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古典Quantum randomized encodingの不可能性

森前　智行1,a)

概要：Randomized encoding is a powerful cryptographic primitive with various applications such as

secure multiparty computation, verifiable computation, parallel cryptography, and complexity lower-

bounds. Intuitively, randomized encoding f̂ of a function f is another function such that f(x) can be

recovered from f̂(x), and nothing except for f(x) is leaked from f̂(x). Its quantum version, quantum

randomized encoding, has been introduced recently [Brakerski and Yuen, arXiv:2006.01085]. Intuitively,

quantum randomized encoding F̂ of a quantum operation F is another quantum operation such that,

for any quantum state ρ, F (ρ) can be recovered from F̂ (ρ), and nothing except for F (ρ) is leaked from

F̂ (ρ). In this paper, we show that if quantum randomized encoding of BB84 state generations is possible

with an encoding operation E, then a two-round verification of quantum computing is possible with a

classical verifier who can additionally do the operation E. One of the most important goals in the field

of the verification of quantum computing is to construct a verification protocol with a verifier as classical

as possible. This result therefore demonstrates a potential application of quantum randomized encoding

to the verification of quantum computing: if we can find a good quantum randomized encoding (in terms

of the encoding complexity), then we can construct a good verification protocol of quantum computing.

We, however, also show that too good quantum randomized encoding is impossible: if quantum random-

ized encoding with a classical encoding operation is possible, then the no-cloning is violated. We finally

consider a natural modification of blind quantum computing protocols in such a way that the server gets

the output like quantum randomized encoding. We show that the modified protocol is not secure.

Impossibility of classical quantum randomized encoding

1. Introduction

Randomized encoding [1], [2] is a powerful crypto-

graphic primitive with various applications, such as secure

multiparty computation, verifiable computation, parallel

cryptography, and complexity lowerbounds. Intuitively,

randomized encoding f̂ of a function f is another function

such that f(x) can be recovered from f̂(x), and nothing

except for f(x) is leaked from f̂(x). More precisely, it is

defined as follows.

Definition 1 (Randomized encoding [1]) Let f :

X → Y be a function. We say that a function f̂ : X×R→
Z is a δ-correct and (t, ϵ)-private randomized encoding of

f if there exist randomized algorithms, Dec (the decoder)
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and Sim (the simulator), with the following properties.

• (δ-correctness) For any input x ∈ X,

Prr←R[Dec(f̂(x; r)) ̸= f(x)] ≤ δ,

where r ← R means that r is sampled uniformly at

random from R.

• ((t, ϵ)-privacy) For any x ∈ X and any circuit A of

size t,∣∣∣Pr[A(Sim(f(x))) = 1
]
− Prr←R

[
A(f̂(x; r)) = 1

]∣∣∣ ≤ ϵ,
where the first probability is over the randomness of

the simulator Sim.

Intuitively, the correctness means that the value f(x)

is correctly decoded from f̂(x; r) for many r, and the pri-

vacy means that no information except for f(x) is leaked

from f̂(x; r): the distribution {f̂(x; r)}r←R can be ap-

proximately simulated by the simulator algorithm Sim
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that gets only f(x) as the input.

The quantum version of randomized encoding, namely,

quantum randomized encoding, has been introduced re-

cently [3]. It is defined as follows.

Definition 2 (Quantum randomized encoding [3])

Let F be a quantum operation. We say that a quantum

operation F̂ is a δ-correct and ϵ-private quantum ran-

domized encoding of F if there exist quantum operations,

Dec (the decoder) and Sim (the simulator), with the

following properties.

• (δ-correctness) For any quantum state ρAB ∈ HA ⊗
HB ,

1

2

∥∥∥DecA(F̂A(ρAB))− FA(ρAB)
∥∥∥
1
≤ δ,

where HA and HB are Hilbert spaces, and the sub-

script A of an operation means that the operation

acts only on HA.

• (ϵ-privacy) For any quantum state ρ ∈ HA ⊗HB ,

F̂A(ρAB) ≈ϵ SimA(FA(ρAB)).

Here, ≈ϵ means that the two states are ϵ-

indistinguishable. Depending on the security

requirement, the indistinguishability can be the

statistical one, i.e.,

1

2

∥∥∥F̂A(ρAB)− SimA(FA(ρAB))
∥∥∥
1
≤ ϵ,

or the computational one (i.e., no computationally

bounded adversary can distinguish the two states

with the advantage larger than ϵ.)

This is a quantum analogy of the definition, Defini-

tion 1, of classical randomized encoding. Intuitively, the

correctness means that the state FA(ρAB) is correctly re-

covered from the state F̂A(ρAB), and the privacy means

that nothing except for FA(ρAB) is leaked from F̂A(ρAB):

the state F̂A(ρAB) is approximately generated by the sim-

ulator Sim that gets only FA(ρAB) as the input. The rea-

son why operations acting only on HA is considered for bi-

partite states ρAB ∈ HA⊗HB is that the decoder and sim-

ulator should keep entanglement between the main system

(HA) and the ancillary system (HB). In this paper, we

consider the following restricted version of quantum ran-

domized encoding, Definition 3, because it is simpler but

enough for our purpose. (What we show in this paper are

statements something like “if quantum randomized encod-

ing is possible, then something happens”. It is clear that

if quantum randomized encoding of Definition 2 is possi-

ble, then quantum randomized encoding of Definition 3 is

also possible, and therefore using Definition 3 is enough

for our purpose.)

Definition 3 ((Restricted) quantum randomized encoding)

Let S be a set of states. Let F be a quantum operation.

We say that a quantum operation F̂ is a δ-correct and

ϵ-private quantum randomized encoding of F for S if

there exist quantum operations, Dec (the decoder) and

Sim (the simulator), with the following properties.

• (δ-correctness) For any quantum state ρ ∈ S,
1

2

∥∥∥Dec(F̂ (ρ))− F (ρ)
∥∥∥
1
≤ δ.

• (ϵ-privacy) For any quantum state ρ ∈ S,

F̂ (ρ) ≈ϵ Sim(F (ρ)).

Here, again, depending on the security requirement,

the ϵ-indistinguishability, ≈ϵ, can be the statistical

one, i.e.,

1

2

∥∥∥F̂ (ρ)− Sim(F (ρ))
∥∥∥
1
≤ ϵ,

or the computational one.

