file operations. A Dir (resp. File) class that extends the FileBase
class as a template (resp. hook) class corresponds to directory
(resp. file).

Assume a method FileBase#getDiskUsage() that returns disk
usage information. The getDiskUsage() method is overridden
in the Directory and File classes. Once the Dir#getDiskUsage()
(a template method) is invoked, template/hook methods (i.e.,
Dir#getDiskUsage and File#getDiskUsage()) are recursively in-
voked; as a result, a chain of template/hook method calls is con-
structed as shown in Fig. 3.

If the template and hook methods have the same method signa-
ture, we group all template/hook objects that can be reached by
traversing a chain of template/hook method calls. If the signature
of the template method is different from that of the hook meth-

Fig. 3 A chain of template and hook method calls. The Dir (resp. File) class
is a template (resp. hook) class. Classes A and B are neither template
classes nor hook classes.

Fig. 4 Resulting summarized sequence diagram that depicts an outline of
the behavior shown in Fig. 3. The lifeline named grp1:FS corre-
sponds to the concept of file system. The lifeline named b:B is not
gathered into grp1:FS because class B is neither a template class nor
a hook class.

ods, we group template/hook objects (except for the template ob-
ject that receives the first message in a chain of template/hook
method calls) such that the first template and hook method calls
are retained after grouping (Recall that intra-group interactions
are omitted in a summarized sequence diagram).

In the case of file system shown in Fig. 3, all the template/hook
objects (i.e., Dir and File instances) are gathered into one group.
Figure 4 shows the resulting summarized sequence diagram that
depicts a behavioral outline of Fig. 3. In the summarized dia-
gram, only the first call of getDiskUsage() is retained and succes-
sive template/hook method calls are omitted. Note that although
B#getDiskUsage() has the same signature as the template/hook
methods, the object of class B is not added into the group because
the class B is neither a template class nor a hook class.
3.2.3 Object Grouping for the Connection Patterns

In a meta pattern of the connection patterns, a template object
refers to hook objects. Typically, the method signature of the tem-
plate method is different from those of the hook methods. Once
the template method is invoked, the template object calls the hook
method for each hook object.

For example, assume a GUI application built using Model-
View-Controller (MVC) architecture. Once a property of a
model object is changed, view objects receive notifications of
the property change and update their presentations. This no-
tification and update mechanisms are typically realized using
the GoF observer pattern (i.e., 1N-Con pattern). A property
change in a model is notified by a template method such as
Model#notifyPropertyChanged(. . . ); subsequently, for each hook
object, a hook method such as View#onPropertyChanged(. . . ) is
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invoked in the template method, which updates the presentations.
The hook objects involved in a connection pattern, whose hook

methods are invoked in the template method of the same template
object, are gathered into one group. For example, in a GUI ap-
plication using MVC architecture mentioned above, view objects
(i.e., hook objects) that are notified from a model object (i.e., tem-
plate object) are grouped. The resulting summarized sequence
diagram depicts interactions between the model object and the
group of the view objects.
3.2.4 Object Grouping for the Unification Pattern

In the unification pattern, the template and hook methods be-
long to the same class. In other words, a template object also
behaves as a hook object. We do not (cannot) perform any group-
ing for the unification pattern. Note that each non-grouped object
will be regarded as a group consisting of a single object during
visualization (described in Section 3.3).
3.2.5 Overall Algorithm of Object Grouping

We show the overall algorithm of our object grouping in Algo-
rithm 2. By Algorithm 2, object groups are constructed as men-
tioned in the previous sections.

We assume that an execution trace is represented in the form
of an event sequence based on the behavior model (B-model)
proposed by Noda et al. [17]. The B-model represents the be-
havior of an object-oriented system. The B-model consists of
event elements such as EntryEvent / ExitEvent events, which rep-
resent “entry into a constructor/method” / “exit from a construc-
tor/method,” respectively, and VariableDefinition / VariableRefer-
ence events, which denote that “a value is assigned to a variable” /
“a value is read from a variable,” respectively. An execution trace
can be represented in the form ES = ⟨e1, e2, . . . , en⟩, where ei is
an event element in the B-model. ES is composed of all events
from all threads. To support thread-sensitive analyses, each event
ei has as its attribute the id of the thread where the event occurs.

In Algorithm 2, once a template method is invoked, either de-
tectObjGrpForRecursivePattern or detectObjGrpForConnec-
tionPattern is called according to the pattern type, which con-
structs an object group (ll.1–9).

For the recursive patterns, if the template and hook methods
have the same name, the template object is inserted into the re-
sulting group (ll.23–24). The function calleeObj(e) returns the
callee object of the specified entry event e. Then, callee objects in
a chain of template/hook method calls are added into the resulting
group; that is, if all the invoked methods in the call stack cs are the
template/hook methods, all the callee objects are added into the
resulting group (ll.25–37). The function threadId(e) returns the
id of the thread where e occurs. The function trace returns a par-
tial trace in which each event occurs during the specified period
and on the specified thread. Note that some code fragments in
the template/hook methods might be extracted as private-methods
whose names are different from those of the template/hook meth-
ods. To handle such a case, by ignoring self-calls and focusing
on inter-object interactions, we detect a chain of template/hook
method calls (ll.19, 20, and 33).

For the connection patterns, we group hook objects whose
hook methods are invoked in the template methods of the same
template object (ll.40–43).

Algorithm 2 Object grouping based on meta patterns.
Input: an execution trace ET = ⟨e1, e2, . . . , el⟩;

meta patterns detected P = {p1, p2, . . . , pm}.
Output: a set of object groups OGS = {OG1,OG2, . . . ,OGn}.
1: T ← ∅
2: for each EntryEvent ei ∈ ET do
3: for each p ∈ P do
4: if the template method of p is invoked at ei then
5: if p belongs to recursive patterns then
6: t ← detectObjGrpForRecursivePattern(ei, p)

7: if p belongs to connection patterns then
8: t ← detectObjGrpForConnectionPattern(ei, p)

9: T ← T ∪ t
10: OGS← ∅
11: Oall ← all the objects generated during the execution
12: for each oi ∈ Oall do
13: for each p ∈ P do
14: OGS← OGS ∪ {{o | o ∈ OG ∧ ⟨oi, p,OG⟩ ∈ T }}
15: OGS← {OG | OG ∈ OGS ∧ (∄OGi ∈ OGS)[OG ⊂ OGi

16: ∧ ∃o j∃ok∃p[⟨o j, p,OG⟩ ∈ T ∧ ⟨ok , p,OGi⟩ ∈ T ]]}
17: return OGS

18: function detectObjGrpForRecursivePattern(eentry, p)
▷ In: an EntryEvent eentry; a meta pattern p = ⟨mt ,H, t⟩.
▷ Out: a triple ⟨ot , p,OG⟩, where ot is a template object,

p is a meta pattern, and OG is an object group.
19: if eentry is a self-call then
20: eentry ← the latest entry event el

s.t. el is not a self-call and occurs before eentry

21: OG← ∅
22: mat ← the method invoked at eentry

23: if mat and mh ∈ H have the same name then
24: OG← OG ∪ {calleeObj(eentry)}
25: eexit ← the ExitEvent that corresponds to eentry

