
Electronic Preprint for Journal of Information Processing Vol.29

Regular Paper

Accurate Contention-aware Scheduling Method
on Clustered Many-core Platform

Shingo Igarashi1,a) Takuro Fukunaga2,3,4 Takuya Azumi1,3

Received: June 30, 2020, Accepted: December 1, 2020

Abstract: Embedded systems such as self-driving systems require a computing platform with high computing power
and low power consumption. Multi-/many-core platforms definitely meet these requirements. However, for hard real-
time applications, multiple demands on shared resources can hinder real-time performance. Memory is one of the
resources that can most dramatically impair desired performance. Therefore, we addressed contentions induced by
shared memory. The ability to predict contentions that may occur during memory access helps to reduce them. We
improved the predictability of contentions by dividing tasks into the memory access phase and the execution phase
using a Directed Acyclic Graph (DAG). Existing methods can make accurate contention estimations for one Compute
Cluster (CC) of a clustered many-core processor. Our method is able to perform accurate contention estimations for
multiple CCs, thereby doubling the scalability when contentions are taken into account. Using an Integer Linear Pro-
gramming (ILP) formulation, we produced a static, non-preemptive, partitioned, and time-triggered schedule. We also
conducted an experiment in order to minimize the makespan. The evaluation confirmed that our new method reduced
the makespan by increasing the number of CCs.

Keywords: real-time scheduling, many-core, communication contention, directed acyclic graph, integer linear pro-
gramming

1. Introduction

In recent years, embedded systems such as self-driving sys-
tems (e.g., Autoware [1], [2]) demand high computing capacity
and low power consumption. Many-core hardware for embedded
systems meets these demands and is the object of intense study.
Many-core hardware is suitable for parallel tasks processing and
for large-scale computations.

Self-driving systems require hard real-time performance.
Therefore, the operation and processing need to be determined
statically during the development stage. In a self-driving system,
multiple applications are running simultaneously and each appli-
cation has a deadline. Applications such as automatic brakes and
collision warnings utilize various types of sensor data and mul-
tiple processes. In our paper, we propose a static scheduling
method to meet deadlines by accelerating processing using the
above-mentioned many-core hardware. Kalray MPPA-256 pro-
cessor is one of the many-core hardware systems. For the work
presented in this paper, we used Kalray MPPA-256 processor.

Cluster-type many-core architectures such as Kalray MPPA-
256 have high performance and power efficiency. However, in
such systems, resource contentions (such as those induced by
shared hardware like shared memory and cache) prevent the sys-

1 Graduate School of Science and Engineering, Saitama University,
Saitama 338–8570, Japan

2 Faculty of Science and Engineering, Chuo University, Bunkyo, Tokyo
112–8551, Japan

3 JST, PRESTO, Chiyoda, Tokyo 102–0076, Japan
4 RIKEN AIP, Cyuo, Tokyo 103–0027, Japan
a) s.igarashi.633@ms.saitama-u.ac.jp

tem from meeting real-time requirements. In this paper, we
solved this problem by estimating effective contentions in order
to reduce the makespan. In addition, although there are many
cases where accurate contention estimation is performed within
one compute cluster (CC) using existing methods [3], [4], [5], we
could find no examples of contention-aware scheduling for mul-
tiple CCs. (Several schedules have been introduced that are only
aware of contentions between CCs [6]). For the purpose of im-
proving scalability and maintaining the real-time functionality,
one of the goals of this paper is to extend accurate contention
estimates to multiple CCs.

We propose using an ILP (Integer Linear Programming) for-
mulation optimization method, which incorporates awareness of
contentions that occur during memory access. A DAG (Directed
Acyclic Graph) application is given as input data, and the amount
of communication data and the WCET (Worst Case Execution
Time) of tasks are statically estimated. This ILP formulation re-
alizes a contention-aware schedule that crosses CCs through NoC
communication rather than as a competitive approach within a
single CC.

