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Abstract: Several secret sharing schemes with low computational costs have been proposed. XOR-based secret shar-
ing schemes have been reported to be a part of such low-cost schemes. However, no discussion has been provided on
the connection between them and the properties of circulant matrices. In this paper, we propose several theorems of
circulant matrices to discuss the rank of a matrix and then show that we can discuss XOR-based secret sharing schemes
using the properties of circulant matrices. We also present an evaluation of our software implementation.
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1. Introduction

In modern information society, a strong need exists to securely
store large amounts of secret information to prevent informa-
tion theft or leakage and avoid information loss. Secret shar-
ing schemes are known to simultaneously satisfy the need to dis-
tribute and manage secret information, so that such information
theft and loss can be prevented.

A secret sharing scheme involves a dealer who has a secret, a
set of n participants, and a collection of subsets of k participants.
The dealer distributes shares to the n participants through secure
channels. Blakley [1] and Shamir [2] independently introduced
the basic idea of a (k, n) threshold secret sharing scheme in 1979.
In Shamir’s (k, n) threshold scheme, n shares are generated from
the secret and each of these shares is privately distributed to a
participant. Next, the secret can be recovered using any subset
k of the n shares, but it cannot be recovered with fewer than k

shares. Furthermore, every subset comprising less than k partici-
pants cannot obtain any information regarding the secret. There-
fore, the original secret is secure even if some of the shares are
leaked or exposed. Conversely, the secret can be recovered even
if some of the shares are missing.

1.1 XOR-based Secret Sharing Schemes
Shamir’s (k, n) threshold scheme requires extensive calcula-

tions for generating the n shares and recovering the secret from
k shares, because in doing so, a polynomial of degree k − 1 must
be processed. To tackle the problem, several XOR-based secret
sharing schemes that use only XOR operations to distribute and
recover the secret with low computational costs have been pro-
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posed. The schemes of Fujii et al. [3] and Kurihara et al. [4], [5]
are reported as such (k, n) threshold schemes. Kurihara et al. [6]
then proposed an XOR-based (k, L, n) ramp scheme.

1.2 Fast Schemes
Operations over GF(2L), where GF is the Galois or finite

field, yield fast schemes, but one multiplication operation requires
some XOR operations based on the analysis conducted by Kuri-
hara et al. [7]. Shima et al. reported in Ref. [8] that this computa-
tional cost can be one operation if we use a lookup table that has
been precomputed for the multiplication operation over GF(2L);
otherwise, there remains little choice but to practically choose
L = 8 in terms of the amount of available memory. To extend the
size of L, Ikarashi et al.’s technique [9] is suited for fast multipli-
cation operations over GF(264). Because their technique requires
an extended CPU instruction set, it cannot be applied to all hard-
ware, such as embedded devices, which are used widely in the
Internet of Things. Schemes constructed using simple XOR op-
erations can use the maximum bit length of XOR, such as 64 bits.
Only simple XOR operations can yield faster schemes.

1.3 Our Contributions
In this paper, we provide a new proof technique that actively

uses circulant matrices by referring to Refs. [3], [4], [5] and the
(k, 1, n) ramp scheme [6]. In other words, we provide a proof
technique that differs from those provided by these earlier au-
thors, unlike Fujii et al. [3], who did not provide a proof that
shows their scheme is ideal. Therefore, our techniques can be
applied to Refs. [3], [4], [5], [6].

We are faced with the following two questions:
• Can each block matrix in generator matrix G in Refs. [4], [5]

The preliminary version [22] of this paper was published at Computer
Security Symposium 2019 (CSS 2019), October 2019.
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be represented by a matrix systematically reduced from a
circulant matrix?

• Can XOR-based secret sharing schemes be tied to Shamir’s
scheme, using a Vandermonde matrix for recovery?

To answer these questions, we need to study the rank of a ma-
trix based on the properties of circulant matrices. Here, generator
matrix G consists of block matrices. Considering a block matrix
obtained by removing one row and one column from a circulant
matrix, we can naturally construct a secret sharing scheme. Even-
tually, our construction is the same as Kurihara et al.’s scheme [6]
in the case of L = 1; however, we emphasize that we provide
another perspective to analyze generator matrix G. More specif-
ically, let matrix Gk correspond to any subset k of n participants
from G and be hereinafter called a recovery matrix; we can view
recovery matrix Gk as a Vandermonde matrix, in which each el-
ement is a circulant matrix, and discuss naturally and neatly the
rank of matrix Gk. Here, a circulant matrix is not guaranteed to
have a multiplicative inverse because its operations are not per-
formed over a field. For example, circulant matrix

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 0
0 1 1 0 0
0 0 1 1 0
0 0 0 1 1
1 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
is not regular. Therefore, we provide several theorems of circu-
lant matrices and discuss the rank of matrix Gk.

Our proof techniques are nontrivial because Refs. [3], [4], [5],
[6] do not provide the connection between their schemes and a
Vandermonde matrix and we need to consider circulant matrices
over GF(2). Our overall contributions are summarized as follows:
• We propose several theorems of circulant matrices to discuss

naturally the rank of matrix Gk. We then achieve a new se-
curity analysis for XOR-based secret sharing schemes.

• We show that XOR-based secret sharing schemes are repre-
sented using the properties of circulant matrices. As a result,
we establish the connection between XOR-based secret shar-
ing schemes and Shamir’s scheme.

• We present a clear evaluation for efficiency between the
schemes in Refs. [4], [5] and the (k, 1, n) ramp scheme [6].
More specifically, we measure performance that shows the
latter is more efficient in distribution if n, or p, is not large,
where k ≥ 3.

Here, several approaches [13], [14], [15], [16] to discussing the
connection to Shamir’s scheme have been reported, but no discus-
sion has been provided on the connection between XOR-based
secret sharing schemes and the properties of circulant matrices.
Recent researches [17], [18] also proposed XOR-based related
approaches. However, they do not provide a solution as a (k, n)
threshold scheme. It is then unclear if our techniques can be ap-
plied to Refs. [13], [14], [15], [16], [17], [18].

By using our new techniques, we can shorten many proofs and
characterize the categories of matrices that can be used in XOR-
based (k, n) threshold schemes. As a result, we can show our
proofs in full to prove the ideal secret sharing scheme, while in
Appendix B, Lemma 2 of Ref. [4], Kurihara et al. omitted a de-

tailed proof on the grounds that it was too long to be described in
full. In other words, it is easier to discuss the rank of a matrix and
the ideal secret sharing scheme by actively using the properties
of circulant matrices. Furthermore, our new approach can con-
tribute to providing extensibility for XOR-based secret sharing
schemes, for example, discussing the rank of a matrix efficiently
for hierarchical secret sharing schemes.

