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Testing and verifying imperfect multi-qubit quantum devices are important as such noisy quantum
devices are widely available today. Bell inequalities are known useful for testing and verifying the
quality of the quantum devices from their nonlocal quantum states and local measurements. There
have been many experiments demonstrating the violations of Bell inequalities but they are limited
in the number of qubits and the types of quantum states. We report violations of Bell inequalities on
IBM Quantum devices based on the scalable and robust inequalities maximally violated by graph
states as proposed by Baccari et al. (Ref.[1]). The violations are obtained from the quantum
states of path graphs up to 57 and 21 qubits on a 65-qubit and two 27-qubit IBM Quantum devices
respectively, and from those of star graphs up to 7, 10 and 11 qubits with error mitigation on the same
devices. We are able to show violations of the inequalities on various graph states by constructing
low-depth quantum circuits producing them, and by applying the readout error mitigation technique.
We also point out that quantum circuits for star graph states of size N can be realized with circuits
of depth O(

√
N) on subdivided honeycomb lattices which are the topology of the 65-qubit IBM

Quantum device. Our experiments show encouraging results on the ability of existing quantum
devices to prepare entangled quantum states, and provide experimental evidences on the benefit of
scalable Bell inequalities for testing them.

I. INTRODUCTION

Nonlocality of quantum states–first discovered by John
S. Bell [2]–is an intriguing consequence of quantum me-
chanics in which correlations among quantum bits can-
not be explain by classical statistics. In particular, the
nonlocality implies the so-called Bell inequalities that are
violated by entangled (or, nonlocal) quantum states but
not by any classical (or, local) correlation. There is a
variety of concepts and experimental tools developed for
demonstrating the violation of Bell inequalities [3]. One
of them is the CHSH inequality [4],that can be used to
test the nonlocality of two quantum bits. There have
been many researches extending the CHSH inequality,
such as that by Ito, Imai, and Avis [5] whose inequality
allows wider range of quantum states to violate the clas-
sical bounds, or the CHSH-like Bell inequalities for more-
than-two quantum bits, such as, the Mermin’s inequality
for Greenberger–Horne–Zeilinger (GHZ) state [6] and the
Bell inequality for graph states [7].

The Bell inequalities soon find their applications for
witnessing entanglement [8, 9] and for self-testing [10, 11]
quantum devices. The latter is useful for certifying the
quantumness of the devices by statistical tests on the
correlations resulting from the quantum states they pro-
duce without the knowledge of their internal functions.
However, most of the existing Bell inequalities require
measuring correlations on quantum graph states whose
number scales exponentially [7, 12] or polynomially [13–
15] with the number of qubits involved. Recently, Baccari
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et al. [1] proposed a family of CHSH-like Bell inequalities
that are both scalable and robust. The scalability comes
from the fact that the new inequalities can be tested by
measuring correlations on quantum graph states whose
number scales only linearly with the number of qubits.
The robustness stems from the fact that the maximal
violation is obtained from quantum graph states whose
ratio of the quantum bound against the classical bound
tends to a constant for sufficiently large number of qubits.
In addition, the fidelity of the violating quantum states
against the corresponding quantum graph states is a lin-
ear function of the magnitude of the violations. The scal-
ability and robustness of the new CHSH-like Bell inequal-
ities are therefore potential for self-testing noisy quantum
devices available today.

We have been witnessing the proliferation of near-
term quantum devices [16–20]. As in January 2021
there are at least seventeen multi-qubit quantum devices
made available at IBM Quantum Experience [21]. Al-
though far from perfect, their number and quality of
the qubits has been much improved since the first in-
troduction of their predecessor in 2016. The quantum
devices with the largest number of qubits is the 65-
qubit (ibmq_manhattan) followed by other smaller de-
vices. The quality of those devices is measured with
the Quantum Volume [16, 22] which is a single met-
ric incorporating the number of qubits and the depth
of the quantum circuits applicable to the qubits before
they decohere. Those devices offer testbeds for inves-
tigating the quantum states they produce, i.e., to see
if such topologically-limited noisy devices can entangle
more qubits and in which way. For example, Wei et
al. [23] experimentally demonstrated the ability to pro-
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duce GHZ states up to 18 qubits on a 20-qubit IBM
Quantum device measured by their proposed scalable en-
tanglement metric. González et al. [24] and Huang et
al. [25] used Mermin-type Bell inequalities to confirm en-
tanglement of GHZ states up to 5 qubits. Nevertheless,
the previous experiments are limited and are also diffi-
cult to verify different types of entangled quantum states
that may depend on the underlying quantum devices.