26: ientry, iexit ← the indices of eentry, eexit in ET, resp.
27: thentry ← threadId(eentry)
28: ptrace← trace(ientry + 1, iexit, thentry)
29: cs← a new call stack
30: for ei in ptrace do
31: if ei is an EntryEvent then
32: cs.push(ei)
33: M ← {m | m is the method invoked at ek ∈ cs

∧ ek is not a self-call}
34: if (∀m ∈ M) [(∃mh ∈ H)

[m has the same name and declaring class as mh]] then
35: OG← OG ∪ {calleeObj(ei)}
36: if ei is an ExitEvent then
37: cs.pop(ei)

38: return ⟨calleeObj(oentry) , p,OG⟩

39: function detectObjGrpForConnectionPattern(eentry, p)
▷ The types of the inputs/output are the same

as detectObjGrpForRecursivePattern.
40: eexit ← the ExitEvent that corresponds to eentry

41: ientry, iexit ← the indices of eentry, eexit in ET, resp.
42: thentry ← threadId(eentry)
43: Ocallee ← {o | o is an object that receives a message m

∧ m has the same name and declaring class as mh ∈ H
∧ m comes from calleeObj(eentry) in trace(ientry, iexit, thentry)}

44: return ⟨calleeObj(oentry) , p,Ocallee⟩

45: function trace(istart, iend, threadId)
46: return a partial trace p = ⟨ek1, ek2, . . .⟩ extracted from ES

s.t. ∀eki ∈ p [istart ≤ i ≤ iend ∧ threadId(eki) = threadId].

Our algorithm ignores the types of the return values and the
parameters when testing the equality of methods (ll.23, 34, and
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43) or in other words we equate overloaded methods.
After constructing object groups for each meta pattern, we

unify object groups having the same template object and meta
pattern (ll.12–14); e.g., in the GoF state pattern (i.e., 11-Con pat-
tern), several state objects (i.e., the hook objects) that receive
messages from the same template object are gathered into one
group. Finally, if an object group is a subset of another group
associated with the same meta pattern, we eliminate the subgroup
(l.15).

It is worth noting that the template/hook objects involved in a
meta pattern p might also be involved in another meta pattern p′.
Thus, Algorithm 2 constructs soft clusters of objects; an object is
allowed to belong to multiple object groups.

If a template (or hook) method is invoked via reflection, a chain
of template-hook method calls is interrupted by some special
method calls (e.g., java.lang.Method#invoke(. . . )). For instance,
if a template method is invoked via reflection, we would obtain
a method call sequence like “template(. . . ) → template(. . . ) →
invoke(. . . ) → · · · (library-method calls) · · · . → template(. . . ) →
hook(. . . ).” To deal with this issue, we need to skip such a chain
of special library-method calls during object-grouping. In ac-
tual circumstances, library method calls usually are not recorded,
meaning that entry/exit-events of library methods do not appear
in a B-model event sequence. This is because (1) developers
usually are not interested in detailed interactions within libraries
when program comprehension and (2) tracing library behavior in-
curs a heavy logging overhead, as described in Section 4.2.4. In
case developers would like to know detailed interactions within
libraries, reflection would be a limitation of our technique. How-
ever, the main objective of this research is to help developers
comprehend behavior specific to their subject system rather than
libraries; thus, reflection does not greatly impair the usefulness of
our technique.
3.2.6 Object Grouping for Delegation Patterns

In object-oriented programming, delegation can be used as an
alternative to inheritance; as a result, some delegate methods
might appear in a chain of template/hook method calls. Group-
ing delegate objects that are the callee of those delegate methods
together with template/hook objects might improve the quality of
object grouping.

For example, in the case of the file system mentioned in Sec-
tion 3.2.2, the File class might delegate the disk usage calculation
to another class under certain conditions. In Fig. 3, suppose that
class B is a delegate of the File class and B#getDiskUsage() is
called as a delegate method in File#getDiskUsage() under certain
conditions. Because the object of the class B is also an element
in the concept of file system, the object should be added to the
object group named grp1.

Modifying Algorithm 2 as follows, we can group delegate ob-
jects together with template/hook objects.
• Relaxing the condition of line 34 as follows: (∀m ∈

M) [(∃mh ∈ H)[m has the same name as mh]] (i.e., the equal-
ity check regarding the declaring class is deleted; if a method
is invoked by another method having the same name, we
consider the invoked method as a delegate method).

• Grouping objects involved in a connection pattern in the

same manner used for grouping objects involved in a re-
cursive pattern. The only exception is that the template ob-
ject is never added to the resulting group (i.e., ll.23–24 are
skipped).

The grouping method that allows (resp. disallows) delegate
methods to appear in a method chain of template/hook method
calls is referred to as “MP+D” (resp. “MP”). We investigate
how grouping delegate objects affects performance in Section 4
(RQ2). Our technique groups delegate objects by default because
“MP+D” outperforms “MP” as described in Section 4.3.2.

3.3 Visualizing intergroup Interactions among Important
Object Groups

Combined with the core identification technique (COIT) [12]
mentioned in Section 2.2, we identify important object groups.
By visualizing intergroup interactions only among the impor-
tant object groups, we obtain a summarized version of a reverse-
engineered sequence diagram that depicts a behavioral overview
of a system.

Algorithm 3 shows our algorithm for drawing a summarized
sequence diagram. Given an importance-based object ranking
created by the COIT, if an object group contains an important
object oimp whose importance is greater than the threshold It, we
treat the object group as an important one that should appear as
a lifeline in the resulting summarized sequence diagram (ll.1–8).
If no groups contain an important object oimp, we create a new
object group whose only member is the object oimp (ll.6–7).

There are two types of methods for drawing a sequence dia-
gram: class-level and instance-level. In a class-level sequence
diagram, lifelines having the same types are unified into one life-
line and thereby the horizontal size of the diagram is reduced.
Meanwhile, an instance-level sequence diagram provides a de-

Algorithm 3 Drawing a summarized sequence diagram.
Input: an object ranking R = ⟨o1, o2, . . . , om⟩,

where the importance of oi is greater than that of oi+1;
a threshold of the importance It;
all the object groups OGS = {OG1,OG2, . . . ,OGn}.