1.4 Organization of the Paper
The rest of this paper is organized as follows: In Section 2,

we introduce several preliminaries and review the basic termi-
nology. In Section 3, we propose our several theorems of circu-
lant matrices. Section 4 describes the algorithm of the (k, 1, n)
ramp scheme [6] using different symbols. In Section 5, we show
our proof techniques using the theorems from Section 3. In Sec-
tion 6, we present our evaluation of our software implementation
and comparison with other existing XOR-based schemes. Finally,
Section 7 concludes our work.

2. Preliminaries

We introduce several fundamentals as preliminaries.

2.1 Notation
Throughout this paper, we use the following notations:
• ⊕ denotes a bitwise XOR operation.
• || denotes a concatenation of bit sequences.
• p is a prime number.
• n denotes the number of participants, where p ≥ n.
• k is a threshold value, where 2 ≤ k ≤ n.
• P = {P0, · · · , Pn−1} denotes a set of n participants.
• The index values of (1) random numbers, (2) divided pieces

of the secret and the shares, (3) XOR-ed terms of elements
1 and 2, (4) participants, and (5) matrices are elements of
GF(p); that is, Xc(a±b) denotes Xc(a±b) mod p.

• H(X) denotes the Shannon entropy of a random variable X.
• |X| denotes the number of elements in a finite set X.

• $←− X denotes a function to generate an |X|-bit random num-
ber from a finite set X.

• gcd(a, b) denotes the greatest common divisor of a and b.
• deg( f (x)) denotes the degree of a polynomial f (x).
• [a(i, j)] denotes a matrix where i, j ∈ {0, 1, · · · , t − 1}. The

numbering of the rows and columns starts from zero.
• [a(i, j)]

b,d
i=a, j=c denotes a matrix where i ∈ {a, a + 1, · · · , b} and

j ∈ {c, c + 1, · · · , d}.
• It denotes the t × t identity matrix.
• O denotes a zero matrix.
• ◦←− and

◦−→ denote elementary row operations.

2.2 Circulant Matrix
When t × t matrix

C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c0 c1 · · · ct−2 ct−1

ct−1 c0 · · · · · · ct−2

...
. . .

. . .
. . .

...

c2 · · · ct−1 c0 c1

c1 c2 · · · ct−1 c0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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takes the form shown, C is called a circulant matrix. When circu-
lant matrices A and B are given, A + B and A ·B are also circulant
matrices. The addition and the multiplication are commutative. A
circulant matrix can be represented by one vector. In this paper,
C = (c0, c1, · · · , ct−2, ct−1), which appears as the zeroth row of C.
The polynomial c(x) =

∑t−1
i=0 cixi is called the associated polyno-

mial of C. The number of elements ci of C that are different from
0 is called the Hamming weight or weight. Theorem 2.1 has been
analyzed in Refs. [19], [20].
Theorem 2.1. The rank of circulant matrix C is t − d, where

d = deg(gcd(xt − 1, c(x))) and c(x) is the associated polynomial

of C = (c0, c1, · · · , ct−2, ct−1).

2.3 Circulant Matrix over GF(2)
Here, we show notations and properties of t× t circulant matrix

C = (c0, c1, · · · , ct−2, ct−1) over GF(2).
• gi denotes circulant matrix C, whose i-th element ci is only

1. The modulus of the index of gi is t. g0 means the identity
matrix. We also define 1

def
= g0 in the context of a matrix.

• For the multiplication, ga × gb = ga+b, (ga)b = gab.
• For the distributive property, (ga + gb) × gc = ga+c + gb+c,
ga × (gb + gc) = ga+b + ga+c.

Lemma 2.1. Consider circulant matrix C over GF(2) whose

weight is even. The following conditions are satisfied.

( 1 ) The sum of the i-th rows for i = 0, · · · , t − 2 is equivalent to

the t − 1-th row.

( 2 ) The sum of the i-th columns for i = 0, · · · , t − 2 is equivalent

to the t − 1-th column.

Proof. Consider each j-th column, where j = 0, · · · , t−1. If the
sum of the elements of the i-th rows for i = 0, · · · , t−2 is one, the
element of the t − 1-th row is one. If the sum is zero, the element
of the the t − 1-th row is zero. In the same way, we can consider
each j-th row, where j = 0, · · · , t − 1. �
Lemma 2.2. Circulant matrix C over GF(2) whose weight is two

has no multiplicative inverse.

Proof. The rank of C is less than or equal to t − 1 because the
sum of the i-th rows for i = 0, · · · , t−2 is equivalent to the t−1-th
row from Lemma 2.1. Therefore, C is singular and has no multi-
plicative inverse. �

2.4 Perfect Secret Sharing Scheme
In this subsection, we refer to Ref. [10]. A perfect secret shar-

ing scheme requires the following conditions:
Correctness Every authorized set B ∈ Γ receives the secret in-

formation.
Perfect privacy Every unauthorized set T � Γ receives no se-

cret information.
The collection Γ is called the access structure. Let S be a ran-
dom variable in a given probability distribution on the secrets, S B

be a random variable in a given probability distribution on the
shares in each authorized set B, and S T be a random variable in a
given probability distribution on the shares of each unauthorized
set T . A perfect secret sharing scheme would satisfy (Correct-
ness) H(S |S B) = 0 and (Perfect privacy) H(S |S T ) = H(S ).

2.5 Ideal Secret Sharing Scheme
In this subsection, we refer to Refs. [4], [5], [11], [12]. The

dealer selects secret s ∈ S and distributes each share wi ∈ Wi

to participant Pi ∈ P, where S denotes the set of secrets andWi

denotes the set of possible shares that Pi might receive. The in-

formation rate is then defined as ρ = H(S )
max
Pi∈P

H(Wi)
, where S and Wi

denote the random variables induced by s ∈ S and wi ∈ Wi, re-
spectively. When the probability distributions over S and shares
Wi are uniform, the information rate is

ρ =
log2 |S|

max
Pi∈P

log2 |Wi| .

A secret sharing scheme is called ideal if it is perfect and ρ = 1.
In other words, if the size of every bit of the shares equals the bit
size of the secret, the scheme is ideal.

2.6 Threshold Access Structure
LetU be a set of n participants. A (k, n) threshold secret shar-

ing scheme is defined as the access structure

Γ = {V ⊆ U : |V| ≥ k} .

2.7 Shamir’s Scheme and the Vandermonde Matrix
In Shamir’s (k, n) threshold scheme, n shares wi ∈ GF(p) for

participants Pxi ∈ P are generated from secret s ∈ GF(p). The
dealer randomly selects k−1 elements r1, · · · , rk−1 independently,
with a uniform distribution over GF(p). The dealer then con-
structs a polynomial f (x) =

∑k−1
i=1 rixi + s ∈ GF(p)[x], where

x = xi for which all participant identities xi are distinct and
nonzero. Finally, the dealer sends wi to Pxi in private. We can
view these shares as vector w = [w0, w1, · · · , wn−1]T = G · e, i.e.,

G =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 x0 x2
0 · · · xk−1

0

1 x1 x2
1 · · · xk−1

1
...