This restrictive definition, Definition 3, have two dif-

ferences from Definition 2. First, Definition 3 does not

care about entanglement between the main system and

the ancillary system: the decoder and simulator do not

need to keep entanglement between the main system and

the ancillary system. Second, Definition 3 is restricted to

a set S of states: in Definition 3, the correctness and the

privacy are required to be satisfied only for states in S,

while Definition 2 requires the correctness and the privacy

for any state. It is clear that if quantum randomized en-

coding is possible in the sense of Definition 2, it is also

possible in the sense of Definition 3. Hereafter, we con-

sider only quantum randomized encoding in the sense of

Definition 3.

Ref. [3] constructed a concrete quantum randomized en-

coding scheme from a classical randomized encoding by

using the gate-teleportation technique. Although the re-

search of classical randomized encoding has a long history

and there are plenty of results, the research of quantum

randomized encoding has just started, and we do not know

anything about it. In particular, we do not know any use-

ful application of quantum randomized encoding [21].

1.1 First result: application to verification of

quantum computing

One of the most important applications of (classical)

randomized encoding is the delegation of computing. If
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computing f̂(x; r) is much easier than computing f(x), a

computationally weak client can delegate her computing

to a powerful server by sending f̂(x; r) to the server and

asking the server to decode it to get Dec(f̂(x; r)) = f(x).

This delegation protocol can also be made verifiable, i.e.,

the client can check the integrity of the server, by using a

message authentication code (MAC) [4]: the client sends

the server a randomized encoding of MACk(f(x)) and x,

where MAC is a message authentication code and k is a

key. The server returns the decoded value and y = f(x)

to the client.

For the quantum case, on the other hand, no relation is

known between quantum randomized encoding and veri-

fication of quantum computing [21]. Our first result is to

demonstrate a possible application of quantum random-

ized encoding to the verification of quantum computing.

We show that if quantum randomized encoding is possi-

ble for BB84 state generations with an encoding operation

E, then a two-round verification of quantum computing

is possible for a classical verifier who can additionally do

the operation E. One of the most important goals in the

field of the verification of quantum computing is to con-

struct a verification protocol with a verifier as classical as

possible. Our first result suggests that if a good quantum

randomized encoding is possible (in terms of the encod-

ing complexity), then we can construct a good verification

protocol of quantum computing.

The verification of quantum computing [5], [6] is defined

as follows.

Definition 4 (Verification of quantum computing)

An interactive protocol between a verifier and a prover

is called a verification of quantum computing if for

any promise problem A = (Ayes, Ano) ∈ BQP both of

the following are satisfied with some c and s such that

c− s ≥ 1
poly(|x|) :

• If x ∈ Ayes, there exists a quantum polynomial-time

prover’s strategy such that the verifier accepts with

probability at least c.

• If x ∈ Ano, the verifier accepts with probability at

most s for any (even computationally-unbounded)

prover’s strategy.

It is known that if the verifier is “almost classical”

(i.e., the verifier can only generate or measure single-

qubit states), a verification of quantum computing is pos-

sible [7], [8]. It is an open problem whether a verifica-

tion of quantum computing is possible for a completely

classical verifier. (A verification of quantum computing

is possible for a completely classical verifier if more than

two provers who are entangled but non-communicating

are available [9], [10], [11], [12], [13], or if the soundness is

relaxed to be the computational one [14].)

Our first result is stated as follows. (Its proof is given

in Sec. 3.)

Theorem 1 Let F be a quantum operation and σh,m be

a quantum state such that

F (σh,m) =
( N⊗

j=1

Hh|mj⟩⟨mj |Hh
)
⊗ ηjunk

for all h ∈ {0, 1} and all m = (m1, ...,mN ) ∈ {0, 1}N ,

where H is the Hadamard gate, ηjunk is any state

that is independent of (h,m), and F does not depend

on (h,m). Assume that δ-correct statistical-ϵ-private

(restricted) quantum randomized encoding F̂ of F for

{σh,m}(h,m)∈{0,1}×{0,1}N exists with negligible δ and ϵ

(i.e., limN→∞ δ(N)p(N) = 0 and limN→∞ ϵ(N)p(N) = 0

for every polynomial p). Furthermore, assume that the de-

coder, Dec, can be implemented in quantum polynomial-

time (in terms of the number of qubits of F̂ (σh,m)). Let

E be an operation that is required to generate F̂ (σh,m)

for any (h,m) ∈ {0, 1}×{0, 1}N . Then, a two-round veri-

fication of quantum computing is possible with a classical

verifier who can additionally do the operation E.

There are many examples of such F and {σh,m}h,m.

For example, F is the application of H⊗N , i.e., F (ρ) =

H⊗NρH⊗N for any N -qubit state ρ, and

σh,m =
N⊗
j=1

Hh+1|mj⟩⟨mj |Hh+1.

In Theorem 1, we require that F should be independent

of (h,m). The reason is that in the definition of quantum

randomized encoding the decoder, Dec, and the simula-

tor, Sim, are technically allowed to depend on F . If Sim

depends on F , it can depend on (h,m) as well, and in that

case, the soundness of our two-round verification protocol

no longer holds (see the proof in Sec. 3). A formalism that

allows Dec and Sim to depend only partially on F is also

introduced in Ref. [3].

An interesting point in the proof of Theorem 1 is that

the privacy (of quantum randomized encoding) is trans-

formed to the soundness (of the verification of quantum

computing). The privacy of quantum randomized encod-

ing requires that the receiver cannot learn anything except

for F (σh,m), which means that what the receiver has is
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Sim(F (σh,m)), but it also leads to the fact that the server

“possessed” F (σh,m). The soundness of the verification

protocol of Ref. [15] that we use for the proof is kept if it

is guaranteed that the prover received F (σh,m). This ar-

gument can be considered as a quantum version of “from

secrecy to soundness” [4]. (For details, see the proof in

Sec. 3. In the beginning of Sec. 3, we also provide an

explanation of an intuitive idea of the proof.)

The best verification protocol of quantum computing

(in terms of the complexity of verifier’s quantum opera-

tion) is Protocol 3 given in Fig. 3 where the verifier has

only to generate a state

N⊗
j=1

Hh|mj⟩⟨mj |Hh (1)

with uniformly random (h,m). (Remember that we are

interested in the information-theoretical soundness. For

the computationally sound case, the classical verifier can

verify quantum computing [14].) Theorem 1 suggests that

if (restricted) quantum randomized encoding of the gen-

eration of Eq. (1) can be constructed with an encoding

operation E that is much easier than the generation of

Eq. (1), it provides a new two-round verification protocol

that updates the best protocol, Protocol 3.