1: OGSimp ← ∅
2: for i← 1 to m do
3: if importance(oi) < It then
4: break
5: S← {OG | OG ∈ OGS ∧ oi ∈ OG}
6: if S = ∅ then
7: S← {{oi}}
8: OGSimp ← OGSimp ∪ S

9: TGS← ∅
10: for each object group OG ∈ OGSimp do
11: TGS← TGS ∪ {typeNameSet(OG)}
12: OGSclass ← ∅
13: for each TG ∈ TGS do
14: OGclass ← {o | o ∈ OG ∧ OG ∈ OGSimp

∧ typeNameSet(OG) = TG}
15: OGSclass ← OGSclass ∪ {OGclass}
16: drawIntergroupInteractions(OGSclass)

17: function typeNameSet(OG)
▷ In: an object group OG.
▷ Out: a set of type names.

18: return {t | t is the type name of o ∈ G}
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tailed behavioral view for each object, which increases the hor-
izontal size of the diagram. A class-level diagram is useful in
an early stage of program comprehension. As the understanding
of a subject system deepens, an instance-level sequence diagram
would become more suitable.

In Algorithm 3, object groups are converted from instance-
level into class-level at lines 9–15. If an instance-level diagram is
needed, one only has to skip lines 9 through 15.

The function drawIntergroupInteractions draws intergroup
interactions among the given groups. Each group is visualized
as a lifeline in the resulting diagram. For each object group, a
group-id and a group-type-name are displayed in the box on the
top of the lifeline where the group-id is a unique identifier for the
group and the group-type-name is the type name of an arbitrary
object in the object group.

Because our object grouping constructs soft clusters, an object
can belong to multiple groups. Suppose an object o belongs to
multiple groups G1,G2, . . . ,Gn. If an entry event e whose callee
object is o occurs, we must determine which of the groups should
receive the message corresponding to e. If the message is either
the template or hook method of a meta pattern p, and Gi is con-
structed in regard to p, we send the message to Gi; otherwise, we
send the message to an arbitrary group that contains the object o.

A previous study observed that in software maintenance tasks,
successful developers (maintainers) first comprehended high-
level structures of a system, then prepared a detailed plan of
changes [18]. Another study stated that the most important con-
cepts of a system are usually implemented by very few key
classes, and those key classes would be good starting points to
comprehend an unfamiliar system [19].

Our summarization technique would help developers build ini-
tial knowledge on high-level behavioral overviews of an unfamil-
iar system. They can in this way obtain a compact view describ-
ing what kinds of interactions (events) occur among key concepts,
which are important for successful maintenance activities, with-
out investigating tens or hundreds of classes involved in execu-
tion scenarios of interest. Thus, we consider that it is suitable to
use our technique at the beginning of maintenance tasks so that
maintainers can grasp a big picture of a system and the respon-
sibilities of important concepts, which are required for planning
proper changes to be made.

After the initial understanding of high-level overviews is es-
tablished, developers need to dive deeper into the detailed inter-
actions within each important concept (object group). At such
a stage, they would need other functionalities for facilitating de-
tailed investigation, such as unfolding grouped lifelines or visual-
izing (extracting) the behavior only of specific classes of interest.
Our technique would not be a valuable aid for those situations.
Also, if a maintenance task requires much finer-grained investi-
gation such as checking the values of specific variables (e.g., de-
bugging faulty behavior caused by incorrect variable values), our
technique would not be beneficial to developers. These situations
are outside the scope of our technique and should be supported
by different approaches and tools.

4. Experiment
4.1 Research Questions and Evaluation Approaches

We address the following research questions through the ex-
periment.

RQ1: How effective is our technique in terms of reducing the
horizontal size of reverse-engineered sequence diagrams?

Motivation: We aim to investigate the performance of our tech-
nique with respect to reducing the horizontal size of reverse-
engineered sequence diagrams, which is the primary objective of
this work. If a sequence diagram is small and contains object
groups that are important in comprehending a design overview,
the diagram is useful for program comprehension.
Evaluation Approach: For each subject system, we extract the
ground truth of important concepts from execution scenarios,
documents, and tutorials (Section 4.2.2). Utilizing the ground
truth, we evaluate the quality of the resulting object groups by us-
ing the evaluation measures described in Section 4.2.3. The better
the quality measures are, the more useful the resulting summa-
rized diagram will be for program comprehension. We evaluate
the effectiveness of our technique by investigating the trade-off
between the values of the quality measures and the horizontal
size (i.e., #lifelines) of the resulting diagram.
Baseline Selection: Our primary focus is horizontal summariza-
tion of reverse-engineered sequence diagram, while most exist-
ing studies focus on vertical summarization. Possible candidates
of baseline techniques in our experiment are the existing tech-
niques [10], [11], [12], [20], [29] that perform horizontal summa-
rization (Details of the techniques are described in Section 6.1.2).

Because the summarization by OGAN [29] is based on user
queries that are not required in our technique, we cannot fairly
compare OGAN with our technique. The rest of the candidate
techniques [10], [11], [12], [20] are fully automated. Of those, we
have to exclude the technique by Dugerdil and Repond [10] be-
cause their tool implementation is unavailable. The technique by
Toda et al. [11] constructs object groups based on GoF’s design
pattern usage. Their work is still at an early stage and incomplete.
For example, grouping algorithms have been defined only for 5
GoF’s design patterns; grouping behavior remains undefined for
the rest of the 18 patterns. Also, it is undefined how to group
objects that participate in multiple patterns. Thus, we consider it
is better to select as our baseline the studies [12], [20] rather than
the work by Toda et al. [11]. Because the technique [20] was out-
performed in the subsequent study [12], we finally selected the
technique in the paper [12] as our baseline.

The baseline technique [12] identifies core objects as described
in Section 2.2 and then constructs object groups based on life-
times and reference relations. With an importance-based object
ranking R and a threshold of importance It, the baseline tech-
nique constructs object groups by hard clustering as follows. For
each object oimp whose importance is greater than It, the base-
line technique gathers objects o ∈ O where each object o ∈ O is
(in)directly referenced from oimp and the lifetime of o is smaller
than that of oimp. Thus, for each important object oimp, the base-
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Table 1 Subject systems and execution scenarios.

Project Ver. KLOC 5 Execution scenario
jpacman 1 SVN r53 6.0 launch the application; start a new game; move the Pac-Man to the right; have the Pac-Man obtain a power

cookie and change its state to the power state; quit the application.
JModeller 2 SVN r1015 45.5 launch the application; add two class figures side by side; add attributes and methods; edit the names

of the class, attributes, and methods; add connectors indicating association, dependency, and inheritance
between the classes; quit the application.

wro4j 3 1.7.7 34.0 execute wro4j-runner while specifying test resources (*.js and *.css files) as target files, ‘cssMin’ as a
pre-processor, and ‘jsMin’ as a post-processor.

JMeter 4 3 1 187.7 execute the application from the command line (non-GUI mode) with the following settings: sending
HTTP requests to a web page of a university; #threads=5, #ramp-up=2, and #loop=2; saving the results
into report files.