...
...

. . .
...

1 xn−1 x2
n−1 · · · xn−1

n−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, e =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s

r1

...

rk−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Here, G is a Vandermonde matrix, which guarantees that any k

rows are invertible. When k participants Px for x = t0, t1, · · · , tk−1

cooperate to recover the secret, they pool their shares wx together.
Considering vector wk =

[
wt0 , wt1 , · · · , wtk−1

]T and recovery ma-
trix Gk, consisting of the corresponding k rows from G, we can
obtain secret s from e = G−1

k · wk.

2.8 Review of XOR-based Secret Sharing Schemes
In Kurihara et al.’s scheme [4], [5], n shares wi ∈ {0, 1}d(p−1)

for participants Pxi ∈ P are generated from secret s ∈ {0, 1}d(p−1).
The dealer equally divides secret s into p−1 blocks s1, · · · , sp−1 ∈
{0, 1}d. We can view these blocks as vector s = (s1, · · · , sp−1).
d is, for example, 8 and 64. The dealer also randomly selects
(k − 1)p − 1 pieces r0

0 , · · · , r0
p−2, r

1
0 , · · · , r1

p−1, · · · , rk−2
0 , · · · , rk−2

p−1

independently, with a uniform distribution over the finite set
{0, 1}d. We can view these pieces as vector r in the same man-
ner. The dealer then generates shares wi = w(i,0)|| · · · ||w(i,p−2) with
a uniquely given generator matrix G corresponding to the (k, p)
threshold scheme. Here, G consists of several (p−1)× p and (p−

c© 2021 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.29

1)×(p−1) block matrices over GF(2). Finally, the dealer sends wi

to Pi in private. We can construct a (k, n) threshold scheme using
a (k, p) threshold scheme even if n is a composite number. We
can view these shares as vector w =

[
w(0),w(1), · · · ,w(n−1)

]T
=

G · [r, s]T, where w(i) = (w(i,0), · · · , w(i,p−2)). When k partici-
pants Px for x = t0, t1, · · · , tk−1 cooperate to recover the secret,
they pool their shares wx together. We equally divide each share
into d-bit pieces and obtain recovery matrix Gk. This Gk is not
a square matrix. Therefore, we first obtain G′k, where we apply
forward elimination of Gaussian elimination to Gk. We then ap-
ply backward substitution to a part of G′k that is required to obtain
secret s. Finally, we obtain secret s.

(k, L, n) ramp schemes exhibit a trade-off between security and
space efficiency. The secret can be recovered using any subset
k of the n shares, but every subset comprising less than or equal
to k − L participants cannot obtain any information regarding the
secret. If a (k, L, n) ramp scheme is linear, every further share re-
veals 1

L bits of information regarding the secret after k − L shares
are pooled. Therefore, we can view Kurihara et al.’s (k, 1, n) ramp

scheme [6] as an XOR-based (k, n) threshold scheme.
In Fujii et al.’s [3] and Kurihara et al.’s [6] schemes, recovery

matrix Gk is a square matrix.

3. Our Proposed Scheme

In this section, we propose several theorems of circulant matri-
ces to discuss the rank of recovery matrix Gk. First, we analyze
circulant matrices over GF(2) whose weight is two and the rank
of the product of those matrices. Next, we analyze the rank of re-
covery matrix Gk that consists of p×p circulant matrices. Finally,
in Section 5, we provide a new security analysis for XOR-based
secret sharing schemes.

3.1 Rank of the Product of Circulant Matrices over GF(2)
whose Weight is Two

We examine the associated polynomial of a circulant matrix
whose weight is two to analyze the rank of the circulant matrix
using Theorem 2.1.
Lemma 3.1. Let a, b ≥ 1. gcd(xa+1, xb+1) = xgcd(a,b)+1, where

xa + 1, xb + 1 ∈ GF(2)[x].
Proof. It is easy to see that the equation is satisfied if a = b.
Consider a > b. First, assuming polynomials A(x), B(x) over
a finite field, we can obtain gcd(A(x), B(x)) with the following
steps [21].
( 1 ) If B(x) = 0, output A(x) and exit.
( 2 ) Compute Q(x) and R(x) such that A(x) = B(x) · Q(x) + R(x),

where deg(R(x)) < deg(B(x)).
( 3 ) A(x)← B(x), B(x)← R(x) and go back to Step (1).
Next, we confine A(x) = xa + 1, B(x) = xb + 1 ∈ GF(2)[x].
Let q, r be integers such that a = b · q + r, where r < b.
We can compute Q(x) =

∑q
i=1 xa−b·i, R(x) = xr + 1 such that

A(x) = B(x) · Q(x) + R(x). If r = 0, R(x) = 0. Here, we look
at the degrees a and b of A(x) and B(x). We see that we take the
following steps.
( 1 ) If b = 0, output xa + 1 and exit.
( 2 ) Compute q and r such that a = b · q + r, where r < b.
( 3 ) a← b, b← r and go back to Step (1).

This algorithm is identical to the Euclidean algorithm for com-
puting the greatest common divisor (GCD) of integers a and b.
Therefore, gcd(xa + 1, xb + 1) = xgcd(a,b) + 1. �
Lemma 3.2. Let 0 ≤ b < a < p. gcd(xa + xb, xp + 1) = x + 1,

where xa + xb, xp + 1 ∈ GF(2)[x].
Proof. We obtain xa + xb = xb(xa−b + 1). It is also easy to see
that gcd(xb, xp + 1) = 1. Next, gcd(a − b, p) = 1 because p is a
prime number. With Lemma 3.1, gcd(xa−b + 1, xp + 1) = x + 1.
The proof is thus complete. �

In Lemma 3.3 and Theorem 3.1, we consider the product of
p × p circulant matrices over GF(2) whose weight is two.
Lemma 3.3. Assume p ≥ 3. Let 0 ≤ b < a < p, 0 ≤ d < c < p.

gcd((xa+xb)·(xc+xd), xp+1) = x+1, where xa+xb, xc+xd, xp+1 ∈
GF(2)[x].
Proof. From Lemma 3.2, we obtain gcd(xa + xb, xp + 1) = x+ 1
and gcd(xc+ xd, xp+1) = x+1. Let f (x) = xp−1+ · · ·+ x+1, then
xp + 1 = (x + 1) f (x). Because p is a prime number, f (1) = 1 and
f (x) does not have a divisor x+1. The proof is thus complete. �
Theorem 3.1. Assume p ≥ 3. Let a ≥ 0 and C be the circulant

matrix of the product of p× p circulant matrices C0, · · · ,Ca over

GF(2) whose weight is two, i.e.,

C =
a∏

l=0

Cl =

a∏
l=0

(gi(l) + g j(l)),

where i(l) � j(l). Then the rank of C is p − 1.