If the operation E that is required to generate F̂ (σh,m)

is a classical operation, i.e., if F̂ (σh,m) is a mixture of

computational-basis states,

F̂ (σh,m) =
∑
z

pz|z⟩⟨z|,

where |z⟩ is a computational-basis state and {pz}z is a

probability distribution, Theorem 1 means that a two-

round verification of quantum computing is possible with

a completely classical verifier, which solves the long-

standing open problem. However, it means BQP ⊆ IP[2].

We thus obtain the following corollary.

Corollary 1 Let F and σh,m be the quantum operation

and quantum state defined in Theorem 1, respectively.

Then δ-correct statistical-ϵ-private classical quantum ran-

domized encoding of F for {σh,m}h,m with negligible δ and

ϵ is impossible unless BQP ⊆ IP[2].

To construct the verification protocol from quantum

randomized encoding, we use the verification protocol of

Ref. [15]. (See the proof in Sec. 3. The verification

protocol of Ref. [15] is also reviewed in Sec. 2.) An-

other well-studied verification protocol is the Fitzsimons-

Kashefi (FK) protocol [7]. It would be possible to use

FK protocol instead of the protocol of Ref. [15] to derive

a similar result. However, in that case, what we get is

a polynomial-round verification protocol, because the FK

protocol requires a polynomially many classical commu-

nications between the prover and the verifier. Then, its

corollary is that if classical quantum randomized encoding

is possible then BQP is in IP[poly], which is already known

to be true (BQP is in PSPACE and PSPACE = IP[poly]),

and therefore it does not prohibit classical quantum ran-

domized encoding.

In this paper, we consider only the statistical privacy.

If we consider the computational one, we would obtain

a two-round verification protocol with the computational

soundness (i.e., an interactive argument).

1.2 Second result: impossibility of classical quan-

tum randomized encoding

Because BQP ⊆ IP[2] is not believed to happen, Corol-

lary 1 suggests the impossibility of classical quantum ran-

domized encoding. We can actually show a stronger re-

sult: if classical quantum randomized encoding is possible,

then the no-cloning is violated. It is our second result, and

it is stated as the following theorem. (Its proof is given in

Sec. 4.)

Theorem 2 Let {|ψi⟩}ri=1 be a set of pure states. Let

F be a quantum operation and ρi be a quantum state

such that F (ρi) = |ψi⟩⟨ψi| for all i = 1, 2, ..., r. (F is

independent of i.) Assume that δ-correct statistical-ϵ-

private (restricted) quantum randomized encoding F̂ of

F for {ρi}ri=1 exists with a classical encoding operation.

Then, for any integer k and any a > 0, the operation

W ≡ Dec⊗k ◦ V ◦ Sim satisfies

1

2

∥∥∥W (|ψi⟩⟨ψi|)− |ψi⟩⟨ψi|⊗k
∥∥∥
1
< ϵ+

kδ

a
+ k
√
a (2)

for all i = 1, 2, ..., r, where V is an operation that works

as V (|z⟩⟨z|) = |z⟩⟨z|⊗k for all computational basis state

|z⟩.

This theorem intuitively means that if classical quan-

tum randomized encoding is possible, then we can con-

struct a cloner W that generates k copies |ψi⟩⊗k of |ψi⟩
from a single |ψi⟩. Note that because Dec and Sim are

independent of i, W is also independent of i. Further-

more, if Dec and Sim are polynomial-time, then W is also

polynomial-time.

For example, if we take a =
√
δ, and we let δ → 0 and

ϵ→ 0, the right-hand side of Eq. (2) approaches 0.

For example, let us take r = 4,
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ρ1 = |00⟩⟨00|,

ρ2 = |01⟩⟨01|,

ρ3 = |10⟩⟨10|,

ρ4 = |11⟩⟨11|,

and F being the two-qubit quantum circuit such that the

controled-Hadamard is applied (the first qubit is the con-

trol qubit and the second qubit is the target qubit), and

the first qubit is traced out. In other words, F works as

follows:

F (ρ1) = F (|00⟩⟨00|) = |0⟩⟨0| ≡ |ψ1⟩⟨ψ1|,

F (ρ2) = F (|01⟩⟨01|) = |1⟩⟨1| ≡ |ψ2⟩⟨ψ2|,

F (ρ3) = F (|10⟩⟨10|) = |+⟩⟨+| ≡ |ψ3⟩⟨ψ3|,

F (ρ4) = F (|11⟩⟨11|) = |−⟩⟨−| ≡ |ψ4⟩⟨ψ4|,

where |±⟩ ≡ 1√
2
(|0⟩ ± |1⟩). If classical quantum random-

ized encoding of F for {ρi}4i=1 exists, Theorem 2 means

1

2

∥∥∥W (|ψi⟩⟨ψi|)− |ψi⟩⟨ψi|⊗k
∥∥∥
1
→ 0

for all i = 1, 2, 3, 4, which violates the no-cloning. (Note

that W is independent of i.)

Our first result, Theorem 1, suggests that if we find

a good quantum randomized encoding (in terms of the

encoding complexity), then we can construct a good ver-

ification protocol of quantum computing, but our second

result, Theorem 2, shows that too good quantum ran-

domized encoding is impossible (unless the no-cloning is

violated). It is an important open problem to find a con-

crete quantum randomized encoding scheme in the tight

trade-off between these two results.

Another no-go result for classical quantum randomized

encoding was shown in Ref. [3], but it is different from

ours. What they show is that classical quantum random-

ized encoding for all BQP problems is unlikely. This is

because the class, RE, of languages that have statistical-

private randomized encoding is in SZK, and therefore

BQP ⊆ RE means BQP ⊆ SZK, which is not believed

to happen. Our result, Theorem 2, also prohibits classical

quantum randomized encoding, but a difference is that

what we prohibit is not the entire BQP computing but

only generations of unclonable states |ψ⟩ such as a tensor

product of |0⟩, |1⟩, |+⟩, and |−⟩, which is much simpler

to generate than doing the general BQP computing. An-

other technical difference is that they consider classical

outputs, but our no-go result does not hold for classical

outputs (i.e., {|ψi⟩}ri=1 are classical states), because clas-

sical states can be cloned.

1.3 Third result: blind quantum computing with

server-side output

(Classical) randomized encoding can also be used to

the secure delegation of computing, i.e., the client dele-

gates the evaluation of f(x) to the server while the input

x is kept secret to the server, because the server cannot

learn the input x from f̂(x; r). There is a similar task in

quantum cryptography, so-called blind quantum comput-

ing [16], [17], [18]. The main difference between quantum

randomized encoding and blind quantum computing is,

however, that in quantum randomized encoding the server

gets the output, while in blind quantum computing, the

client gets the output and the output is completely hidden

to the server. (See the explanation below.) Our third re-

sult is to show that a natural modification of blind quan-

tum computing protocols in such a way that the server

gets the output is not secure.