1 http://code.google.com/p/jpacman/ 2 https://sourceforge.net/p/jhotdraw/svn/HEAD/tree/trunk/ 3 http://wro4j.github.io/wro4j/
4 http://jmeter.apache.org/ 5 Test code is excluded.

line technique constructs an object group such that oimp and the
gathered objects constitute a composition relation.

The core identification algorithm used by our technique pro-
posed in this paper is the same as the baseline. The difference
between our technique and the baseline lies in the algorithms of
object-grouping. Namely our technique constructs important ob-
ject groups based on Pree’s meta patterns usage (Section 3.2),
while the baseline groups core-related objects based on lifetimes
and reference relations as described above.

The baseline technique generates an instance-level sequence
diagram, whereas our technique generates a class-level sequence
diagram. For comparison, we convert the object groups con-
structed by the baseline technique into class-level groups by ap-
plying ll.9–15 in Algorithm 3.

RQ2: How much is performance improved by grouping dele-
gate objects together with template/hook objects?

Motivation: As mentioned in Section 3.2.6, delegate methods
might appear in a chain of template/hook method calls. In this
research question, we investigate how grouping delegate objects
together with template/hook objects affects performance.
Evaluation Approach: We compare the performance of
“MP+D” and “MP” (see Section 3.2.6). As RQ1, we investigate
the trade-off between the values of the quality measures and the
#lifelines.

RQ3: How much is the runtime overhead imposed by our tech-
nique?

Motivation: Our technique weaves logging codes into a subject
system for analyzing runtime information, which causes a run-
time overhead. In terms of practicality, it is highly important to
ensure that the runtime overhead will be small. In this research
question, we investigate the overhead imposed by our technique.
Evaluation Approach: For each subject system, we measure the
execution times of the woven/original programs to calculate the
runtime overhead. We evaluate the overhead through a compar-
ison against the overhead incurred by recent scalable dynamic
analysis techniques.

4.2 Experimental Setup
4.2.1 Subject Systems and Execution Scenarios

There are no standard datasets to evaluate trace summarization
techniques in the literature; thus, it needs to seek subject systems

that are suitable for the evaluation of our technique. The follow-
ings are the criteria we set for subject system selection.
• Each subject system should have documentation especially

on its core aspects, or have well-known concepts, so that we
can construct ground truth of core-related object grouping.

• The domains of subject systems should be different from one
another to improve the external validity of the experiment.

• Each subject system should not be a toy example but a real-
istic application in order to conduct practical evaluation.

• Subject systems should be publicly available so that future
studies can do experiments with the same dataset and com-
pare their performance with ours.

We found the four systems listed in Table 1 met the above cri-
teria; thus, we select those as our subject systems. Note that it is
practically quite difficult to conduct our experiment on dozens or
hundreds of subject systems because we have to manually com-
pose a set of ground truths via careful inspection of each sys-
tem. All the four subjects we select are completely different
kinds of realistic applications in different domains: a game ap-
plication (jpacman), an event-driven GUI modeling application
(JModeller), a command line application with file I/O (wro4j),
and a multi-threaded application involving network communica-
tion (JMeter). Hence, we consider the set of the four systems in
Table 1 as a good subject collection for a practical evaluation of
our technique. For each subject, we select a representative execu-
tion scenario as shown in Table 1.
4.2.2 Ground Truths

For each subject system, we define the ground truth for object
grouping. We extract the important concepts in the domain of
each subject system from scenario descriptions and documents.
Then, we examine the source code and identify the types (classes)
that implement the extracted concepts. Table 2 shows the ground
truth for each subject system.

jpacman is a Pac-Man game application written in Java. We
define the main entities in the Pac-Man game as the important
concepts. These entities include player (Pac-Man), ghost, and
map.

JModeller is a modeling application for drawing class dia-
grams; it is built on top of JHotDraw which is known as a well-
designed GUI framework. We extract the important concepts
from an introductory article *1 that describes the design details of

*1 https://www.javaworld.com/article/2074997/swing-gui-programming/
become-a-programming-picasso-with-jhotdraw.html
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Table 2 Important concepts and types corresponding to the concepts (i.e., ground truths).

Project Concept Types corresponding to the concept 1

jpacman Player Player, StateManager, Player$NormalState,Player$PowerState
Ghost Ghost, StateManager, Ghost$NormalState, Ghost$EatableState, RunningGhostBrain, RedGhostBrain
Gem Gem, EatGem
Map Map

JModeller Class ClassFigure, SeparatorFigure, GraphicalCompositeFigure, jmodeller.ClassFigure$(1|4|5) [TextFigure],
RectangleFigure, JModellerClass

Layout StandardLayouter
Connection AssociationLineConnection, DependencyLineConnection, InheritanceLineConnection, JModellerClass

Tool DelegationSelectionTool, TextTool, JModellerApplication$1 [CreationTool], ConnectionTool, UndoableTool
Tool palette ToolButton

wro4j Model WroModel, Group, Resource
WroManager WroManager
PreProcessor PreProcessorExecutor$2 [DefaultProcessorDecorator], BenchmarkProcessorDecorator,

ExceptionHandlingProcessorDecorator, SupportAwareProcessorDecorator,
MinimizeAwareProcessorDecorator, ImportAwareProcessorDecorator, CssMinProcessor, CSSMin

PostProcessor GroupsProcessor$1 [DefaultProcessorDecorator], BenchmarkProcessorDecorator,
ExceptionHandlingProcessorDecorator, SupportAwareProcessorDecorator,
MinimizeAwareProcessorDecorator, ImportAwareProcessorDecorator, JSMinProcessor, JSMin

Locator StandaloneServletContextUriLocator
JMeter Test configuration TestPlan, ThreadGroup, HTTPSamplerProxy, ResultCollector, Arguments, LoopController

Sampler HTTPSamplerProxy, HTTPHC4Impl
Listener ResultCollector, Summariser, Summariser$Totals, SummariserRunningSample

Test executer StandardJMeterEngine, PreCompiler, JMeterThread
1 The binary names of the types are shown in the column. The package names of the types are omitted for simplicity. If a type is used as an anonymous class in

the code, the name of the base class to extend is shown in the following brackets.

the JModeller application; e.g., class, which is a primary element
in a class diagram, and connection, which defines a relationship
between two classes.

wro4j is an application used for improving the loading time of
a web application. For example, wro4j provides the function-
alities of merging and minifying web resources (e.g., *.js and
*.css files). Documentation *2 written by developers provides an
overview of the design of wro4j. We consider components ap-
pearing in the architecture diagram in the document as the im-
portant concepts; e.g., model, which represents web resources to
process, and pre/post-processors, which process web resources.