Proof. The associated polynomial of Cl is cl(x) = xi(l) + x j(l).
The associated polynomial of C is also c(x) =

∏a
l=0 cl(x). Be-

cause 0 ≤ i(l), j(l) < p and i(l) � j(l), gcd(c(x), xp+1) = x+1 us-
ing Lemma 3.3. The rank of C is thus p−1 from Theorem 2.1. �

3.2 Elementary Row Operations
We consider n · p×k · p matrix G that consists of p× p circulant

matrices as a generator matrix of a (k, n) threshold secret sharing
scheme, i.e.,

G =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 g0 g2
0 · · · gk−1

0

1 g1 g2
1 · · · gk−1

1
...

...
...

. . .
...

1 gn−1 g2
n−1 · · · gk−1

n−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Later, we view matrix G as an n× k matrix to specify the i-th row
and j-th column of G. For example, we view g2

1 as an element
located at the first row and the second column of G. Then, shares
of participants Px ∈ P are generated from the x-th row of G. As-
sume that xi = gti . When k participants Px for x = t0, t1, · · · , tk−1

cooperate to recover the secret, we can consider recovery matrix

Gk =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 x0 x2
0 · · · xk−1

0

1 x1 x2
1 · · · xk−1

1
...

...
...

. . .
...

1 xk−1 x2
k−1 · · · xk−1

k−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Apparently, Gk is associated with a Vandermonde matrix, but
there is a case in which a circulant matrix is not invertible.
More specifically, to analyze the rank of Gk using elementary
row operations, we first add the zeroth row to each i-th row for
i = 1, · · · , k − 1. As a result, we obtain
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Gk
◦−→

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 x0 x2
0 · · · xk−1

0

0 x1 + x0 x2
1 + x2

0 · · · xk−1
1 + xk−1

0
...

...
...

. . .
...

0 xk−1 + x0 x2
k−1 + x2

0 · · · xk−1
k−1 + xk−1

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

However, each element in the i-th row for i = 1, · · · , k − 1 cannot
be multiplied by (xi + x0)−1 from Lemma 2.2.

To resolve the preceding issue, we provide Theorem 3.2 and
can transform the i-th elements of the first column to zeros with
elementary row operations, where i = 2, · · · , k − 1.
Theorem 3.2. Given p× p circulant matrices ga + gb and gc + gd

over GF(2) whose weight is two, there exists p×p circulant matrix

Tc,d
a,b over GF(2) such that gc + gd = Tc,d

a,b(ga + gb).
Proof. Let t = (b − a)−1(d − c) mod p. a � b (mod p) and
c � d (mod p) because ga + gb and gc + gd are circulant matrices
whose weight is two. Because 0 < (b−a)−1 < p and 0 < d−c < p,
we see that 0 < t < p. If t � 1, Tc,d

a,b = gc
∑t−1

i=0 gi(b−a)g−a because

g−a(ga + gb) = g0 + gb−a,
t−1∑
i=0

gi(b−a)(g0 + gb−a) = g0 + gt(b−a) = g0 + gd−c,

gc(g0 + gd−c) = gc + gd.

If t = 1, meaning that b − a ≡ d − c (mod p), that equation Tc,d
a,b

is also satisfied as Tc,d
a,b = gc−a since Tc,d

a,b(ga + gb) = gc + gb+c−a =

gc + gd. The proof is thus complete. �
Later, we view Tc,d

a,bxi as Ttc ,td
ta ,tb xi for xi = gti . Here, we provide

a brief example to better understand the sequence of elementary
matrix transformations. Let X(a,b) = xa + xb, as shown later in
Definition A.1.1.
Example 3.1. We convert 4p × 4p matrix G4 to an upper trian-

gular matrix. We take steps G4
◦−→ G(1)

4

◦−→ G(2)
4

◦−→ G(3)
4 and then

use Theorem 3.2 to transform G(1)
4 to G(2)

4 and G(2)
4 to G(3)

4 , i.e.,

G(1)
4 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 x0 x2
0 x3

0

0 x1 + x0 x2
1 + x2

0 x3
1 + x3

0

0 x2 + x0 x2
2 + x2

0 x3
2 + x3

0

0 x3 + x0 x2
3 + x2

0 x3
3 + x3

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

G(2)
4 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 x0 x2
0 x3

0

0 X(1,0) X(1,0)X(1,0) X(1,0)a1

0 0
∏1

i=0 X(2,i)
∏1

i=0 X(2,i)a2

0 0
∏1

i=0 X(3,i)
∏1

i=0 X(3,i)a3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

G(3)
4 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 x0 x2
0 x3

0

0 X(1,0) X(1,0)X(1,0) X(1,0)a1

0 0
∏1

i=0 X(2,i)
∏1

i=0 X(2,i)a2

0 0 0
∏2

i=0 X(3,i)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where a1 = x2
1+ x1x0+ x2

0, a2 = x2+ x1+ x0, and a3 = x3+ x1+ x0.

The rank of G4 equals the rank of upper triangular matrix G(3)
4 ,

which is the sum of the ranks of the diagonal matrices. Each rank
of the diagonal matrices except for the p × p identity matrix is
p−1 from Theorem 3.1. Therefore, the rank of G4 is 4(p−1)+1.

Next, we consider transforming Gk to an upper triangular ma-
trix as a generalization. We define the matrix

M(t) def
=

[
M(t)

(i, j)

]k−1,k−1

i=t, j=t
(t = 1, · · · , k − 1)

and then represent the transformations as

Gk
◦−→ G(1)

k =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 x0 · · · xk−1
0

0 M(1)
(1,1) · · · M(1)

(1,k−1)
...

...
. . .

...

0 M(1)
(k−1,1) · · · M(1)

(k−1,k−1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

G(1)
k

◦−→ · · · ◦−→ G(t+1)
k =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 x0 · · · · · · xk−1
0

M(1)
(1,1) · · · · · · M(1)

(1,k−1)

. . .
...

M(t)
(t,t) · · · M(t)

(t,k−1)

O M(t+1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Step 3.1. Here, we show the steps of the elementary row opera-

tions for Gk.

( 1 ) We add the zeroth row to each i-th row for i = 1, · · · , k − 1.

We take this step only once.

( 2 ) With Theorem 3.2, each element in the m-th row is multiplied

by Ti,0
m,0 · · ·Ti,m−1

m,m−1. The i-th row for i = m + 1, · · · , k − 1 is

replaced by the sum of that row and the m-th row. We repeat

these steps for m = 1, · · · , k − 2, i.e.,

M(m+1)
(i, j) =M(m)

(i, j) +

m−1∏
t=0

Ti,t
m,tM

(m)
(m, j). (1)

Theorem 3.3. Given Gk
◦−→ G(k−1)

k using Step 3.1, M(m)
(m,m) =∏m−1

t=0 X(m,t), where m = 1, · · · , k − 1.