Blind quantum computing enables an almost classical

client (who can only generate or measure single-qubit

states) to delegate her quantum computing to a remote

quantum server in such a way that client’s input, out-

put, and program are (information-theoretically) hidden

to the server. There are mainly two types of protocols.

The Broadbent-Fitzsimons-Kashefi (BFK) protocol [17]

requires the client to generate randomly-rotated single-

qubit states. The Morimae-Fujii (MF) protocol [18], on

the other hand, requires the client to measure single-qubit

states. (For readers who are not familiar with these pro-

tocols, we provide brief reviews of them in Appendix A.1

and Appendix A.2, respectively.)

Assume that the client wants to implement an n-qubit

unitary U on the n-qubit initial state |ψinit⟩. In other

words, the client wants to generate the state U |ψinit⟩.
(The client might have a quantum memory, and receive a

state |ψinit⟩ from the third party. Or, if the client is clas-

sical, the initial state |ψinit⟩ will be a computational-basis

state |z⟩ with a certain n-bit string z or the standard |0n⟩
state.) Because the client cannot implement U by herself,

she delegates the application of U on |ψinit⟩ to the server.

The client and the server run a blind quantum comput-

ing protocol. At the end of the blind quantum computing

protocol, the honest server gets the quantum-one-time-

padded version,( n⊗
j=1

X
xj

j Z
zj
j

)
U |ψinit⟩, (3)

of the output state U |ψinit⟩, where x ≡ (x1, ..., xn) ∈
{0, 1}n and z ≡ (z1, ..., zn) ∈ {0, 1}n are uniformly ran-
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dom n-bit strings. The subscript j of X and Z means that

they act on the jth qubit. The one-time pad key (x, z)

is (information-theoretically) hidden to the server, and

therefore what the server has, Eq. (3), is the completely-

mixed state I⊗n

2n from his view point. In other words, the

output state U |ψinit⟩ is information-theoretically hidden

to the server. (Note that blind quantum computing proto-

cols information-theoretically hide client’s input, output,

and program against not only the honest server but also

any malicious server’s deviation. See Refs. [16], [17], [18].)

If what the client actually wants is the classical out-

put, namely, the computational-basis measurement re-

sult on U |ψinit⟩, the server measures his state in the

computational basis, and sends the measurement result

m = (m1, ...,mn) ∈ {0, 1}n to the client, where mj is the

computational-basis measurement result on the jth qubit

of the server’s state. The result m is uniformly random

due to the quantum one-time pad, but the client can de-

code it to get the correct output, because the client knows

the key (x, z) of the quantum one-time pad. In fact, the

client has only to compute (x1 ⊕m1, ..., xn ⊕mn). If the

client wants the quantum output, namely, U |ψinit⟩, the
server sends his state to the client. The client applies⊗n

j=1X
xj

j Z
zj
j on it to unlock the quantum one-time pad,

and recovers U |ψinit⟩. In either way, the point is that only

the client gets the output, and the output is completely

hidden to the server.

This is opposite to quantum randomized encoding

where the server gets the output. Can we modify blind

quantum computing protocols in such a way that the

server gets the output like quantum randomized encod-

ing? A trivial modification is that the server sends the

state of Eq. (3) to the client, the client unlocks the quan-

tum one-time pad, and returns the state to the server.

This modification has two problems. First, it needs the

extra two rounds of quantum communication. Second,

it requires the client to have a quantum memory. If the

client is completely classical, this idea is impossible. An-

other way is that the client sends the key of the quantum

one-time pad to the server, which is given in Fig. 1 as

Protocol 1. In that case, only a single extra communica-

tion is required, and it is classical. Furthermore, the client

does not need any quantum memory, and therefore it is

possible for the completely classical client.

Does this modified protocol, Protocol 1, still satisfy the

security? Here, the security means that the server cannot

learn anything except for the output state U |ψinit⟩. More

formally, we define the security as follows.

1. Run a blind quantum computing protocol such as the BFK

or the MF protocol.

2. At the end of the protocol, the honest server possesses the

state of Eq. (3).

3. The client sends the key (x, z) of the quantum one-time pad

to the server.

4. The server applies
⊗n

j=1X
xj

j Z
zj

j on his state to recover

U |ψinit⟩.

図 1 The modified blind quantum computing protocol.

Definition 5 Let ρ be the state that any (even

computationally-unbounded) malicious server possesses

after the modified protocol, Protocol 1. We say that

the protocol is ϵ-blind if there exists a (not necessarily

polynomial-time) quantum operation, Sim, which we call

a simulator, such that

1

2

∥∥∥ρ− Sim(U |ψinit⟩⟨ψinit|U†)
∥∥∥
1
≤ ϵ (4)

for any U . Importantly, Sim should be independent of U .

Note that the term “ϵ-blindness” was first defined in

Ref. [20], and the above definition is not equivalent to

their definition, because now we consider the modifica-

tion of blind quantum computing in such a way that the

server gets the output. (Our definition is, however, in-

spired by their definition: The above definition intuitively

means that anything that the malicious server can get can

be generated from the ideal output. The definition of the

(local) ϵ-blindness in Ref. [20] intuitively means that any-

thing that the malicious server can get can be generated

from his initial information.)

As our third result, we show that Protocol 1 does not

satisfy the blindness. (Its proof is given in Sec. 5.)

Theorem 3 Protocol 1 is not ϵ-blind for any ϵ < 1
2 .

The reason why the ϵ-blindness is not satisfied again

comes from the “from secrecy to soundness” [4]. The re-

quirement Eq. (4) is that for the security, but at the same

time, it requires that the server “possessed” the correct

output state U |ψinit⟩. In other words, the security also

means the soundness. Blind quantum computing proto-

cols (such as the BFK and the MF protocols) are not

verifiable: whatever the malicious server does, the server

cannot learn the secret, but the server can modify the

computation without being detected by the client. In

fact, we show Theorem 3 by constructing a counter ex-

ample, and the construction uses the fact that the server

can modify the computation.

6ⓒ 2021 Information Processing Society of Japan

Vol.2021-QS-2 No.16
2021/3/29



情報処理学会研究報告
IPSJ SIG Technical Report

1.4 Organization

The remaining parts of this paper are organized as fol-

lows. The proof of Theorem 1 uses the verification pro-

tocol of Ref. [15]. For readers who are not familiar with

the protocol, we first explain it in Sec. 2. We then show

Theorem 1 in Sec. 3. We next show Theorem 2 in Sec. 4.