We address the task of testing noisy quantum devices
with various quantum graph states based on the the fam-
ily of CHSH-like Bell inequalities of Baccari et al. [1].
We exploit their Bell inequalities to construct various
inequalities based on the qubit layout topology of the
underlying quantum devices. The inequalities are max-
imally violated by quantum graph states, whose graphs
can be varied based on the connectivity of the qubits
of the devices. In particular, we construct path and
star graphs on the 65-qubit ibmq_manhattan, 27-qubit
ibmq_toronto, and ibmq_sydney devices and test their
violations of the corresponding Bell inequalities. For path
graphs the inequalities are clearly violated on the longest
simple paths available on the quantum devices: up to 57
qubits on the 65-qubit device, and up to 21 qubits on
the 27-qubit devices. For star graphs the violations are
observed up to 7 qubits on ibmq_manhattan, up to 10 on
ibmq_sydney and up to 11 on ibmq_toronto after ap-
plying the measurement error mitigation based on tensor
product noise model (Recently, Mooney et al. [26] in-
dependently verified 27-qubit GHZ states in a different
way).

We also checked violations of the inequalities on
graphs corresponding to the underlying devices, i.e.,
all 65 qubits of the ibmq_manhattan, and 27 qubits of
ibmq_toronto and ibmq_sydney, and we report the vio-
lation on ibmq_manhattan.

The violations are made possible by shallow-depth cir-
cuits to produce the corresponding graph states. Namely,
path graphs are from depth-2 quantum circuits as in [27],
and star graphs on 5 qubits or larger are from quantum
circuits avoiding SWAP gates following a similar con-
struction shown in [23]. We provide a generalization of
constructing star graph states of N qubits with circuits of
depth O(

√
N) on subdivided honeycomb lattices which

are the typical topology of IBM Quantum devices.
The rest of the paper is organized as follows. Sec-

tion II explains the experimental settings by introducing
the graph states, the corresponding CHSH-like Bell in-
equalities and the quantum circuits producing the graph
states. Section III shows the experimental results on IBM
Quantum devices showing their ability to entangle more
qubits than reported before. Section IV concludes with
the discussion of the results and future works.

II. SETTINGS OF EXPERIMENTS

In this section, we describe the settings and proce-
dures of our experiments which were implemented on

IBM Quantum Experience. The device information (cal-
ibration data) of each quantum device we used is listed
in the Appendix B.

A. Preliminaries of Graph State

First, we consider a graph G = (V,E) is a simple
undirected graph with vertex set V = {1, 2, · · · , N} and
edge set E = {{u, v}|u, v ∈ V, u 6= v}. Let n(v) be
the vertex set of neighbourhoods of the vertex v and
n[v] := n(v) ∪ {v} be the vertex set containing neigh-
bourhoods of the vertex v and v itself. Given a graph
G = (V,E), the graph state |ψG〉 associated to the graph
G is defined in the following way. To every vertex v, Gv
is an operator on N -qubit system written as

Gv = σ
(v)
X ⊗

⊗
i∈n(v)

σ
(i)
Z , (1)

where the Pauli operator σ
(j)
X or σ

(j)
Z acts on the qubit j.

Then the graph state |ψG〉 associated to G is defined to
be the unique simultaneous eigenvector

|ψG〉 :=
∏

(i,j)∈E

CZ(i, j)|+〉⊗N . (2)

We can prepare the quantum circuit of graph state |ψG〉
according to (2).

B. The Scalable Bell Inequality of Baccari et al.

In order to review the scalable Bell inequality of Bac-
cari et al. used in our experiment, we refer to their origi-
nal notations in [1]. The inequality we used is the modi-
fied version of their original inequality, which is also men-
tioned in [1]. Using the notation of stabilizer measure-
ment (1), the general form of their modified inequality
becomes (3).