JMeter is an application that provides functionality for mea-
suring the performance of a web application. The user manual *3

describes the components of JMeter. We extract major concepts
relating to our execution scenario from the user manual. In ad-
dition, an overview of a test-execution flow is provided in the
wiki *4. We also extract important concepts from the description;
e.g., test configuration, which specifies the method for measur-
ing the performance, and sampler, which sends requests to target
servers.
4.2.3 Evaluation Measures

One commonly used external quality measure for evaluating
cluster quality is the F-measure. We also use the F-measure
to evaluate the quality of object grouping. We calculate the F-
measure in the same manner as Steinbach et al. [21], [22].

Let RS = {R1,R2, . . . ,Rn} be the ground truth (the reference
set) of grouping, where Ri (1 ≤ i ≤ n) is a set of type names de-
fined in Table 2. Let OGSclass = {OG1,OG2, . . . ,OGm} be the re-
sulting groups of our technique or the baseline technique, where
OG j (1 ≤ j ≤ m) is a set of objects (OGSclass is obtained at
l.15 in Algorithm 3). Let TS = {T1,T2, . . . , Tm} be the result-

*2 https://wro4j.readthedocs.io/en/stable/DesignOverview/
*3 https://jmeter.apache.org/usermanual/index.html
*4 https://wiki.apache.org/jmeter/JMeterTestExecution

ing groups of type names, where Ti = {t | t is the type name of
o ∈ OG j ∧ OG j ∈ OGSclass}.

First, for the reference group Ri and the resulting group T j, the
Recall and Precision are defined as follows:

Recall(i, j) = |Ri ∩ T j| / |Ri| ,
Precision(i, j) = |Ri ∩ T j| / |T j|.

Then, the F score for the reference group Ri and the resulting
group T j is defined as follows:

F(i, j) =
2 · Recall(i, j) · Precision(i, j)
Recall(i, j) + Precision(i, j)

.

Finally, the F score for the reference set RS and the grouping re-
sult TS is calculated as follows:

n =
∑

Ri∈RS

|Ri| ,

F =
∑

Ri∈RS

|Ri|
n

max
T j∈TS

F(i, j).

The maxT j∈TSF(i, j) is the maximum value of F(i, j) over all
the elements in TS and Ri. The F is the weighted average of
maxT j∈TSF(i, j) over all the elements in RS.

We investigate the trade-off between the F score and the hor-
izontal size of the resulting sequence diagram (i.e., #lifelines).
Note that, by definition, the F score easily reaches 1 if we create
the power set of the set of all the objects. Therefore, using only
the F score is inappropriate for evaluating performance, and we
must investigate the trade-off between the F score and #lifelines.

The more the objects of the important types shown in Table 2
are contained in the resulting sequence diagram, the more useful
the resulting diagram will be for program comprehension. Thus,
we also evaluate the rate of the important types contained in the
resulting diagram (i.e., the recall). The Recall for the reference
set RS and the grouping result TS is calculated in the same manner
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Table 3 Recorded runtime information.

Project Total events Messages Loaded classes Objects
jpacman 19,024,287 8,387,304 57 1,273

JModeller 1,074,279 568,940 153 6,993
wro4j 311,192 147,858 295 1,504
JMeter 630,969 333,190 372 5,562

as F:

Recall =
∑

Ri∈RS

|Ri|
n

max
T j∈TS

Recall(i, j) .

4.2.4 Weaving Extent
Our technique requires results of meta pattern detection (Sec-

tion 3.1) and an execution trace. The execution trace must contain
information regarding method-entries/exits, objects, and field ac-
cesses. Note that the field access information is used for obtain-
ing an importance-based object ranking R (see Algorithm 3). We
use SELogger, which is a part of REMViewer [23], for recording
execution traces.

We aim to help developers comprehend the behavior specific
to the domain of a subject system. For this reason, we weave log-
ging codes only into the classes defined in the subject system. In
other words, libraries are not instrumented. As the only excep-
tion, collection libraries are instrumented in order to analyze ref-
erence relations more precisely (details are provided in the paper
describing the baseline technique [12]). This weaving condition
is realistic in terms of avoiding a heavy logging overhead.

4.3 Results
The recorded runtime information is shown in Table 3. The

numbers of messages and objects affect the size of a reverse-
engineered sequence diagram. The number of lifelines (i.e., the
horizontal size) of a class-level (resp. instance-level) reverse-
engineered sequence diagram is equal to the number of loaded
classes (resp. objects).
4.3.1 Answer to RQ1

Varying the threshold It (an input of Algorithm 3) causes the
resulting object groups to change, which affects the values of
the quality measures (i.e., the F score and Recall) and #lifelines.
Fig. 5 and Fig. 6 show the trade-off relationship between the qual-
ity measures and #lifelines.

In our technique, the entire set of resulting object groups (i.e.,
the output OGS of Algorithm 2) is independent of the value of
threshold It. As the value of It decreases, the number of groups
displayed in the resulting diagram increases. Thus, as #lifelines
is increased, the values of the quality measures monotonically in-
crease.

On the other hand, in the baseline technique, the entire set of
resulting object groups depends on the value of It. After the value
of It is determined, the baseline technique constructs a set of ob-
ject groups from scratch. Thus, the values of the quality mea-
sures do not monotonically increase along with the #lifelines.
For instance, if an object o, which (in)directly refers to numer-
ous objects (i.e., o is close to the root object in reference rela-
tions), ranks as one of the most important objects, many objects
are gathered into the same group, which causes the Recall value
to increase. Because the baseline technique constructs hard clus-
ters of objects, reducing the value of It increases the number of

Fig. 5 Performance of our technique and the baseline technique (F score
vs. #lifelines).

Fig. 6 Performance of our technique and the baseline technique (Recall vs.
#lifelines).

groups (i.e., causes the large object group containing o to be de-
composed); this might cause the Recall value to decrease, which
also affects the F score (e.g., the JModeller case).

As shown in Fig. 5 and Fig. 6, in most of the subject systems,
the values of our technique’s quality measures increase signifi-
cantly at the portion of the graph with the fewest #lifelines, and
our technique outperforms the baseline technique at #lifelines
> 25.

A sequence diagram with many #lifelines (e.g., > 100) is not
suitable for practical use because it requires significant effort for
developers to comprehend the content of the diagram. Thus,
we focus on the area where #lifelines is less than 30 (i.e., small
enough for manual investigation) in Fig. 5 and Fig. 6. The maxi-
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Table 4 Maximum performance under the condition of #lifelines < 30.
Each shaded cell indicates the maximum performance value for
each project.