We show the proof of Theorem 3.3 in Appendix A.1.
Theorem 3.4. The rank of Gk is k(p− 1)+ 1. The rank of M(1) is

then (k − 1)(p − 1).
Proof. If p ≥ 3, each rank of M(m)

(m,m), represented by Theo-
rem 3.3, is p − 1 from Theorem 3.1. If p = 2, we may only
consider the rank of M(1)

(1,1) because k = 2 and the rank is p − 1
from Lemma 3.2. Therefore, the rank of M(1) is (k − 1)(p− 1) for
both cases and the rank of Gk is p+(k−1)(p−1) = k(p−1)+1. �

4. Construction of the Secret Sharing Scheme

Our construction is the same as Kurihara et al.’s scheme [6] in
the case of L = 1, as mentioned in Section 1.3. This section
does not propose a new secret sharing scheme but describes the
algorithm using different symbols.

The dealer equally divides secret s ∈ {0, 1}d(p−1) into p −
1 blocks s0, · · · , sp−2 ∈ {0, 1}d. d is, for example, 8 and
64. The dealer also randomly selects (k − 1)(p − 1) pieces
r0

0 , · · · , r0
p−2, · · · , rk−2

0 , · · · , rk−2
p−2 independently, with a uniform

distribution over the finite set {0, 1}d. The dealer then sends share
wi ∈ {0, 1}d(p−1) of a (k, p) threshold scheme to participant Pi ∈ P
in private. Therefore, we can construct a (k, n) threshold scheme
using a (k, p) threshold scheme even if n is a composite number.
Here, we define the vectors as mentioned below.
• w(i) =

[
w(i,0), · · · , w(i,p−2)

]T

• s = (s0, · · · , sp−2)T

• r = (r0
0 , · · · , r0

p−2, · · · , rk−2
0 , · · · , rk−2

p−2)T

• e =

⎡⎢⎢⎢⎢⎣ r
s

⎤⎥⎥⎥⎥⎦
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Table 1 Distribution algorithm.

Input: s ∈ {0, 1}d(p−1)

Output: (w0, · · ·wn−1)
1: sp−1 ← {0}d , s0 || · · · ||sp−2 ← s
2: for i← 0 to k − 2:

for j← 0 to p − 2:

ri
j

$←− {0, 1}d
ri

p−1 ← {0}d (discard r0
p−1)

3: for i← 0 to n − 1:
for j← 0 to p − 2:
w(i, j) ←

(⊕k−2
h=0 rh

h·i+ j

)
⊕ s(k−1)·i+ j

wi ← w(i,0) || · · · ||w(i,p−2)

4: return (w0, · · ·wn−1)

4.1 Share Generation
We consider (p− 1)× (p− 1) matrices ḡ j

i and 1̄ whose p− 1-th
row and p − 1-th column are removed from each p × p circulant
matrix of G. We define matrix Ḡ that consists of these matrices
and then generate shares w = Ḡ · e, i.e.,

w =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w(0)

w(1)

...

w(n−1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1̄ ḡ0 ḡ2
0 · · · ḡk−1

0

1̄ ḡ1 ḡ2
1 · · · ḡk−1

1
...

...
...

. . .
...

1̄ ḡn−1 ḡ2
n−1 · · · ḡk−1

n−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
e.

Table 1 shows the distribution algorithm. Step 1 divides the
secret equally into p− 1 pieces of the d-bit sequence. Step 2 gen-
erates (k − 1)(p − 1) pieces of the d-bit random number. Step 3
generates shares wi. We can view this step as w(i, j) = v(i, j) · e with
a uniquely given vector v(i, j) corresponding to the (k, p) threshold
scheme. For example, v(1,0) = (1000 0100 0010) if k = 3, p = 5.

4.2 Recovery
Participants Pi for i = t0, · · · , tk−1 cooperate to recover the se-

cret. Assume that x̄i = ḡti . With

Ḡk =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1̄ x̄0 · · · x̄k−1

0
...

...
. . .

...

1̄ x̄k−1 · · · x̄k−1
k−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,wk =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
w(t0)

...

w(tk−1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,

we can recover secret s from e = Ḡ−1
k · wk.

Table 2 shows the recovery algorithm. Step 1 equally divides
each share into d-bit pieces. Step 2 generates the k(p − 1)-
dimensional vector w. Step 3 obtains the matrix M using the
function FMAT (). Step 4 recovers s0, · · · , sp−2 by calculating
M · wk. Step 5 obtains secret s by concatenating s0, · · · , sp−2.
Step F1 obtains the vectors v(ti , j) such that w(ti , j) = v(ti , j) · e. Step
F2 obtains the matrix Ḡk. In Step F3, the matrix

[
Ḡk Ik(p−1)

]
is

transformed to the row echelon form [G′ J]. Matrices G′ and J
correspond to the matrices transformed from Ḡk and Ik(p−1), re-
spectively. We then view the matrix [G′ J] as a matrix divided
into block matrices O,G′0,G′1,G′2, J0, and J1. Step F4 trans-
forms the matrix [G′0 J0] to the matrix

[
Ip−1 M

]
. Step 5 outputs

the (p − 1) × k(p − 1) matrix M.

4.3 Brief Example of Share Generation and Recovery
Consider a (3, 5) threshold scheme. We generate each share

wi = w(i,0)|| · · · ||w(i,3) for participant Pi with w = Ḡ · e, i.e.,

Table 2 Recovery algorithm.

Input: (wt0 , · · · , wtk−1 )
Output: s
1: for i← 0 to k − 1:
w(ti ,0) || · · · ||w(ti ,p−2) ← wti

2: wk ← (w(t0 ,0), · · · , w(t0 ,p−2), · · · , w(tk−1 ,0), · · · , w(tk−1 ,p−2))T

3: M← FMAT (t0, · · · , tk−1)
4: (s0, · · · , sp−2)T ←M · wk

5: s← s0 || · · · ||sp−2

6: return s
FMAT (t0, · · · , tk−1)
F1: for i← 0 to k − 1:

for j← 0 to p − 2:
v(ti , j) ← w(ti , j) = v(ti , j) · e

F2: Ḡk ← (v(t0 ,0), · · · , v(tk−1 ,p−2))T

F3:

[
G′2 G′1 J1

O G′0 J0

]
= [G′ J]

◦←−
[
Ḡk Ik(p−1)

]

F4:

[
G′2 G′1 J1

O Ip−1 M

]
◦←− [G′ J]

F5: return M

w =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w(0)

w(1)

w(2)

w(3)

w(4)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w(0,0)

w(0,1)

w(0,2)

w(0,3)

w(1,0)

w(1,1)

...

w(3,2)

w(3,3)

w(4,0)

w(4,1)

w(4,2)

w(4,3)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1000 1000 1000
0100 0100 0100
0010 0010 0010
0001 0001 0001

1000 0100 0010
0100 0010 0001

...