Contributions
• We propose an improved memory access model of tasks for

estimating contentions that occurred by assigning tasks to
multiple CCs of a clustered multi-/many-core system.

• We propose an optimization method using the ILP formu-
lation that performs DAG scheduling and mapping to mini-
mize the makespan.

• We evaluate the benefits of increasing the number of CCs
used and the scalability of the proposed method through

c© 2021 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.29

Fig. 1 NoC connections of Kalray MPPA-256.

computational experiments using task graphs converted from
multiple benchmarks as input data.

The remainder of this paper is organized as follows. The sys-
tem model is described in Section 2. Section 3 contains an in-
troduction to the proposed scheduling method for precisely esti-
mating contentions. The scheduling techniques using an ILP for-
mulation are presented in Section 4, and experimental methods,
results, and considerations are given in Section 5. Related work
is presented in Section 6. Finally, the conclusion and directions
for future work are in Section 7.

2. System Model

2.1 Architecture Model
To begin with we will introduce Kalray MPPA-256 processor

and its use as many-core hardware for embedded systems [7], [8].
Despite having the 256 + 16 large cores, the power consump-
tion of Kalray MPPA-256 is small. Its power efficiency is 16 W.
Therefore, the industry expects Kalray MPPA-256 to be used for
embedded systems such as automotive systems. Kalray MPPA-
256 has four cores in each I/O cluster labeled north, south, east,
and west. Kalray MPPA-256 has 16 CCs in the center, and each
CC has 16 cores. Kalray MPPA-256 serves as a means of com-
munication between CCs assembled in a Network on Chip (NoC)
formulation. Mutual I/O clusters and CCs constitute a network
like the red line in Fig. 1. Each CC has 2 MB of SRAM memory
shared locally, and 16 cores of each CC access their shared mem-
ory through a bus connection [9]. Each I/O cluster contains 2 MB
of SRAM and 2 GB of DDR memory. Access from each core
to local shared memory is arbitrated by the Round-Robin policy.
Data transfer through each memory is realized using DMA. The
Resource Manager (RM) in the CC is responsible for managing
memory accesses. The RM can copy data from external memory
to local memory.
Memory Bank Privatization:

Memory bank privatization is one of the functions of Kalray
MPPA-256 necessary for considering contentions [3], [5]. The
local memory in the CC is divided into 16 local memory banks,
and each of which is assigned to each core as a private memory
bank (See Fig. 2). Each core has a private access path to its pri-
vate memory bank, therefore, there is no interference between the
core and its private memory bank. Global copies of communica-

Fig. 2 Memory bank privatization and an example of the read-execute-write
semantics in one CC.

Fig. 3 The structure design of an automotive embedded system (left) and
the corresponding DAG representation (right).

tion variables are stored in the global bank, and a different bank
in CC that can be accessed from all cores as a shared memory
for communication. Interference in accessing the global bank is
possible. One of the cores in the cluster is called the management

core, and the remaining cores are compute cores. This manage-
ment core is RM in Kalray MPPA. The cores assigned to the
global bank are not used for computation. The management core
manages access to the shared resources from each compute core.
For each core, data are transferred between the private memory
bank and the global bank through a shared bus. Please note that
in this paper, we assume that all the code and data can be covered
by 2 MB of SRAM in the CC and do not use off-chip memories
such as DDR.

2.2 Application Model
To schedule the numerous applications required in an automo-

tive system, modeling of data flow is necessary. We use a DAG
to model such data flow. Applications used in an automotive em-
bedded system utilize stream processing results as shown in the
left side of Fig. 3. An automotive system can be represented as
a DAG by representing each process by a node of the DAG and
data flow to or from a process as a directed edge. Each node re-
quires time for computations. Each end node has a deadline. The
presence of a directed edge indicates that a pair of nodes has an
order constraint or a data dependency.
Read-Execute-Write Semantics:

We adopt the read-execute-write semantics found in the pa-
pers [3], [4], [5], and an extension of the PREM (Predictable
Execution Model) [10], [11], to accurately estimate contentions.
Each task (node) of a DAG is divided into three phases: read,

execute, and write. The read phase receives and reads the code
or data from the global bank and stores it in the core’s private

c© 2021 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.29

memory bank. The execute phase can proceed without access to
the shared bus. Finally, the write phase writes or sends the re-
sulting data to the global bank. The communication phases that
access the shared memory via the shared bus or NoC link are the
read and write phases. Therefore, we focus on these phases to
analyze contentions. By combining read-execute-write seman-
tics with the above-mentioned memory bank privatization, it is
possible to prevent interference during the execute phase of each
task. An example of the read-execute-write semantics is shown
in Fig. 2. In this figure, we visualize the three phases of the task
assigned to the computational core in one CC.

Read-execute-write semantics are applicable to the actual ap-
plication. Autoware is one of the ROS (Robot Operating System)-
based open-source self-driving systems and provides the neces-
sary modules for the autonomous vehicles. ROS is middleware
used for robot development and open-source software. ROS uti-
lizes a Publish/Subscribe communication model as a communica-
tion method. In this method, data is called a topic, and a program
is called a node. Topics are pushed by publishing and received by
subscribing. ROS handles large-scale processing by separating
processes into nodes and communicating between them, thereby
enabling distributed processing. We can apply the idea of read-
execution-write semantics by considering subscribing as read and
publishing as write. This idea has already been introduced as a
deterministic scheduling mechanism, called the rclc Executor, for
ROS 2 applications on microcontrollers [12].

2.3 DAG Notation
In read-execute-write semantics, a task i is denoted by a tuple

〈τr
i , τi, τ

w
i 〉 representing the read, execute, and write phases (We

mostly follow the task notation of the paper [4]). An edge is de-
fined by a tuple e = 〈τws , τr

t ,Ds,t〉, where τws is the write phase of
the source task s, and τr

t is the read phase of the target task t. The
quantity of data exchanged between s and t is Ds,t. When τws and
τr

t are mapped to the same core directly using the core’s private
memory bank, the communication time for the data Ds,t is zero
because there is no need to access to the global bank.

We use Ci to indicate a WCET. This value is the execution time
when the task is executed in a single core architecture. In this situ-
ation, the task does not receive interference by other tasks during
execution. This is because all required data have been fetched
into the private memory bank from the global bank before the
task’s execution.

On the other hand, in the read phase and the write phase, it is
necessary to estimate the delay due to contention as shown in the
paper of Rouxel et al. [4] because cores in the CC are connected
by the shared bus and memory access can overlap. We extend the
method of Rouxel et al. [4] and estimate contentions using NoC
communication. Section 3 describes the details.

One objective of this paper is to minimize this makespan.
Therefore, the deadline is not specifically set and all the tasks
of the DAG are assumed to be the same period. Considering the
scheduling extension of multi-rate DAGs (with multiple periods)
is a topic for future work. However, dealing with multi-rate DAGs
is a separate research topic from contention-aware scheduling,
and whether DAGs have the same or multiple periods does not

Fig. 4 An example of a time-triggered schedule.

significantly affect this work.

3. Contention-aware Mapping and Scheduling
Approach with Two Clusters

In this section, we describe a method for accurately estimating
the communication cost. First, we introduce the existing method
that applies to a single CC, and then provide the ideas for using
the two CCs in the proposed method.

3.1 Estimating Interference in One CC
By introducing a time-triggered schedule, contention can be

avoided even in the memory access phase [3], [5]. We therefore
will begin the section by explaining a time-triggered schedule.
As described in Section 2, by combining Memory Bank privati-

zation and read-execute-write semantics, it is possible to execute
the task without contentions, but contention can still occur when
tasks access the global bank. As Fig. 4 shows, a time-triggered
schedule coordinates the access to the global bank so that the read
phase and the write phase do not overlap.