We finally show Theorem 3 in Sec. 5. Short reviews of the

BFK and MF protocols are also provided in Appendix A.1

and Appendix A.2, respectively.

2. Verification protocol of Ref. [15]

In this section, we review the verification protocol of

Ref. [15]. Readers who know the protocol can skip this

section. The protocol is given in Fig. 2. It was shown

in Ref. [15] that the protocol is a verification of quantum

computing:

Theorem 4 (Ref. [15]) For any promise problem A =

(Ayes, Ano) in BQP, Protocol 2 satisfies both of the fol-

lowing with some c and s such that c− s ≥ 1
poly(|x|) :

• If x ∈ Ayes, the honest quantum polynomial-time

prover’s behavior makes the verifier accept with prob-

ability at least c.

• If x ∈ Ano, the verifier’s acceptance probability is

at most s for any (even computationally-unbounded)

prover’s deviation.

In Ref. [15], the completeness and the soundness are

shown by introducing virtual protocols where the prover

teleports quantum states to the verifier. In Appendix of

Ref. [19], a direct proof of the completeness and the sound-

ness is also given.

If the role of the trusted center is played by the verifier,

i.e., the verifier generates
⊗N

j=1H
h|mj⟩⟨mj |Hh with uni-

form random (h,m) and sends it to the prover, we have

a two-round verification protocol with the first quantum

and second classical communication. (See Fig. 3.)

3. Proof of Theorem 1

In this section, we give a proof of Theorem 1. Let us

first explain an intuitive idea of the proof. We construct

the two-round verification protocol, Protocol 4 (Fig. 4),

by modifying Protocol 2 in such a way that the verifier

uniformly randomly chooses (h,m) and sends F̂ (σh,m) to

the prover. If the prover is honest, he decodes F̂ (σh,m) to

get
⊗N

j=1H
h|mj⟩⟨mj |Hh, on which the honest prover can

simulate the remaining steps of Protocol 2, and therefore

the completeness of Protocol 4 is satisfied due to the com-

pleteness of Protocol 2. If the prover is malicious, on the

0. The input is an instance x ∈ A of a promise problem

A = (Ayes, Ano) in BQP, and a corresponding N -qubit local

Hamiltonian

H ≡
∑
i<j

pi,j

2

( I⊗N + si,jXi ⊗Xj

2
+
I⊗N + si,jZi ⊗ Zj

2

)
with N = poly(|x|) such that if x ∈ Ayes then the ground

energy is less than α, and if x ∈ Ano then the ground

energy is larger than β with β − α ≥ 1
poly(|x|) . Here,

I ≡ |0⟩⟨0| + |1⟩⟨1| is the two-dimensional identity opera-

tor, Xi is the Pauli X operator acting on the ith qubit, Zi

is the Pauli Z operator acting on the ith qubit, pi,j > 0,∑
i<j pi,j = 1, and si,j ∈ {+1,−1}.

1. The trusted center uniformly randomly chooses

(h,m1, ...,mN ) ∈ {0, 1}N+1. The trusted center sends⊗N
j=1(H

h|mj⟩) to the prover. The trusted center sends

(h,m) to the verifier, where m ≡ (m1, ...,mN ) ∈ {0, 1}N .

2. Let x ≡ (x1, ..., xN ) ∈ {0, 1}N and z ≡ (z1, ..., zN ) ∈
{0, 1}N . The prover does a POVM measurement {Πx,z}x,z
on the received state. When the prover is honest, the

POVM corresponds to the teleportation of a low-energy

state |E0⟩ of the local Hamiltonian H as if the states sent

from the trusted center are halves of Bell pairs. The prover

sends the measurement result, (x, z), to the verifier.

3. The verifier samples (i, j) with probability pi,j , and ac-

cepts if and only if (−1)m
′
i(−1)m

′
j = −si,j , where m′

i ≡
mi ⊕ (hzi + (1− h)xi).

図 2 The verification protocol of Ref. [15].

0. The same as Protocol 2.

1. The verifier uniformly randomly chooses (h,m1, ...,mN ) ∈
{0, 1}N+1, and sends

⊗N
j=1(H

h|mj⟩) to the prover.

2. The same as Protocol 2.

3. The same as Protocol 2.

図 3 The two-round verification protocol with the verifier who

generates random BB84 states.

other hand, he can do any measurement on the received

state F̂ (σh,m), but because F̂ (σh,m) is ϵ-close to

Sim(F (σh,m)) = Sim
[( N⊗

j=1

Hh|mj⟩⟨mj |Hh
)
⊗ ηjunk

]
,

any malicious prover’s attack on F̂ (σh,m) is simulated by

another attack on
⊗N

j=1H
h|mj⟩⟨mj |Hh, which is sound

due to the soundness of Protocol 2.

Now let us give the proof. By assumption, there exist

quantum operations, Dec and Sim, such that

1

2

∥∥∥Dec(F̂ (σh,m))− F (σh,m)
∥∥∥
1
≤ δ (5)

and

1

2

∥∥∥F̂ (σh,m)− Sim(F (σh,m))
∥∥∥
1
≤ ϵ (6)

with negligible δ and ϵ for any (h,m) ∈ {0, 1} × {0, 1}N .
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0. The same as Protocol 2.

1. The verifier uniformly randomly chooses (h,m) ∈ {0, 1} ×
{0, 1}N and sends F̂ (σh,m) to the prover. The verifier re-

quires the operation E to generate F̂ (σh,m). If the prover

is honest, it applies the decoding operation Dec on F̂ (σh,m)

to get Dec(F̂ (σh,m)).

2. The same as Protocol 2 except that the honest prover ap-

plies the POVM on Trjunk[Dec(F̂ (σh,m))], where Trjunk is

the partial trace of the subsystem junk. (Remember that

Dec(F̂ (σh,m)) is δ-close to

F (σh,m) =
( N⊗

j=1

Hh|mj⟩⟨mj |Hh
)
⊗ ηjunk.

We define the subsystem junk as the one for ηjunk.)

3. The same as Protocol 2.

図 4 The two-round verification protocol with quantum ran-

domized encoding.

By assumption, Dec can be implemented in quantum

polynomial-time in terms of the number of qubits of

F̂ (σh,m).

Consider the two-round protocol, Protocol 4, shown in

Fig. 4. We show that Protocol 4 is a verification of quan-

tum computing.