0010 1000 0001
0001 0100 0000

1000 0000 0001
0100 1000 0000
0010 0100 1000
0001 0010 0100

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r0
0

r0
1

r0
2

r0
3

r1
0

r1
1

r1
2

r1
3

s0

s1

s2

s3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

When P0, P3, and P4 agree to recover the secret, the secret

s =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s1

s2

s3

s4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1110 0111 1001
1001 1011 0010
0101 1101 1000
0011 1110 1101

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
w(0)

w(3)

w(4)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

can be recovered because

[
Ḡ3 I12

]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1000 1000 1000 1000 0000 0000
0100 0100 0100 0100 0000 0000
0010 0010 0010 0010 0000 0000
0001 0001 0001 0001 0000 0000

1000 0001 0100 0000 1000 0000
0100 0000 0010 0000 0100 0000
0010 1000 0001 0000 0010 0000
0001 0100 0000 0000 0001 0000

1000 0000 0001 0000 0000 1000
0100 1000 0000 0000 0000 0100
0010 0100 1000 0000 0000 0010
0001 0010 0100 0000 0000 0001

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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[
Ḡ3 I12

] ◦−→

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1000 1000 1000 1000 0000 0000
0100 0100 0100 0100 0000 0000
0010 0010 0010 0010 0000 0000
0001 0001 0001 0001 0000 0000

0000 1001 1100 1000 1000 0000
0000 0100 0110 0100 0100 0000
0000 0011 1111 1010 1010 0000
0000 0001 0111 0101 0101 0000

0000 0000 1000 1110 0111 1001
0000 0000 0100 1001 1011 0010
0000 0000 0010 0101 1101 1000
0000 0000 0001 0011 1110 1101

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

5. Proof of the Ideal Secret Sharing Scheme

In this section, we provide a new security analysis for XOR-
based secret sharing schemes using our theorems, discussed in
Section 3.
Theorem 5.1. Assume that any set of k participants in Γ agrees

to recover the secret. Then, correctness holds.

Proof. Ḡk, shown in Section 4.2, is a k(p − 1) × k(p − 1) square
matrix. We view Ḡk as a k× k matrix, as described in Section 3.2.
First, we add the zeroth row of Ḡk to each i-th row of Ḡk for
i = 1, · · · , k − 1 and obtain

Ḡk
◦−→ Ḡ(1)

k =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1̄ x̄0 · · · x̄k−1
0

0 M̄(1)
(1,1) · · · M̄(1)

(1,k−1)
...

...
. . .

...

0 M̄(1)
(k−1,1) · · · M̄(1)

(k−1,k−1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

M̄(1) def
=

[
M̄(1)

(i, j)

]k−1,k−1

i=1, j=1
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
x̄1 + x̄0 · · · x̄k−1

1 + x̄k−1
0

...
. . .

...

x̄k−1 + x̄0 · · · x̄k−1
k−1 + x̄k−1

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ .

Next, we look at matrix M̄(1). We add a new p − 1-th row to ma-
trix M̄(1)

(i, j) as the sum of all p − 1 rows of M̄(1)
(i, j). We also add a

new p− 1-th column in the same manner. We can see that M̄(1) is
transformed to M(1). These operations only add a linearly depen-
dent row and a linearly dependent column. Therefore, the rank
of M̄(1) equals that of M(1) and the rank of Ḡk is k(p − 1). That
means Ḡk is regular; therefore, we can always recover the secret
in the access structure. The proof is thus complete. �
Theorem 5.2. Let 1 ≤ L ≤ k−1. Assume that any set of L partic-

ipants T = {Pt0 , · · · , PtL−1 } � Γ agrees to recover the secret. Then,

perfect privacy holds.

Proof. Consider wL = ḠL · e, referring to Section 4.2. Suppose
that s and the elements of r are mutually independent and that the
elements of r are selected from the finite set {0, 1}d with uniform
probability 1/2d. Here, we consider ḠL = [Ū V̄] such that

wL = ḠL

⎡⎢⎢⎢⎢⎣rs
⎤⎥⎥⎥⎥⎦ = Ū · r ⊕ V̄ · s.

Because all rows of Ū are linearly independent, including Ū � O
for p = 2, all elements of the L(p − 1)-dimensional vector Ū · r
are d-bit random numbers that are mutually independent and dis-
tributed uniformly over {0, 1}d. Therefore, the vector Ū · r is uni-
formly distributed over {0, 1}dL(p−1). Next, we suppose that w′

denotes a fixed value of wL. wL such that wL = w′ can be ob-
tained with uniform probability (1/2)dL(p−1) from any chosen V̄·s.
Because s is independent of wL, we have H(S |S T ) = H(S ). �

6. Software Implementation

We evaluated schemes using one general purpose machine, as
described in Table 3. Table 3 also shows the GCC options re-
lated to performance. We used a file size of 888,710 bytes as an
example and provided some parameters of k and n.

Table 4 presents our experimental results, taken as the aver-
age of 30 experiments in each (k, n) parameter. We used d = 64
and used Xorshift for random number generation. The process-
ing time to generate random numbers was included in the results
of distribution. Here, the distribution and recovery algorithms
of Ref. [4] and those of Ref. [5] are the same. We were able to
clearly evaluate that the improved version was more efficient in
distribution than Refs. [4], [5] if n, or p, is not large, where k ≥ 3.
The improved version means the scheme to which our approach is
directly applied and its algorithm is identical to that of the (k, 1, n)
ramp scheme [6].

6.1 Comparison with Other Schemes
Consider Kurihara et al.’s schemes [4], [5] and [6] in the case

of L = 1. They showed that each of their distribution algo-
rithms requires an average of O(kn)|s| bitwise XOR operations
to generate n shares. Here, |s| denotes the bit length of secret
s, i.e., |s| = log2 |S| = d(p − 1). Next, in general, the size of
the secret would exceed |s|. We refer to such an initial computa-
tion processed once for that recovery as a precomputation. They
also showed that each of their recovery algorithms can estimate
O(k3 p3) for the precomputation and O(kp)|s|. Therefore, no dif-
ferences in efficiency between these algorithms exist, as shown
in Table 5. However, the distribution algorithm of Ref. [6] re-
quires fewer XOR operations than that of Refs. [4], [5]. Table 6
shows the average number of XOR operations to generate one
share. Fewer XOR operations can also yield a lower number of

Table 3 Test environment.