3.2 The Proposed Contention-aware in 2 CCs
We will extend the existing methods founded in Refs. [3], [4]

and propose a contention-aware schedule method targeting two
CCs of Kalray MPPA-256. Therefore the problem to solve is
more difficult. Like the light blue CC routers in Fig. 5, we use
two North and South CCs (Note that it is written as CC, not router,
for clarity in this figure). It is assumed that two NoC links can be
used. One is a link directly connecting the clusters, and the other
is a link passing through a router of the I/O cluster (In Fig. 5,
R128 and R192). To estimate contentions in two CCs, we con-
sider a time-triggered schedule that accesses to both of the global
banks in each CC will not overlap.

To estimate contentions in two CCs, it is necessary to improve
the read phase mainly in the read-execute-write semantics. Let
predecessors(i) be the set of adjacent preceding tasks on the
DAG of task τi. Since there is data dependence in the read phase
of τi, it is necessary to take the variable after the execution of
predecessors(i) from the global bank of the CCs where the core
that executed the task belongs. In this case, NoC communication
is performed when at least one of predecessors(i) is executed
with CC different from τi. For example, if τi is mapped to the
core of CC1 and predecessors(i) is executed on the core of CC2,
it is necessary to access the global bank of CC2 in the read phase
of τi, as shown in the left of Fig. 5. At this time, it is necessary
to prevent access to the global bank of CC2 from overlapping by
a time-triggered schedule as shown in Fig. 4. In the write phase

c© 2021 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.29

Fig. 5 Read phase in two CCs.

Fig. 6 Schedule example in two CCs.

of the task, data are written to the global bank of the core’s CC to
which the task is mapped. In other words, no communication via
NoC is performed in the write phase. This is because if the task
mapping and the memory to be written are not the same CC, de-
tection of dependency data of the preceding task during the read
phase becomes difficult, and it is not scalable. With this setting,
it is possible to decide which global bank should be accessed in
the read phase.

An example of a proposed schedule is visualized in Fig. 6. We
assume that the DAG at the upper left of Fig. 6 is scheduled to be
allocated to two CCs each of which has one compute core. The
expected schedule is similar to the one at the bottom of Fig. 6. In
Fig. 6, paying attention to the execution of τ3, since the preced-
ing τ1 is executed on core 1 of the CC1 and τ3 is also mapped to
CC1, then the global bank (GB) of CC1 is accessed in the read
phase of τ3. On the other hand, noting τ4, since the preceding τ1

is executed in CC1, and τ4 is mapped to core1 of CC2, in the read
phase of τ4, only the GB of CC1 is accessed. Finally, focusing on
τ6, τ6 is mapped to CC1, preceding task τ4 was executed by CC2,
and preceding task τ5 is executed by CC1. Therefore, in the read
phase of τ6, GBs of both CC1 and CC2 are accessed. Note that
read access to the two GBs is done at the same time as the read
phase of τ6 in Fig. 6. We assume that during the read phase, data
obtained via NoC communication is directly placed in the core’s
private memory bank, not the GB.

We allow overlapping of communication phases because we
are aiming to minimize makespan (Contention-free schedule is
not necessarily the shortest schedule [4]). In other words, it is

better to allow partial overlap if it is effective in minimizing the
makespan even if contentions are not completely avoided. There-
fore, it is necessary to find the shortest schedule by calculating
the latency due to contention.

The communication cost of a communication phase (read and
write) depends on how much interference occurs. The Interfer-
ence is due to tasks running in parallel on different cores because
access to the global bank is arbitrated by a Round-Robin policy
through the shared bus in the CC. A pair of tasks is concurrent
if they do not have dependencies between each other and may be
run in parallel. For example, in Fig. 6, tasks τ3 and τ4 are concur-
rent. To accurately estimate contentions, it is necessary to recog-
nize concurrent tasks assigned to other cores and count the num-
ber of tasks with the overlap in access to the same memory [4].
Depending on the number of tasks to overlap, the execution time
of the communication phase changes and affects the makespan.