First, let us consider the case when x ∈ Ayes. Let

p1acc and p3acc be verifier’s acceptance probabilities with

the honest provers in Protocol 2 and Protocol 4, respec-

tively. Let {Πx,z}x,z be the POVM measurement that the

honest prover applies. (Remember that both of the hon-

est provers in Protocol 2 and Protocol 4 apply the same

POVM measurement.) Let us define

P 1
P (x, z|h,m) ≡ Tr

[
Πx,z

N⊗
j=1

Hh|mj⟩⟨mj |Hh
]
,

P 3
P (x, z|h,m) ≡ Tr

[
Πx,zTrjunk(Dec(F̂ (σh,m)))

]
.

Note that∑
x,z

∣∣∣P 3
P (x, z|h,m)− P 1

P (x, z|h,m)
∣∣∣ (7)

≤
∥∥∥Trjunk(Dec(F̂ (σh,m)))−

N⊗
j=1

Hh|mj⟩⟨mj |Hh
∥∥∥
1

≤
∥∥∥Dec(F̂ (σh,m))−

( N⊗
j=1

Hh|mj⟩⟨mj |Hh
)
⊗ ηjunk

∥∥∥
1

=
∥∥∥Dec(F̂ (σh,m))− F (σh,m)

∥∥∥
1

≤ 2δ, (8)

where in the second inequality we have used the mono-

tonicity of the trace distance with respect to the par-

tial trace Trjunk, and in the last inequality we have used

Eq. (5).

Let PV (acc|x, z, h,m) be the probability that the veri-

fier accepts given (x, z, h,m). (Remember that both of the

verifiers in Protocol 2 and Protocol 4 do the same classical

computing to make the decision.) Then, we obtain

|p3acc − p1acc| =
∣∣∣ 1

2N+1

∑
h,m

∑
x,z

P 3
P (x, z|h,m)PV (acc|x, z, h,m)

− 1

2N+1

∑
h,m

∑
x,z

P 1
P (x, z|h,m)PV (acc|x, z, h,m)

∣∣∣
≤ 1

2N+1

∑
h,m

∑
x,z

∣∣∣P 3
P (x, z|h,m)PV (acc|x, z, h,m)

−P 1
P (x, z|h,m)PV (acc|x, z, h,m)

∣∣∣
=

1

2N+1

∑
h,m

∑
x,z

∣∣∣P 3
P (x, z|h,m)

−P 1
P (x, z|h,m)

∣∣∣PV (acc|x, z, h,m)

≤ 1

2N+1

∑
h,m

∑
x,z

∣∣∣P 3
P (x, z|h,m)

−P 1
P (x, z|h,m)

∣∣∣
≤ 1

2N+1

∑
h,m

2δ

= 2δ,

where in the fifth inequality, we have used Eq. (8).

Due to the completeness of Protocol 2, p1acc ≥ c with a

certain c. (It is actually 1 − α [15], [19].) We therefore

obtain

p3acc ≥ p1acc − 2δ ≥ c− 2δ ≡ c′. (9)

Next, let us consider the case when x ∈ Ano. For any

POVM measurement {Λx,z}x,z, define

P 1
P (x, z|h,m) ≡ Tr

[
Λx,zSim

(( N⊗
j=1

Hh|mj⟩⟨mj |Hh
)
⊗ ηjunk

)]
,

P 3
P (x, z|h,m) ≡ Tr

[
Λx,zF̂ (σh,m)

]
.

Note that∑
x,z

∣∣∣P 3
P (x, z|h,m)− P 1

P (x, z|h,m)
∣∣∣ (10)

≤
∥∥∥F̂ (σh,m)− Sim

(( N⊗
j=1

Hh|mj⟩⟨mj |Hh
)
⊗ ηjunk

)∥∥∥
1

=
∥∥∥F̂ (σh,m)− Sim(F (σh,m))

∥∥∥
1

≤ 2ϵ, (11)

where the last inequality is from Eq. (6).

Let PV (acc|x, z, h,m) be the probability that the ver-

ifier accepts given (x, z, h,m). Let p3acc be the verifier’s

acceptance probability in Protocol 4 when the malicious

prover applies the POVM measurement {Λx,z}x,z on the
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received state F̂ (σh,m). Let p1acc be the verifier’s accep-

tance probability in Protocol 2 with the following mali-

cious prover:

1. The prover first adds ηjunk to the re-

ceived state
⊗N

j=1H
h|mj⟩⟨mj |Hh to generate(⊗N

j=1H
h|mj⟩⟨mj |Hh

)
⊗ ηjunk.

2. The prover next applies Sim on it to generate

Sim
[(⊗N

j=1H
h|mj⟩⟨mj |Hh

)
⊗ ηjunk

]
.

3. The prover finally does the POVM measurement

{Λx,z}x,z on it.

Then, we obtain

|p3acc − p1acc| =
∣∣∣ 1

2N+1

∑
h,m

∑
x,z

P 3
P (x, z|h,m)PV (acc|x, z, h,m)

− 1

2N+1

∑
h,m

∑
x,z

P 1
P (x, z|h,m)PV (acc|x, z, h,m)

∣∣∣
≤ 1

2N+1

∑
h,m

∑
x,z

∣∣∣P 3
P (x, z|h,m)PV (acc|x, z, h,m)

−P 1
P (x, z|h,m)PV (acc|x, z, h,m)

∣∣∣
=

1

2N+1

∑
h,m

∑
x,z

∣∣∣P 3
P (x, z|h,m)

−P 1
P (x, z|h,m)

∣∣∣PV (acc|x, z, h,m)

≤ 1

2N+1

∑
h,m

∑
x,z

∣∣∣P 3
P (x, z|h,m)

−P 1
P (x, z|h,m)

∣∣∣
≤ 1

2N+1

∑
h,m

2ϵ

= 2ϵ,

where the fifth inequality comes from Eq. (11).

Due to the soundness of Protocol 2, p1acc ≤ s with a

certain s. (It is actually 1 − β [15], [19].) We therefore

obtain

p3acc ≤ p1acc + 2ϵ ≤ s+ 2ϵ ≡ s′ (12)

for any POVM measurement {Λx,z}x,z. From Eqs. (9)

and (12),

c′ − s′ = c− 2δ − (s+ 2ϵ) = c− s− 2δ − 2ϵ ≥ 1

poly(|x|)
,

the inverse-polynomial completeness-soundness gap is sat-

isfied for Protocol 4.