CPU Intel R© Celeron R© Processor G1820

2.70 GHz × 2, 2 MB cache

RAM 3.6 GB

OS CentOS 7 Linux 3.10.0-229.20.1.el7.x86 64

Programing language C

Compiler system gcc 4.8.3 (-O3 -flto -DNDEBUG)

Table 4 Experimental results.

(k, n) Distribution (Mbps) Recovery (Mbps)
Improved ver. Refs. [4], [5] Improved ver. Refs. [4], [5]

(3, 5) 1,553.63 1,262.45 7,640.79 7,678.44
(3, 11) 113.29 104.12 1,747.30 1,733.62
(3, 43) 11.14 11.00 209.30 201.18

(41, 43) 0.86 0.84 7.61 7.57
(4, 5) 1,116.33 664.57 4,531.31 4,409.23
(5, 7) 311.96 274.85 1,885.87 1,672.97

Table 5 Computational costs.

Precomputation Distribution Recovery
Improved ver. O(k3 p3) O(kn)|s| O(kp)|s|
Refs. [4], [5] O(k3 p3) O(kn)|s| O(kp)|s|

c© 2021 Information Processing Society of Japan
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Table 6 The average number of XOR operations to generate one share.

Improved ver.

(
k − 1 − k − 1

p

)
|s|

Refs. [4], [5]

(
k − 1 − 1

p

)
|s|

random numbers. In Refs. [4], [5], they reported that the average
number is (k − 1 − 1

p )|s|. In our analysis for Ref. [6], the average

number is (k − 1 − k−1
p ) |s|L . Considering L = 1, the distribution al-

gorithm of Ref. [6] requires k−2
p |s| bitwise XOR operations fewer

than that of Refs. [4], [5]. Theoretically, that shows if k ≥ 3, the
distribution algorithm of Ref. [6] requires fewer XOR operations
than that of Refs. [4], [5]. If k = 2, the number of XOR opera-
tions of Ref. [6] and that of Refs. [4], [5] are the same. Then, if
p is large, this computational advantage is not dominant because
the total number of XOR operations is also larger. Therefore, we
see that Ref. [6] can be theoretically predicted to be faster than
Refs. [4], [5] if n, or p, is not large, where k ≥ 3.

Consider Fujii et al.’s scheme [3]. Gk in Ref. [3] is considered
close to a Vandermonde matrix that consists of circulant matrices
in which each column is a cyclic shift of the adjacent column.
This indicates that no differences between Refs. [3] and [6] with
L = 1 exist in efficiency and the number of XOR operations for
distribution.

7. Concluding Remarks

We propose several theorems of circulant matrices to discuss
naturally and neatly the rank of recovery matrix Gk and then
achieve a new security analysis for the XOR-based secret shar-
ing schemes [3], [4], [5], [6]. We also show that we can view
recovery matrix Gk as a Vandermonde matrix whose element is
a circulant matrix. The XOR-based secret sharing schemes can
be represented using the properties of circulant matrices and they
can be tied to Shamir’s scheme using a Vandermonde matrix.

Lastly, in our analysis, recovery matrix Gk in Refs. [4], [5] is
not a Vandermonde matrix, but we can view the farthest block
to the right as ḡp−1

i instead of ḡk−1
i . Then, Gk in Ref. [3] is con-

sidered close to a Vandermonde matrix that consists of circulant
matrices in which each column is a cyclic shift of the adjacent
column.
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[20] Fabšič, T., Hromada, V., Stankovski, P., Zajac, P., Guo, Q. and Johans-
son, T.: A Reaction Attack on the QC-LDPC McEliece Cryptosys-
tem, International Workshop on Post-Quantum Cryptography, LNCS
10346, pp.51–68 (2017).

[21] Cohen, H.: A Course in Computational Algebraic Number Theory,
Graduate texts in mathematics 138, Springer (1996).

[22] Shima, K. and Doi, H.: New Proof Techniques of XOR-based Secret
Sharing Schemes, CSS 2019, 2F3-1, pp.839–846 (2019). (in Japanese)

Appendix

A.1 Proof of Theorem 3.3

Definition A.1.1. Let m ≥ 0.

Xm
(a,b)

def
= xm

a + xm
b = X(a,b)H(a,b)

Hm
(a,b)

def
=

m∑
i=0

xi
axm−i

b , H0
(a,b) = 1

Am
(a,b,c)

def
= Hm

(a,c) +Hm
(b,c), A0

(a,b,c) = 0

Ām
(a,b,c)

def
=

m∑
i=0

xi
cHm−i

(a,b), Ā0
(a,b,c) = 1

¯̄A
m

(a,b,c,d)
def
= Ām

(a,c,d) + Ām
(b,c,d),

¯̄A
0

(a,b,c,d) = 0

Definition A.1.2. Let t(u) =
∑u

i=−1 ti and t−1 = 0.

S̄(m)
(c)

def
=

m−3∏
u=0

(
c−m−t(u−1)∑

tu=0

xtu
u ) (m ≥ 3)

¯̄S
(m)

(c)
def
=

m−3∏
u=0

(
c−(m+1)−t(u−1)∑

tu=0

xtu
u ) (m ≥ 3)

S(m)
(a,b)

def
=

⎧⎪⎪⎨⎪⎪⎩
S̄(m)

(b) Āb−m−t(m−3)
(a,m−1,m−2) (m ≥ 3)

Āb−2
(a,1,0) (m = 2)

B(m)
(a,b,c)

def
= S(m)

(a,c) + S(m)
(b,c) (m ≥ 2)
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Lemma A.1.1. S(m)
(m,m) = 1 holds for m ≥ 2.

Proof. S(2)
(2,2) is easily seen to be true. Consider m ≥ 3. We have

that S(m)
(m,m) =

∏m−3
u=0 (

∑−t(u−1)
tu=0 xtu

u )Ā−t(m−3)
(m,m−1,m−2). This always gives

t0 = 0; t0, · · · , tm−3 are also zeros, and t(m − 3) = 0. Therefore,
S(m)

(m,m) = 1 also holds for m ≥ 3. �
Lemma A.1.2. Am

(a,b,c) = X(a,b)Ām−1
(a,b,c) holds for m ≥ 1.

Proof. Note that A0
(a,b,c) = 0. We have

Am
(a,b,c) = Xm

(a,b) +Hm
(a,c) + xm

a +Hm
(b,c) + xm

b

= Xm
(a,b) + xc(Hm−1

(a,c) +Hm−1
(b,c)) = Xm

(a,b) + xcAm−1
(a,b,c).

Recursively, we then have

Am
(a,b,c) = X(a,b)Hm−1

(a,b) + xc(X(a,b)Hm−2
(a,b) + xc(· · · + xcX(a,b)) · · · )

�= X(a,b)

m−1∑
i=0

xi
cHm−1−i

(a,b) = X(a,b)Ām−1
(a,b,c).