MP+D MP baseline
Project F Recall F Recall F Recall

jpacman 0.662 1.000 0.636 0.538 0.667 1.000
JModeller 0.722 0.789 0.655 0.632 0.503 0.947

wro4j 0.586 0.714 0.586 0.714 0.146 0.333
JMeter 0.711 0.667 0.767 0.667 0.366 0.400

Average 0.670 0.793 0.661 0.638 0.421 0.670

mum performance under the condition of #lifelines < 30 is shown
as Table 4. Table 4 shows that our technique (the “MP+D” col-
umn) outperforms the baseline technique for almost all cases. Our
technique achieved an F score (resp. a Recall) of 0.670 (resp.
0.793) on average, which is 0.249 (resp. 0.123) higher than that of
the baseline technique. Our technique is therefore more effective
compared with the baseline in terms of reducing the horizontal
size of reverse-engineered sequence diagrams.

Our technique achieved an F score (resp. a Recall) of 0.670
(resp. 0.793) on average, under the condition of #lifelines < 30
(which is acceptable for manual investigation); this is 0.249
(resp. 0.123) higher than that of the baseline technique. Thus,
our technique is more effective than the baseline technique
in terms of reducing horizontal size of reverse-engineered se-
quence diagrams.

4.3.2 Answer to RQ2

We show the performance of “MP+D” and “MP” (see Sec-
tion 3.2.6) in Fig. 7 and Fig. 8. Fig. 7 (resp. Fig. 8) shows the
trade-off relationship between the F score (resp. the Recall) and
#lifelines. As shown in Fig. 7 and Fig. 8, allowing delegate meth-
ods in a chain of template/hook method calls (i.e., “MP+D”)
tends to improve the performance of our technique.

Table 4 shows the maximum performance when there are fewer
than 30 #lifelines, which is a size acceptable for manual investi-
gation. As shown in Table 4, the F score (resp. the Recall) of
“MP+D” is 0.009 (resp. 0.155) higher than that of “MP” on aver-
age. For all the subject systems, allowing delegate methods in a
chain of template/hook method calls increased the number of op-
portunities for object grouping. Moreover, grouping delegate ob-
jects together with template/hook objects improved performance
in all cases (except for the F score in the JMeter case); i.e., the
grouping of delegate objects rarely impaired the performance.

Grouping delegate objects together with template/hook objects
improved performance in almost all cases. Under the condition
of #lifelines < 30, the F score (resp. the Recall) of “MP+D”
is 0.009 (resp. 0.155) higher than that of “MP” on average.

Regarding RQ1 and RQ2, the prevalence of meta patterns and
template-hook objects deserves detailed investigation. Our tech-
nique constructs object groups based on meta patterns; therefore,
the number of opportunities for object grouping depends on the
number of template/hook methods and objects in subject systems.
If meta patterns are seldom used in subject systems, the number
of object groups constructed could be small; this might lessen
the effectiveness of our technique. In the following, we show the

Fig. 7 Effect of allowing delegate methods in a chain of template/hook
method calls (F score vs. #lifelines).

Fig. 8 Effect of allowing delegate methods in a chain of template/hook
method calls (Recall vs. #lifelines).

results of a detailed investigation into the prevalence of meta pat-
terns and template-hook objects.

Table 5 and Table 6 show the number of meta patterns and
delegations for each subject system. Table 5 shows the number
of method invocations (i.e., #pairs of caller and callee methods)
that are statically detected (e.g., in the jpacman case, there are 62
pairs of template and hook methods). Table 6 shows the number
of pairs of template and hook methods for each pattern type.

As shown in Table 5, 33.2% of all method invocations are
hook/delegate method invocations on average. There are a large
number of meta patterns and delegations in the subject systems.
Moreover, as shown in Table 6, the unification pattern and con-
nection patterns tend to be used more frequently than the other
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Table 5 Numbers of method invocations, meta-patterns, and delegations.
The “All” column shows the total number of method invocations
in each subject system. The “MP” column shows the number of
meta-patterns (i.e., #pairs of template and invoked hook methods).
The “Delegation” column shows the number of delegations (i.e.,
#pairs of delegating and delegated methods) in which the delegate
method is not a hook method. Each number is statically counted.
Static methods, methods declared in java.lang.Object, and library
methods are excluded. The “Rate of MP+D” is calculated by
(“MP” + “Delegation”)/“All” · 100.

Project All MP Delegation Rate of MP+D [%]
jpacman 425 62 8 16.5

JModeller 7,627 3,649 100 49.2
wro4j 5,035 1,837 97 38.4
JMeter 24,477 6,560 480 28.8

Average 9,391 3,027 171 33.2

Table 6 Number of meta-patterns detected.
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jpacman 10 0 0 4 42 0 6
JModeller 1,596 0 9 336 1,393 143 172

wro4j 309 0 1 727 664 48 88
JMeter 2,214 3 13 687 2,887 335 421

Table 7 Numbers of grouped and non-grouped objects. The “Grouped”
column shows the number of objects grouped by “MP+D”. The
“Non-grouped” column shows the number of non-grouped objects.
The “Rate of grouped” column is the rate of the grouped objects to
all the objects. The number outside (resp. inside) the parentheses
shows the number of non-temporary objects (resp. all the objects).

Project Grouped Non-grouped Rate of grouped [%]
jpacman 147 (278) 409 (995) 26.4 (21.8)

JModeller 149 (4,625) 119 (2,368) 55.6 (66.1)
wro4j 107 (240) 277 (1,264) 27.9 (16.0)
JMeter 3,962 (4,543) 392 (1,019) 91.0 (81.7)

Average 1,091 (2,422) 299 (1,399) 50.2 (46.4)

patterns.
We show the numbers of grouped and non-grouped objects in

Table 7. In Table 7, the number outside (resp. inside) the paren-
theses shows the number of non-temporary objects (resp. all the
objects). During a program execution, numerous temporary ob-
jects are generated and those are not important for program com-
prehension. We identified temporary objects using the baseline
technique [12]. Note that those temporary objects are not in-
cluded in an importance-based object ranking R, an input of Al-
gorithm 3.

As shown in Table 7, on average, 50.2% of the non-temporary
objects are grouped by our technique (i.e., 50.2% of the objects
are either template, hook, or delegate objects).

As shown in Table 5 and Table 7, our technique uncovered
many opportunities for object grouping. In addition, our tech-
nique achieved high F scores and Recalls for all the subject sys-
tems, regardless of the differences in the rates of grouped objects
(see Table 4, Fig. 5, and Fig. 6). In other words, objects corre-
sponding to the important concepts tend to utilize template/hook
structures or delegations.

Numerous meta patterns and delegations are used in the sub-
ject systems. On average, 33.2% of all the method invocations
were hook/delegate method invocations. 50.2% of all the non-
temporary objects were grouped by our technique. There were

Table 8 Runtime overhead. The “Base” (resp. “With logging”) column
shows the execution time without (resp. with) logging codes. The
“Overhead” is calculated by (“With logging” − “Base”)/“Base” ·
100.