4. Proof of Theorem 2

In this section, we show Theorem 2. Let us first ex-

plain an intuitive idea of the proof. Assume that we

want to clone F (ρi). We first apply Sim on F (ρi) to

get Sim(F (ρi)), which is ϵ-close to F̂ (ρi). By assump-

tion, F̂ (ρi) is a classical state and therefore we can clone

it to get [F̂ (ρi)]
⊗k. (In fact, we cannot clone mixed

states in general, and therefore some twists are neces-

sary, but an intuitive idea is to “clone” the classical state

F̂ (ρi). For more precise calculations, see the proof be-

low.) If we decode each F̂ (ρi) by applying Dec, we obtain

[Dec(F̂ (ρi))]
⊗k ≈ [F (ρi)]

⊗k, and thus our goal is achieved.

Now we give the proof. Because the following argument

holds for every i (i = 1, 2, ..., r), we fix i. For simplicity,

we remove the subscript i of |ψi⟩ and ρi, and just write

them as |ψ⟩ and ρ, respectively. Let us denote ψ̂ ≡ F̂ (ρ).
By assumption, the statistical-ϵ-privacy,

1

2

∥∥∥Sim(|ψ⟩⟨ψ|)− ψ̂
∥∥∥
1
≤ ϵ, (13)

and the δ-correctness,

1

2

∥∥∥Dec(ψ̂)− |ψ⟩⟨ψ|
∥∥∥
1
≤ δ, (14)

are satisfied. Furthermore, by assumption, ψ̂ can be gen-

erated with a classical operation. In other words,

ψ̂ =
∑
z

pz|z⟩⟨z|, (15)

where |z⟩ is a computational basis state and {pz}z is a

probability distribution. We define the operation W by

W ≡ Dec⊗k ◦ V ◦ Sim,

where V is an operation that works as V (|z⟩⟨z|) =

|z⟩⟨z|⊗k for any computational basis state |z⟩.
First, we obtain

1

2

∥∥∥W (|ψ⟩⟨ψ|)−Dec⊗k ◦ V (ψ̂)
∥∥∥
1

(16)

=
1

2

∥∥∥Dec⊗k ◦ V ◦ Sim(|ψ⟩⟨ψ|)−Dec⊗k ◦ V (ψ̂)
∥∥∥
1

≤ 1

2

∥∥∥Sim(|ψ⟩⟨ψ|)− ψ̂
∥∥∥
1

≤ ϵ, (17)

where in the second inequality, we have used the mono-

tonicity of the trace distance with respect to the operation

Dec⊗k ◦ V , and the third inequality comes from Eq. (13).

Second, we obtain∑
z

pz

[
1− ⟨ψ|Dec(|z⟩⟨z|)|ψ⟩

]
≤ 1

2

∥∥∥∑
z

pzDec(|z⟩⟨z|)− |ψ⟩⟨ψ|
∥∥∥
1

=
1

2

∥∥∥Dec(ψ̂)− |ψ⟩⟨ψ|
∥∥∥
1

≤ δ, (18)

where the first inequality is from the property of the trace

distance, and the second equality is from Eq. (15). The

last inequality is from Eq. (14).

For any a > 0, let us define

G ≡
{
z
∣∣∣ 1− ⟨ψ|Dec(|z⟩⟨z|)|ψ⟩ ≥ a

}
.
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Then, from Eq. (18),

δ ≥
∑
z

pz

[
1− ⟨ψ|Dec(|z⟩⟨z|)|ψ⟩

]
=

∑
z∈G

pz

[
1− ⟨ψ|Dec(|z⟩⟨z|)|ψ⟩

]
+

∑
z/∈G

pz

[
1− ⟨ψ|Dec(|z⟩⟨z|)|ψ⟩

]
≥ a

∑
z∈G

pz + 0×
∑
z/∈G

pz

= a
∑
z∈G

pz,

which means∑
z∈G

pz ≤
δ

a
. (19)

Hence

1

2

∥∥∥W (|ψ⟩⟨ψ|)− |ψ⟩⟨ψ|⊗k
∥∥∥
1

≤ 1

2

∥∥∥W (|ψ⟩⟨ψ|)−Dec⊗k ◦ V (ψ̂)
∥∥∥
1

+
1

2

∥∥∥Dec⊗k ◦ V (ψ̂)− |ψ⟩⟨ψ|⊗k
∥∥∥
1

≤ ϵ+
1

2

∥∥∥∑
z

pzDec(|z⟩⟨z|)⊗k − |ψ⟩⟨ψ|⊗k
∥∥∥
1

≤ ϵ+
1

2

∑
z

pz

∥∥∥Dec(|z⟩⟨z|)⊗k − |ψ⟩⟨ψ|⊗k
∥∥∥
1

≤ ϵ+
k

2

∑
z

pz

∥∥∥Dec(|z⟩⟨z|)− |ψ⟩⟨ψ|
∥∥∥
1

≤ ϵ+ k
∑
z

pz
√

1− ⟨ψ|Dec(|z⟩⟨z|)|ψ⟩

= ϵ+ k
∑
z∈G

pz
√

1− ⟨ψ|Dec(|z⟩⟨z|)|ψ⟩

+k
∑
z/∈G

pz
√

1− ⟨ψ|Dec(|z⟩⟨z|)|ψ⟩

< ϵ+ k
∑
z∈G

pz + k
√
a
∑
z/∈G

pz

≤ ϵ+
kδ

a
+ k
√
a.

In the second inequality, we have used Eq. (17). In the

last inequality, we have used Eq. (19).

5. Proof of Theorem 3

In this section, we show that the modified blind quan-

tum computing protocol, Protocol 1, of Fig 1 is not ϵ-blind

for any ϵ < 1
2 . To show it, we construct a simple counter

example.

We first explain an intuitive idea of the proof. We show

that for some unitary V a deviated server can generate

the state UV |ψinit⟩ instead of the correct output state

U |ψinit⟩. If we require the ϵ-blindness, UV |ψinit⟩ should
be generated (ϵ-approximately) from U |ψinit⟩ with a sim-

ulator Sim that is independent of U . However, generating

UV |ψinit⟩ from a given single copy of U |ψinit⟩ is impos-

sible when the information about U is not available. (If

you have already applied U on |ψinit⟩, you can no longer

“squeeze” V between U and |ψinit⟩ if you do not know

U .)