IG(F ) =
∑
v∈F

deg(v) 〈Gv〉+
∑
i∈n(v)

〈Gi〉


+

∑
i/∈

⋃
v∈F n[v]

〈Gi〉 ≤ βCG(F )

(3)

where βCG(F ) represents the classical bound of graph G to
the choice of F . In addition, F satisfies ∀u, v ∈ F, n[u]∩
n[v] = ∅. We also define βQG(F ) as the quantum bound
of G.

We computed IG(F ) of path graph states with the op-

timal choice of F , obtaining higher ratio of βQG/β
C
G in

order to make the gap between βQG and βCG clearer. For
star graphs, IG(F ) becomes quite simpler and it is de-
scribed as the following form (4).

ISN =
√

2

(N − 1)
〈
σ
(1)
X σ

(2)
Z · · ·σ

(N)
Z

〉
+

∑
i∈V \{1}

〈
σ
(1)
Z σ

(i)
X

〉
(4)
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C. Circuit Preparation

In this experiment, we used IBM Quantum 65-
qubit device (ibmq_manhattan) and 27-qubit devices
(ibmq_toronto and ibmq_sydney). On these devices,
we investigated the correlations of path graph PN , star
graph SN , and the connection graphs of each device. In
order to prepare shallower circuits, we referred to the
circuit designing techniques used by Wei et al. [23] and
Mooney et al. [27].

1. Preparing Path Graph State

Path graph state |ψPN
〉 can be prepared by shallow

circuit with constant depth 2, as shown in [27]. Once we

have prepared |+〉⊗N state, we apply control-Z gate to
every other edge of the path. Then we apply control-Z
gate to every other remaining edge on which the control-
Z gate was not applied at the previous step. We used the
qubit layout in Fig. 3 in Appendix C in order to make
as long paths as possible on each device. We tested path
graph states from the size 2 up to the maximum size that
can be taken on each device.

2. Preparing Star Graph State

Since star graphs are equivalent to GHZ states in terms
of local Clifford operations [28], star graphs can be made
from GHZ state by applying local Hadamard gate to ev-
ery qubit except for the qubit representing the central
node in the graph. That is, assuming that the central
vertex is labled by 1, the following equation holds.

|ψSN
〉 =

(
I ⊗H⊗(N−1)

)
|ψGHZN

〉 (5)

Then the remaining task is to prepare GHZ state in
a shallower manner, which we can use the technique as
shown in [23]. The main idea of this technique is that
GHZ states can be prepared without qubit swapping op-
erations on any tree structured physical connection of
qubits. GHZ states is realized by applying the Hadamard
gate to an initial qubit and then applying the X gate to
other qubits controlled by the initial qubit. Since the
qubits of entangled part of GHZ state are all equivalent,
we can apply the control-X gates to different pairs of
qubits in parallel by properly changing the control qubits.
By doing so, it is possible to realize shallower circuit with
depth O(

√
N) for star graph state with size N on the

topology of IBM Quantum 65-qubit devices. In-depth
discussion on the proof of this is in the Appendix A.

In our experiments, we prepared the star graph |ψSN
〉

of size N = 2, · · · , 39 on ibmq_manhattan, and of size
N = 2, · · · , 27 on ibmq_toronto and ibmq_sydney. The

details on how we prepared star graphs on each device is
shown in Fig. 4 in Appendix C.

Besides, the grouping of observables with separa-
ble measurements, which has been conventionally used,
would allow us to realize a fewer circuits and save
resources of quantum computers. The idea of this
technique is to firstly measure the sum of commuta-
tive observables at once, then extract the expectation
value of each observable, and finally sum them up.

For star graphs, since σ
(1)
Z σ

(i)
X and σ

(1)
Z σ

(j)
X are com-

mutative, we substitute n − 1 measurements in the

term
∑
i∈V \{1}

〈
σ
(1)
Z σ

(i)
X

〉
at (4) with one measurement

σ
(1)
Z

∏
i∈n(1) σ

(i)
X = σ

(1)
Z σ

(2)
X · · ·σ

(N−1)
X . This reduces the

number of measurements from N to 2. By Hoeffding’s
inequality, the number of shots for each circuits scales

in O
(
n2

δ2

)
, where δ is the error tolerance. In this sense,

8192 shots per circuit is enough for the size of qubits in
our experiments.