Project Base [s] With logging [s] Overhead [%]
jpacman 9.84 13.76 39.9

JModeller 5.15 10.24 98.9
wro4j 4.59 6.16 34.0
JMeter 4.97 22.06 344.1

Average 6.14 16.54 129.2

many grouping opportunities found by our technique. There-
fore, we expect our technique to have a wide range of appli-
cation. Moreover, our technique achieved high quality object
grouping, regardless of the rates of meta patterns and delega-
tions used; objects of important concepts tended to utilize meta
patterns or delegations.

4.3.3 Answer to RQ3

Table 8 shows the runtime overhead. For each execution sce-
nario, we measured the execution time five times, both with and
without the logging codes for recording an execution trace. We
then calculated the average overhead. We used an Intel Xeon E5-
2620 v4 2.10 GHz machine and assigned 16 GB of RAM to the
heap of the Java VM. We set the options for SELogger as follows:
four background threads were used for writing trace data onto a
disk; the trace data was recorded in an uncompressed format.

Our technique imposed a runtime overhead of 129.2% on aver-
age. This overhead is relatively small compared with recent scal-
able dynamic analysis techniques [24], [25], which incur runtime
overhead of approximately 100% to 800%.

Developers only need to execute an instrumented application
once to produce the behavioral visualization. Thus, in many
cases, the overhead from our technique is expected to prove
acceptable in a development phase rather than in a production
phase.

Our technique imposed a runtime overhead of 129.2% on av-
erage, which is relatively small compared with recent dynamic
scalable analysis techniques. In many cases, this overhead is
expected to be acceptable in program comprehension tasks.

Finally, to facilitate reader understanding, we show an exam-
ple covering a portion of the resulting (summarized) sequence
diagram from the JModeller case in Fig. 9. Figure 9 provides
the knowledge for a behavioral overview of the subject system as
follows.

When a user clicks on the canvas to add a new class fig-
ure, the tool objects (the lifeline named “10:DelegationSelec-
tionTool”) receive a mouse-down event (mouseDown(. . . )), and
a message communicating the addition of a new figure (add(. . . ))
is sent to the view objects (the lifeline named “17:StandardDraw-
ingView”). Then, the view objects are set as containers of the
newly added figure object (addToContainer(. . . )).

A paint-message (paintComponent(. . . )) is sent from library
code. Then, the view objects draw the figures in the view
(draw(. . . )).

When a user clicks on the canvas to add a connector be-
tween two classes, the tool objects receive a mouse-up event
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Fig. 9 Portion of the resulting diagram from the JModeller case.

(mouseUp(. . . )). After testing whether it is possible to connect
the two classes (canConnect(. . . )), the tool objects add a new con-
nection (connectStart/End(. . . )).

In the resulting diagram, objects are abstracted at a concept
level (for example, figure (“0:ClassFigure”) or tool (“10:Delega-
tionSelectionTool”)), which is useful for comprehending the be-
havioral overview of the subject system. The resulting diagram
is expected to become a valuable tool for developers in an early
stage of program comprehension.

5. Threats to Validity
To improve the external validity, we used various types of ap-

plications in our experiment: a game application that periodically
updates/renders the display according to the frame rate (jpac-
man); a modeling application written as an event-driven GUI pro-
gram (JModeller); a command line application that includes file
processing (wro4j); a multi-threaded command line application
that includes network accesses (JMeter). However, because the
number of subject systems is limited, it is unclear whether the
results of our experiment can be generalized further.

Our algorithm groups objects involved in template-hook (and
delegation) structures. We cannot theoretically validate whether
focusing only on those structures is sufficient for obtaining useful
summarization. Instead, we showed the following through our
experiment.
• Template-hooks and delegations are widely used in object-

oriented systems: over 33% of method invocations are hooks
or delegations, and over 50% of non-temporary objects are
involved in hooks or delegations (Section 4.3.2). This indi-
cates our algorithm would have many opportunities to sum-
marize object behavior.

• The resulting summarization has not deviated significantly

from those described in execution scenarios and documents:
F score and Recall are 0.670 and 0.793, resp (RQ1). This
means the level (degree) of our abstraction is neither too ex-
cessive nor too insufficient.

Focusing template-hook (and delegation) structures gives us nu-
merous opportunities to group objects and a good abstraction
level. We therefore consider that our algorithm based only on
template-hooks (and delegations) works effectively for obtaining
behavioral overviews of object-oriented systems.

We defined the ground truths by ourselves. To improve objec-
tivity, we extracted the ground truths from the documents written
by developers (except in the case of jpacman); however, the def-
initions of the ground truths might be incorrect. To mitigate the
threat, we listed all the ground truths in this paper (Table 2) so
that subsequent research can use and validate them.

We did not determine how much software maintenance task
time is saved by our summarized sequence diagram; because this
study focuses on the compactness of the diagram and the quality
of the object grouping, an evaluation of time savings is outside the
scope of this paper. Further studies are needed in order to eval-
uate the usefulness of summarized sequence diagrams in actual
maintenance tasks.

6. Related Work
6.1 Coping with Large Execution Traces

To improve program comprehension, testing, and formal veri-
fication, many studies have focused on recovering sequence dia-
grams [1], [2], [26]. The existing research has stated that because
execution traces contain vast amounts of information, reverse-
engineered sequence diagrams are often afflicted by scalability
issues.
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6.1.1 Vertical Summarization of a Reverse-engineered Se-
quence Diagram

The primary approach for coping with the scalability issue is
summarizing/abstracting the repetitive behavior in an execution
trace [3], [4], [5]. Traces contain substantial amounts of repetitive
behavior owing to iterative statements or recursive method calls
in a program; thus, summarizing the repetitive behavior results in
a significant reduction in the vertical size of a reverse-engineered
sequence diagram. To detect iterative behavior in a trace, for
example, previous studies utilized debug information [4] or pro-
posed a regular expressions-based approach [5].

An execution trace is often composed of several phases (tasks);
thus, phase detection approaches [6], [8], [9], [27], which divide
an entire trace into phases, are effective in reducing the vertical
size of reverse-engineered sequence diagrams. To detect phases,
for example, previous studies examined the creation time of ob-
jects [6] or utilized text mining techniques [9].

Hamou-Lhadj and Lethbridge proposed a technique for remov-
ing unimportant methods (i.e., utilities) from a trace on the basis
of the fan-in/out of each method [28]. By removing unimportant
methods (implementation details), they achieved a vertical and
horizontal summarization of a reverse-engineered sequence dia-
gram.
6.1.2 Horizontal Summarization of a Reverse-engineered

Sequence Diagram
Along with the vertical summarizations, horizontal summa-

rizations of reverse-engineered sequence diagrams are an im-
portant factor in improving overall practicality. Some existing
trace summarization approaches perform horizontal summariza-
tion. The technique proposed in this paper is also categorized as
this type.