Next, let us give a more precise proof. Because our

goal is to construct a simple counter example, let us con-

sider a single-qubit quantum computing implemented on

the one-dimensional linear graph state. Assume that the

client wants to implement a single-qubit unitary U on the

initial state |+⟩ ≡ 1√
2
(|0⟩+ |1⟩). We can construct a spe-

cific deviation of the malicious server in such a way that

the server gets the state( n⊗
j=1

X
xj

j Z
zj
j

)
Uei

ξ
2Z |+⟩, (20)

instead of( n⊗
j=1

X
xj

j Z
zj
j

)
U |+⟩,

in the step 2 of Protocol 1, where ξ is arbitrarily cho-

sen by the server. In fact, if the BFK protocol is used

in the step 1 of Protocol 1, the server has only to mea-

sure the first qubit with angle δ1 + ξ (instead of δ1) when

the server receives δ1 from the client. If the MF protocol

is used in the step 1 of Protocol 1, on the other hand,

the server has only to apply ei
ξ
2Z on the first qubit of

the one-dimensional graph state before sending it to the

client. (For more details of the BFK and MF protocols,

see Appendix A.1 and Appendix A.2, respectively.) In

the step 3 of Protocol 1, the client sends the quantum

one-time pad key (x, z) to the server. In the step 4 of

Protocol 1, the server unlocks the quantum one-time pad

to obtain Uei
ξ
2Z |+⟩.

Assume that Protocol 1 is ϵ-blind with ϵ < 1
2 against

this specific attack by the malicious server. It means that

there exists a quantum operation Sim, which is indepen-

dent of U , such that

1

2

∥∥∥Sim(U |+⟩⟨+|U†)− Uei
ξ
2Z |+⟩⟨+|e−i

ξ
2ZU†

∥∥∥
1
≤ ϵ(21)

for all U . Let us take ξ = π
2 . If U = I, Eq. (21) becomes

1

2

∥∥∥Sim(|+⟩⟨+|)− ei π
4 Z |+⟩⟨+|e−i π

4 Z
∥∥∥
1
≤ ϵ, (22)

but if U = X, Eq. (21) becomes

1

2

∥∥∥Sim(|+⟩⟨+|)− e−i π
4 Z |+⟩⟨+|ei π

4 Z
∥∥∥
1
≤ ϵ. (23)

From Eqs. (22) and (23),
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1 =
1

2

∥∥∥ei π
4 Z |+⟩⟨+|e−i π

4 Z − e−i π
4 Z |+⟩⟨+|ei π

4 Z
∥∥∥
1

≤ 1

2

∥∥∥Sim(|+⟩⟨+|)− ei π
4 Z |+⟩⟨+|e−i π

4 Z
∥∥∥
1

+
1

2

∥∥∥Sim(|+⟩⟨+|)− e−i π
4 Z |+⟩⟨+|ei π

4 Z
∥∥∥
1

≤ 2ϵ,

and therefore ϵ ≥ 1
2 , but it contradicts the assumption

that ϵ < 1
2 .

付 録
A.1 BFK protocol

In this appendix, we review the BFK protocol [17]. For

simplicity, let us consider the measurement-based quan-

tum computation on a linear graph state. The client

first sends n qubits, {|+θj ⟩}nj=1, to the server, where

|±θ⟩ ≡ 1√
2
(|0⟩ ± eiθ|1⟩), and each θj is chosen uniformly

at random from {kπ8 | k = 0, 1, ..., 7}. The server applies

CZ gates to generate the state

|ΨBob⟩ ≡
( n−1∏

i=1

CZi,i+1

)[ n⊗
j=1

|+θj ⟩
]
.

Because Z-rotations and CZ commute with each other,

|ΨBob⟩ =
( n−1∏

i=1

CZi,i+1

)[ n⊗
j=1

e−i
θj
2 Z |+⟩

]

=
( n⊗

j=1

e−i
θj
2 Z

)( n−1∏
i=1

CZi,i+1

)
|+⟩⊗n

=
( n⊗

j=1

e−i
θj
2 Z

)
|G⟩,

where |G⟩ is the n-qubit linear graph state.

Assume that the client wants to measure the first qubit

of |G⟩ in the basis |±ϕ1
⟩ for a certain ϕ1 ∈ {kπ8 | k =

0, 1, 2, ..., 7}. The client sends δ1 ≡ ϕ1 + θ1 + r1π to the

server, where r1 ∈ {0, 1} is a uniform random bit. The

server measures the first qubit of |ΨBob⟩ in the basis |±δ1⟩.
The post-measurement state is(

⟨±δ1 | ⊗ I⊗n−1
)( n⊗

j=1

e−i
θj
2 Z

)
|G⟩

=
(
I ⊗

n⊗
j=2

e−i
θj
2 Z

)(
⟨±|ei

δ1
2 Ze−i

θ1
2 Z ⊗ I⊗n−1

)
|G⟩

=
(
I ⊗

n⊗
j=2

e−i
θj
2 Z

)(
⟨±|ei

ϕ1+r1π
2 Z ⊗ I⊗n−1

)
|G⟩

=
(
I ⊗

n⊗
j=2

e−i
θj
2 Z

)(
⟨±ϕ1+r1π| ⊗ I⊗n−1

)
|G⟩,

but this is equal to the post-measurement state when the

first qubit of |G⟩ is measured in the basis |±ϕ1+r1π⟩. (The
effect of r1 is only the flip of the measurement result.) In

this way, if the server is honest, the client can let the server

do the correct measurement-based quantum computation.

Multi-qubit universal quantum computing is also possible

on appropriate universal resource states such the brick-

work state [17]. (For details, see Ref. [17].)

An intuitive idea of the blindness of the BFK protocol is

that the client’s true measurement angle ϕj is “one-time

padded” by “the key” θj , and therefore the server can-

not learn ϕj from δj . If the server measures |θj⟩, he can

learn a single bit of information about θj , but this infor-

mation is “scrambled” by the randomly chosen rj . For

more precise proofs of the blindness of the BFK protocol,

see Refs. [17], [20].

A.2 MF protocol

In this appendix, we review the MF protocol [18]. In the

MF protocol, the server first prepares a graph state, and

sends each qubit of the graph state (except for the qubits

in the last layer) to the client. (If the server sends each

qubit one-by-one sequentially, the client does not need any

quantum memory.) The client measures each qubit ac-

cording to the measurement pattern of her measurement-

based quantum computing.

It is clear that if the server is honest, i.e., if the server

prepares the correct graph state, the last layer of the

graph state that the server possesses becomes Eq. (3) af-

ter the client measures all qubits sent to her. It is also

obvious that whatever the malicious server does, client’s

measurement angles are hidden to the server due to the

no-signaling.
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