3. Preparing the Graph Structure of Each Device

The graph structure of qubit connection of each quan-
tum devices we used can be seen as a subdivision of hon-
eycomb graph. Let us define this graph of sizeN as THN .
Since the maximum degree of THN is 3, it is shown to
be 3-edge colorable by Vizing’s theorem [29]. Therefore,
we can prepare the quantum circuit for THN in circuit
depth 3. The specific construction of THN corresponding
to graph structure of each device is explained on Fig.5 of
Appendix C.

III. RESULTS OF EXPERIMENTS

The experiments are performed with Qiskit [20]. The
result of each experiment is averaged over 8192 shots.
The quantum correlation for star graphs and path graphs
on each device are shown in Fig. 1. The green plots are
the raw correlations and the red plots are the correlations
with the measurement error mitigation based on tensor
product noise model. We mitigated the results of star
graphs up to size 12 using tensor product noise model
with the fast negative cancellation method by Smolin et
al. [30].

Fig. 2 shows the term wise mitigated correlations
in (4) for each size of star graphs. For example, the
curve labeled by 0 indicates the correlation of the term〈
σ
(0)
X σ

(1)
Z · · ·σ

(N−1)
Z

〉
in (4) for graph size N = 2, 3, 4, · · · ,

and the curve labeled by 3 indicates the correlation of the

term
〈
σ
(0)
X σ

(3)
Z

〉
in (4) for graph size N = 4, 5, 6, · · · .

From Fig. 1, we see path graphs violated the inequality
with clear gap from classical bounds on ibmq_manhattan
and ibmq_toronto, while for some small sizes of path
graphs on ibmq_sydney did not violate. The curve for
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FIG. 1. The correlations of path graphs and star graphs on each quantum devices. The upper row is the results of path graphs
and the lower is of star graphs.

FIG. 2. The term-wise correlations to different star graphs on each quantum devices. For example, the correlation of the first

term
〈
σ
(1)
X σ

(2)
Z · · ·σ

(N)
Z

〉
in (4) is represented as line 0 in each figure. For ibmq toronto and ibmq sydney, the depth changes

between graph size 2-3, 4-5, 7-8, 10-11, 13-14, 17-18, 21-22, and 25-26. For ibmq manhattan, the depth changes between graph
size 2-3, 4-5, 7-8, 11-12, 16-17, 23-24, and 32-33. The upper row is the correlations without error mitigation and the lower is
the correlations with error mitigation.

path graphs on each device seems to grow stably with
the length of the path between the classical bound and
quantum bound. Therefore, for path graphs, we may say
they are well prepared on each device.

As for star graphs, we can see the violation of classical
bound up to size 6 on ibmq_toronto, 4 on ibmq_sydney,
and 7 on ibmq_manhattan without error mitigation.
When we added the measurement error mitigation to
our raw results, the maximum size of violation increased
to 11 on ibmq_toronto and 10 on ibmq_sydney, while
ibmq_manhattan was still in size 7. The decrease of total
correlation from the size 4 to 5 and 7 to 8 at the plot of

ibmq_manhattan probably reflects the increase of circuit
depth, which would make each qubit more vulnerable to
decoherence caused by the thermal relaxations.

We also report the violation of the CHSH-like Bell
inequality by Baccari et al. in the subdivided hon-
eycomb graph using whole qubits on ibmq_manhattan.
The correlations of honeycomb struture on the devices
of ibmq_toronto, ibmq_sydney, and ibmq_manhattan
are listed in Table I. This result implies that the
ibmq_manhattan device has the ability to prepare a large
graph state unique to its qubit layout even using its whole
qubits, in rather good accuracy. For both ibmq_toronto
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and ibmq_sydney, the honeycomb structures on these
two devices did not violate the classical bound of the
inequality.