OGAN is a tool that visualizes interactions between objects
related to two classes specified by a user [29]. For each object,
OGAN computes the dynamic interaction context, which is a set
of classes that use/are-used-by the object. Then, for each class,
objects are clustered according to the equality of their dynamic
interaction contexts. OGAN selects an object from a cluster for
each specified class, and visualizes interactions between those
and related objects. If developers already have a certain degree
of knowledge about a subject system and know the class names
of interest then OGAN is useful for obtaining a representative be-
havior of the classes. Meanwhile, our technique is more suitable
when developers do not know the class names that are important
in comprehending the design overview of a subject system (e.g.,
in an early stage of program comprehension).

Dugerdil and Repond proposed a class clustering technique in
which each cluster corresponds to a functional entity in a sub-
ject system [10]. Their technique divides an entire trace into seg-
ments; then, for each loaded class, it creates a feature vector that
represents the binary occurrence (presence (1) or absence (0)) of
the class in each segment. If the feature vectors of two classes are
similar, those classes are gathered into the same cluster.

A trace, which is generated by exercising several features, con-
sists of several functional phases. Because the technique pro-
posed by Dugerdil and Repond clusters classes from a functional
perspective by segmenting a trace and calculating the similari-

ties of the binary occurrence vectors, each of the constructed
clusters tends to correspond to a functional phase. As a conse-
quence, the resulting summarized sequence diagram provides a
highly abstracted behavioral view that depicts relationships (in-
teractions/flows) among functional entities. Their technique is
therefore suitable for comprehending a long/complex execution
scenario that exercises several features. Compared with their
technique, our technique aims at providing a finer-grained behav-
ioral view. As its input, our technique assumes a simpler trace that
exercises a few features, and visualizes only important behavior
(interactions among important objects). Thus, our technique is
suitable for comprehending how key objects behave in a simpler
execution scenario that exercises a few features of interest.

Toda et al. proposed an object-grouping technique based on the
GoF design patterns [11]. The key idea of using design patterns
for clustering is similar to our approach. The technique by Toda
et al. focused on the GoF design patterns, which are more specific
than Pree’s meta patterns. Therefore, although the risk of group-
ing irrelevant objects into the same cluster is low, the number of
opportunities for object grouping is quite small. Our technique,
which clusters objects based on more primitive design patterns,
finds more opportunities to summarize object behavior.

We also proposed similar approaches in our previous pa-
pers [12], [20]. In the study [20], we first identified core objects
based on reference relations and access frequencies. Then, group-
ing core-related objects based on lifetimes and reference rela-
tions, we obtained horizontally-summarized reverse-engineered
sequence diagrams that depicted inter-group interactions among
the core object groups. The subsequent study [12] presented a
refined version of the core identification algorithm (described in
Section 2.2) and produced better results.

We selected the study [12] as the baseline in our experiment.
As described in Section 4.1, the technique proposed in this pa-
per leverages the core identification algorithm proposed in the
baseline paper [12]. The difference between the proposed tech-
nique and the baseline lies in the object-grouping algorithms. The
proposed technique constructs important object groups based on
Pree’s meta patterns as described in Section 3.2. Meanwhile, for
each important (core) object oimp, the baseline technique identi-
fies a set of objects that are in a composition relation together with
oimp, and gathers those objects into the same group. In Section 4,
we investigated the performance of the baseline technique, and
showed that the technique proposed in this paper outperformed
the baseline technique in terms of horizontal summarization of
reverse-engineered sequence diagrams.
6.1.3 Other Approaches

There are many other approaches for handling the massive
amounts of information in a trace.

Reticella extracted a partial behavioral view from an entire
interaction log through a specialized dynamic slicing [17]. The
slice (partial behavioral view) of a reverse-engineered diagram is
calculated on a B-model (behavior model) event sequence. As
with traditional dynamic program slicing, the specialized slicing
technique does not summarize (abstract) entire object interactions
but pinpoints and extracts partial interactions of interest based
on slicing criteria. Alimadadi et al. identified recurring struc-
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tures (motifs) in a trace and represented the trace as a hierarchical
view [30]. Busany and Maoz proposed a technique that suggested
a stopping criteria for a trace analysis (e.g., the sample size of a
trace), such that the analysis results could be statistically trusted
at a specified level of confidence [31].

Some existing works proposed effective visualization tools: a
dedicated view for comprehending a large trace [32], an interac-
tive tool that effectively explores a sequence diagram [33], and a
generic toolkit that provides a set of functionalities for smoothly
exploring a massive-scale sequence diagram [34].

6.2 Detecting and Leveraging Design Patterns
A number of design pattern detection techniques have been

proposed [35], [36]. While most existing techniques focus on
GoF design patterns, some research detected and leveraged the
Pree’s meta patterns, which are the most primitive design pat-
terns [37], [38]. Because some GoF design patterns have simi-
lar structures, detecting these patterns produces some false pos-
itives. On the other hand, because each Pree’s meta pattern is
structurally distinguishable, it is relatively easy to detect these
patterns without false positives.

Detecting the meta patterns, Hayashi et al. reduced the com-
putation and maintenance costs of the GoF design pattern de-
tection logic [37]. Posnett et al. proposed a meta pattern detec-
tor named Thex that worked on Java bytecode and is scalable to
larger codebases [38]. Our technique also detects meta patterns
for constructing object groups corresponding to concepts.

7. Conclusion
The behavior of an object-oriented program is visualizable as

a reverse-engineered sequence diagram, which is a valuable tool
for program comprehension; however, owing to the massive size
of execution traces, reverse-engineered sequence diagrams often
suffer from scalability issues.

To address the issues, in this paper we propose a trace sum-
marization technique that reduces the horizontal size of reverse-
engineered sequence diagrams. Our technique constructs object
groups in which each object corresponds to a concept in the do-
main of a subject system. Then, given an importance-based object
ranking, important object groups are identified. By visualizing in-
tergroup interactions only among the important groups, our tech-
nique generates a summarized version of a reverse-engineered di-
agram that depicts a behavioral overview of the subject system.

We evaluated our technique using traces generated from var-
ious types of open source software. The results showed that
our technique outperformed the state-of-the-art trace summariza-
tion technique in terms of horizontal summarization of reverse-
engineered sequence diagrams. Regarding the quality of object
grouping, our technique achieved an F score (resp. a Recall) of
0.670 (resp. 0.793) on average, under the condition of #lifelines
< 30 (which is acceptable for manual investigation). This is 0.249
(resp. 0.123) higher than that of the baseline technique. More-
over, our technique imposed a runtime overhead of 129.2% on
average, which is relatively small compared with recent scalable
dynamic analysis techniques. In many cases, the runtime over-
head of our technique is expected to be acceptable in maintenance

tasks.
Overall, our technique can recover a summarized sequence di-

agram that depicts a behavioral overview, while incurring a small
runtime overhead. The resulting summarized diagram is expected
to be a valuable tool for developers in an early stage of program
comprehension.
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