Lemma A.1.3. ¯̄A
m

(a,b,c,d) = X(a,b)
∑m−1

i=0 xi
dĀm−1−i

(a,b,c) holds for m ≥ 1.

Proof. Note that A0
(a,b,c) = 0. We have

¯̄A
m

(a,b,c,d) = Ām
(a,c,d) + Ām

(b,c,d) =

m∑
i=0

xi
d(Hm−i

(a,c) +Hm−i
(b,c))

�=

m∑
i=0

xi
dAm−i

(a,b,c) =

m−1∑
i=0

xi
dAm−i

(a,b,c) = X(a,b)

m−1∑
i=0

xi
dĀm−1−i

(a,b,c) .

Theorem A.1.1. B(m)
(a,m,c) = X(a,m)S

(m+1)
(a,c) holds for m ≥ 2.

Proof. This equation holds for m = 2. We have

B(2)
(a,2,c) = S(2)

(a,c) + S(2)
(2,c) = Āc−2

(a,1,0) + Āc−2
(2,1,0) =

¯̄A
c−2

(a,2,1,0)

= X(a,2)

c−3∑
t0=0

xt0
0 Āc−3−t0

(a,2,1) = X(a,2)S̄
(3)
(c)Ā

c−3−t0
(a,2,1) = X(a,2)S

(3)
(a,c)

from Definition A.1.2 and Lemma A.1.3. Next, consider m ≥ 3.
Because the transformation of S̄(m)

(c) to ¯̄S
(m)

(c) is true, we can have

B(m)
(a,b,c) = S(m)

(a,c) + S(m)
(b,c) = S̄(m)

(c) (Āc−m−t(m−3)
(a,m−1,m−2) + Āc−m−t(m−3)

(b,m−1,m−2))

= S̄(m)
(c)

¯̄A
c−m−t(m−3)

(a,b,m−1,m−2) =
¯̄S

(m)

(c)
¯̄A

c−m−t(m−3)

(a,b,m−1,m−2).

Considering the transformation for m = 3 as an example,

B(3)
(a,b,c) =

c−3∑
t0=0

xt0
0

¯̄A
c−3−t0
(a,b,2,1) =

c−4∑
t0=0

xt0
0

¯̄A
c−3−t0
(a,b,2,1)

because ¯̄A
0

(a,b,2,1) = 0 for t0 = c − 3. In general, we need to multi-

ply xt0
0 · · · xtm−3

m−3 by ¯̄A
c−m−t(m−3)

(a,b,m−1,m−2) for S̄(m)
(c) . Because ¯̄A

0

(a,b,c,d) = 0 for

t(m − 3) = c − m, we can transform S̄(m)
(c) to ¯̄S

(m)

(c) . Next, let b = m

and m′ = c − (m + 1) − t(m − 3). Then, we have

B(m)
(a,m,c) =

¯̄S
(m)

(c)
¯̄A

c−m−t(m−3)

(a,m,m−1,m−2) = X(a,m)
¯̄S

(m)

(c)

m′∑
i=0

xi
m−2Ām′−i

(a,m,m−1)

from Lemma A.1.3. Algebraically, we have

B(m)
(a,m,c) = X(a,m)

m−3∏
u=0

⎛⎜⎜⎜⎜⎜⎜⎝
c−(m+1)−t(u−1)∑

tu=0

xtu
u

⎞⎟⎟⎟⎟⎟⎟⎠
m′∑
i=0

xi
m−2Ām′−i

(a,m,m−1)

= X(a,m)

m−3∏
u=0

⎛⎜⎜⎜⎜⎜⎜⎝
c−(m+1)−t(u−1)∑

tu=0

xtu
u

⎞⎟⎟⎟⎟⎟⎟⎠
c−(m+1)−t((m−2)−1)∑

tm−2=0

xtm−2
m−2Ām′−tm−2

(a,m,m−1)

= X(a,m)

m−2∏
u=0

⎛⎜⎜⎜⎜⎜⎜⎝
c−(m+1)−t(u−1)∑

tu=0

xtu
u

⎞⎟⎟⎟⎟⎟⎟⎠ Āc−(m+1)−t(m−2)
(a,m,m−1)

�= X(a,m)S̄
(m+1)
(c) Āc−(m+1)−t(m−2)

(a,m,m−1) = X(a,m)S
(m+1)
(a,c) .

Finally, we prove Theorem 3.3.
Proof. We prove that M(m)

(m,m) =
∏m−1

t=0 X(m,t) for m = 1, · · · , k−1.

If m = 1, the equation M(1)
(1,1) = X(1,0) holds, because the actual

M(1)
(i, j) = X j

(i,0). Consider m = 2, · · · , k − 1. Using S(m)
(m,m) = 1 from

Lemma A.1.1, we consider whether the statement

M(m)
(i, j) =

m−1∏
t=0

X(i,t)S
(m)
(i, j) (A.1)

for i, j ∈ {m, · · · , k − 1} holds for m = 2, · · · , k − 1 by mathemati-
cal induction. Here, Eq. (1) represents the steps of the elementary
row operations for Gk and is true. In the base case, we have

M(2)
(i, j) = M(1)

(i, j) + Ti,0
1,0M(1)

(1, j) = X j
(i,0) + Ti,0

1,0X j
(1,0)

= X(i,0)(H
j−1
(i,0) +H j−1

(1,0)) = X(i,0)A
j−1
(i,1,0)

= X(i,0)X(i,1)Ā
j−2
(i,1,0) =

1∏
t=0

X(i,t)S
(2)
(i, j)

using Eq. (1), the actual values, and Definitions A.1.1 and A.1.2.
Therefore, the statement (A.1) holds for m = 2. Next, consider
the inductive step. Assuming the induction hypothesis that the
statement is true, it must be shown that M(m+1)

(i, j) is true. Alge-
braically, we have

M(m+1)
(i, j) = M(m)

(i, j) +

m−1∏
t=0

Ti,t
m,tM

(m)
(m, j)

=

m−1∏
t=0

X(i,t)S
(m)
(i, j) +

m−1∏
t=0

Ti,t
m,t

m−1∏
t=0

X(m,t)S
(m)
(m, j)

=

m−1∏
t=0

X(i,t)S
(m)
(i, j) +

m−1∏
t=0

X(i,t)S
(m)
(m, j)

=

m−1∏
t=0

X(i,t)B
(m)
(i,m, j) =

m∏
t=0

X(i,t)S
(m+1)
(i, j)

using Eq. (1), the induction hypothesis, Theorem 3.2, Defini-
tion A.1.2, and Theorem A.1.1. This shows that M(m+1)

(i, j) holds.
Because both the base case and the inductive step are performed,
the statement (A.1) holds and the proof is complete. �
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