TABLE I. The correlation values of whole-qubit honeycomb

graph on each device, where β
Q

G denotes the measured quan-
tum correlations.

ibmq_ toronto sydney manhattan

βC
G 36.000 36.000 88.000

βQ
G 50.083 50.083 121.966

β
Q

G 29.995± 0.094 33.241± 0.091 90.298± 0.124

The python codes of our experiments are stored at
https://github.com/BOBO1997/qip2021 poster549.

IV. CONCLUSION

Through our experiments, we support the benefits of
the CHSH-like inequality proposed by Baccari et al. [1]
in terms of its scalability and robustness. The linear-
scale increase of measurement terms to the graph size
enables us to compute correlation of large graph states
on IBM Quantum devices such as ibmq_manhattan with
65-qubits. Bell inequalities that require measuring only
constant number of correlations [8, 9] have been used for
experimenting with much larger systems [12, 31].

Using their remarkable Bell inequality, we also support
the ability of existing IBM Quantum devices to prepare
well-entangled large graph states on them. We report
in this work the violation of the inequality for several
graph states with a large number of qubits. Using shal-
low circuits with depth 2 [27], we have seen path graphs
violated the inequality up to the maximum size on each
IBM Quantum device. In particular, for the IBM Quan-
tum 65-qubit device, path graphs showed its quantum-
ness up to size 57. We also checked the violation of classi-
cal bounds for the graph state corresponding to the graph
structure of each quantum devices with its whole qubits.
Although the maximum size of star graphs violating the
inequality (3) is rather small compared to the violations

in path graphs, our result reports the violation of star
graphs up to size 7. Our preliminary efforts applying
measurement error mitigation showed that the size could
be increased maximally up to 11.

For future works, one of the possible improvements of
circuit preparation can be found in the experiments by
Wei et al. [23]. During their experiments, they added
a collective π-pulse on all qubits in order to refocus low
frequency noise and reduces dephasing errors using the
idea of Hahn echo [32]. As they applied the π-pulse be-
tween the entangle process and disentangle process of
GHZ states which undo the entangle process, π-pulse be-
comes most effective for certain time intervals decided by
T1/T2 relaxation times. Since our experiments do not
have the structure of symmetry in terms of entangle pro-
cess and disentangle process, partial insertion of π-pulse
into the entangled qubits might improve the correlations
instead of the direct insertion of π-pulse into the middle
of our circuits. Other ideas of decreasing the dephasing
errors, such as dynamic decoupling methods discussed in
[33], might also help us improve the total correlations of
the inequality.

In addition, other scalable measurement calibration
techniques might further improve our results. One of the
better measurement mitigation techiniques is the contin-
uous time Marcov process (CTMP) measurement error
mitigation recently proposed by Bravyi et al. [34]. This
method would allow us to take account for the two qubits
cross-talk errors.

In conclusion, our results for the large quantum states
greatly owe to the scalability of the Bell inequality pro-
posed by Baccari et al. [1] and we experimentally sup-
port the usefulness of their inequality as a powerful tool
for the entanglement verification of large quantum states
and for the benchmarking of upcoming near-term quan-
tum devices.
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Rahman, A. Raja, N. Ramagiri, A. Rao, R. Raymond,
R. M.-C. Redondo, M. Reuter, J. Rice, M. Riedemann,
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Appendix A: Creating Star Graphs with Depth O(
√
N)

At the previous part, we have seen that quantum circuit for star graph state |ψSN
〉 is prepared via the GHZ state

which can avoid swap operations. Here we explain why the quantum circuit can be prepared with depth O(
√
N) for

star graph SN on the physical qubit layout of ibmq_manhattan. We first describe the construction of tree graph state
|ψTN

〉 with depth d and see what the physical qubit topology should be taken. We then show such a graph can be
embedded into the topology of subdivided honeycomb structure.

In order to create circuit, we start from vertex 1. If vertex 1 is connected with other vertex, say vertex 2, we can
add it to the tree, making |ψT2

〉 with depth 1. Next, if one of the vertices 1, 2 has degree 3 or larger, connected with
vertex 3, and the other vertex has degree 2 or larger, connected with vertex 4, then we can simultaneously add vertices
3, 4 to vertex 1, 2. This time, the created tree |ψT4

〉 has the depth 2, with 3 outer vertices on the qubit topology
connected to different vertices of |ψT4

〉. Going one step further, if two of three neighbourhoods of |ψT4
〉 have degree

2 or larger, and the remaining one neighbourhood has degree 3 or larger, then we can make |ψT7
〉 in one step, and

assure 4 additional neighbourhoods for |ψT7
〉. In this way, the size of tree graph state we can prepare in depth d is

N = 1
2d(d+ 1) + 1. The condition that the physical qubit topology should satisfy is that they can add d− 1 vertices

with degree 2, and at least 1 vertex with degree 3. Such structure can be found in subdivided honeycomb because
every vertex with degree 2 in subdivided honeycomb is adjacent to vertices with degree 3, and vice versa.
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Appendix B: Device Information

TABLE II. Qubit parameters on ibmq toronto. The qubit frequency, T1, T2, readout error are presented.

Qubit Frequency (GHz) T1 (µs) T2 (µs) Readout error
0 5.225 104.4 59.0 0.0795
1 5.003 104.9 134.0 0.0611
2 5.144 63.6 138.4 0.016
3 5.21 97.1 159.4 0.0079
4 5.088 113.3 165.9 0.0469
5 5.167 97.7 131.5 0.0127
6 5.152 100.9 74.0 0.0224
7 4.915 126.5 167.7 0.0344
8 5.033 128.6 131.8 0.0129
9 5.082 107.2 103.4 0.0164

10 5.098 91.9 122.9 0.0326
11 5.117 28.4 62.5 0.0215
12 4.928 127.6 175.1 0.0476
13 5.128 100.2 127.8 0.2522
14 5.017 84.9 172.1 0.0116
15 5.092 116.0 56.3 0.2024
16 4.943 108.2 149.4 0.0329
17 5.158 107.6 74.9 0.0171
18 5.06 95.6 142.0 0.0644
19 5.069 99.9 123.8 0.0212
20 4.916 117.6 10.5 0.0108
21 5.145 50.0 31.8 0.0133
22 5.122 115.9 137.6 0.0219
23 5.1 126.2 43.3 0.0428
24 4.963 140.2 146.9 0.0099
25 5.065 156.5 182.1 0.0117
26 5.216 86.5 112.2 0.0122

TABLE III. Qubit parameters on ibmq sydney. The qubit frequency, T1, T2, readout error are presented.

Qubit Frequency (GHz) T1 (µs) T2 (µs) Readout error
0 5.092 35.5 40.3 0.0296
1 5.014 93.0 39.5 0.0599
2 4.863 126.7 55.5 0.0165
3 5.104 78.1 54.6 0.0231
4 5.064 70.0 89.2 0.0129
5 4.893 142.3 66.6 0.0148
6 4.994 79.8 107.4 0.0478
7 4.943 80.4 78.2 0.0565
8 4.761 192.8 131.1 0.0428
9 4.85 74.7 98.3 0.0332

10 5.047 72.8 118.5 0.0104
11 4.847 77.9 90.3 0.0769
12 5.0 88.3 43.8 0.0356
13 4.882 120.8 137.1 0.0173
14 5.097 85.6 153.7 0.0604
15 4.761 113.3 108.5 0.0173
16 4.968 89.9 52.0 0.0173
17 5.054 103.8 30.9 0.0759
18 4.895 75.0 25.0 0.0866
19 4.894 123.9 90.5 0.0264
20 5.026 89.6 172.2 0.073
21 4.943 89.1 36.2 0.0697
22 4.985 100.6 157.6 0.0479
23 5.071 107.5 149.7 0.0242
24 4.969 100.4 117.6 0.0402
25 4.891 99.2 219.4 0.1005
26 5.021 119.8 143.1 0.0217
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TABLE IV. Qubit parameters on ibmq manhattan. The qubit frequency, T1, T2, readout error are presented.

Qubit Frequency (GHz) T1 (µs) T2 (µs) Readout error
0 4.838 65.6 98.7 0.0338
1 4.681 65.9 73.2 0.0165
2 4.947 63.8 94.3 0.0137
3 4.766 52.0 71.4 0.0097
4 4.71 44.3 52.7 0.014
5 4.574 60.3 40.9 0.0323
6 4.758 57.2 97.8 0.0162
7 4.63 69.4 107.2 0.022
8 4.778 43.9 57.0 0.0221
9 4.929 89.8 107.1 0.0168

10 4.688 56.7 80.6 0.0169
11 4.764 66.6 109.2 0.0284
12 4.939 59.4 94.7 0.0135
13 4.84 52.7 48.7 0.0202
14 4.624 48.8 5.8 0.1513
15 4.803 52.0 54.7 0.0453
16 4.649 60.6 17.3 0.0113
17 4.877 55.5 68.6 0.0221
18 4.817 45.7 72.9 0.0126
19 4.999 44.4 77.3 0.0145
20 4.843 46.7 16.6 0.035
21 4.78 66.5 81.4 0.0129
22 4.935 79.5 104.6 0.0174
23 4.797 26.2 52.0 0.0351
24 5.012 68.3 48.7 0.0239
25 4.859 37.7 46.5 0.0198
26 4.721 67.2 85.0 0.0168
27 4.8 68.7 87.8 0.0273
28 4.896 21.8 37.2 0.0164
29 4.786 79.6 87.7 0.0165
30 4.89 69.9 52.4 0.0113
31 5.03 52.7 75.9 0.0135
32 4.898 71.8 92.2 0.0289
33 4.647 65.8 91.1 0.0165
34 4.781 53.0 73.7 0.0093
35 4.697 68.7 71.6 0.0346
36 4.971 66.9 107.7 0.0118
37 4.811 71.3 95.8 0.0081
38 4.97 64.3 79.7 0.0502
39 4.8 67.0 28.7 0.0093
40 4.545 90.5 129.7 0.0177
41 4.801 61.8 81.5 0.0159
42 4.663 56.1 92.7 0.0209
43 4.781 31.9 26.5 0.0592
44 4.683 85.7 117.9 0.0177
45 4.931 63.8 90.1 0.0188
46 4.799 65.5 90.3 0.0081
47 4.885 55.6 90.1 0.0121
48 4.758 52.6 77.8 0.0109
49 4.661 42.9 53.2 0.0905
50 4.782 44.1 71.0 0.022
51 4.887 44.9 74.4 0.0246
52 4.899 71.2 54.2 0.0234
53 4.677 63.2 88.3 0.0158
54 4.703 59.9 92.7 0.054
55 4.881 68.9 94.7 0.0254
56 4.795 54.6 76.7 0.0291
57 4.618 58.1 82.4 0.0325
58 4.784 64.7 89.6 0.0103
59 4.925 50.4 67.7 0.0261
60 4.777 69.4 98.2 0.0069
61 4.641 79.3 94.9 0.0148
62 4.826 54.1 13.2 0.0212
63 4.698 11.2 21.1 0.0443
64 4.832 71.9 24.0 0.0136
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Appendix C: Qubit Layouts

FIG. 3. The qubit layout of path graph on ibmq toronto and ibmq sydney is shown at the left figure. Starting from qubit 20,
we extend the path through the red arrows for each size of the graph until qubit 26 (max length: 21). The qubit layout on
ibmq manhattan is at the right figure. For ibmq manhattan, we start from qubit 11 and finally reach qubit 50 (max length:
57).

FIG. 4. The range of sizes for star graphs with different circuit depth is painted with different colors. Each area of red, orange,
yellow, green, cyan, blue, purple represents the range of circuit depth from 1 to 8 respectively. We expand the star graph from
qubit 8 on ibmq toronto and ibmq sydney (max size: 27), and from qubit 33 on ibmq manhattan (max size: 39).

FIG. 5. In order to prepare the subdivided honeycomb graph using the whole qubits in ibmq toronto,ibmq sydney,
and ibmq manhattan, we firstly apply control-Z gate on the red edges, then on the blue edges, and finally on the
green edges. The ”focused” qubits in the inequality are [1,6,8,12,17,19,23,26] for ibmq toronto and ibmq sydney, and
[3,6,9,10,17,21,24,25,26,31,35,38,44,47,54,56,59,62] for ibmq manhattan.

 

ⓒ 2021 Information Processing Society of Japan 10

IPSJ SIG Technical Report
情報処理学会研究報告 Vol.2021-QS-2 No.18

2021/3/29