Although NoC communications may be used during the read
phase of a task, these communications have one of the following
three patterns as shown in Fig. 5. Since there are two CCs and two
NoC links to be used, by creating a time-triggered schedule, no
contention occurs even in communication through a NoC. There-
fore, it is not necessary to describe constraint equations that limit
NoC links. Furthermore, this paper does not consider the mem-
ory capacity, so it does not include variables that indicate memory
allocation.

4. Proposed ILP Method

In this section, we formulate the scheduling method described
in Section 3.2 with ILP. We schedule and map the task graph
on the multi-/many-core platform for the purpose of getting the
shortest schedule. Table 1 summarizes the notations and vari-
ables needed for the ILP formulation.

For a concise presentation of the constraints, the logical op-
erators ∧ and ∨ are used in place of the words ‘and’ and ‘or’,
respectively. These operators can be transformed into linear con-
straints using the simple transformation rules from Ref. [13], as
shown in Table 2.
Objective function. The goal of the optimization is to mini-
mize the makespan of the schedule, which is the latest completion
time of the scheduled tasks, as shown in Eq. (1). Let T be a set
of tasks. Equation (2) gives the constraints on completion time of
each task, namely that the start time of the write phase, ρwi , plus
its WCET, delaywi , be less than or equal to the makespan of the
schedule.

minimize Θ (1)

∀i ∈ T ; ρwi + delaywi ≤ Θ (2)

Variables for specifying allocations. Some basic rules of
scheduling are shown in the following equations. Equation (3)
guarantees that one task is mapped to a single CC. A set of CCs
is denoted by CC and the binary variable qi,cc returns 1 if task
τi is assigned to the core of CC cc. sameCCi, j indicates whether
two tasks are mapped to the same CC. Equation (4) demands the
sameCCi, j returns 1 if tasks τi and τ j are assigned to different
cores of the same CC. Similarly, Eq. (5) guarantees that a task is

c© 2021 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.29

Table 1 Notations and ILP variables.

Sets
T the set of tasks

CC the set of compute cluster
P the set of processors/cores

Functions
predecessors(i) returns the set of adjacent predecessors of task τi

successors(i) returns the set of adjacent successors of task τi

are conc(i) returns the set of concurrent tasks of with task τi

Constants
Ci task τi execute phase’s WCET (Worst Case Execution Time) computed in isolation
Di, j amount of data exchanged between task τi and τ j

M big-M constant used for activating or withdrawing a constraint
Integer variables

ρr
i , ρ

e
i , ρ
w
i start times of read, execute, and write phases of task τi

δri , δ
w
i total amount of data read/written by a read/write phase of τi according to predecessors/successors’ mapping

chunkr
i ,chunkwi the number of full slots to read/write

remainingTimer
i ,remainingTimewi the remaining time to a read/write phase

waitingS lotsr
i ,waitingS lotswi the number of full slots a read/write phase

inter f r
i ,inter f wi the number of interfering tasks of the read/write phases of τi

delayr
i , delaywi task τi read/write phase’s WCET

unused restr
i , unused restwi the remaining allocation time of the duration Tslot

Binary variables
pi,c = 1 task τi is mapped on core c
qi,cc = 1 task τi is mapped on CC cc
mi, j = 1 tasks τi & τ j are mapped on core c

sameCCi, j = 1 tasks τi & τ j are mapped on the same compute cluster
ai, j = 1 task τi is scheduled before task τ j, in the sense ρr

i ≤ ρr
j

ami, j = 1 same as ai, j but on the same core
HereCCi = 1 all predecessors(i) are executed on the same CC as task τi

AnotherCCi = 1 all predecessors(i) are executed on the CC different from task τi

TwoCCi = 1 predecessors(i) are executed on both CCs
ovXY

i, j phase X of τi overlaps with phase Y of τ j, XY ∈ {rr, ww, rw, wr} (r : read phase, w : write phase)
CCovXY

i, j phase X of τi overlaps with phase Y of τ j when at least one phase crosses CC, XY ∈ {rr, rw, wr}
Objective function

Θ the makespan of the schedule

Table 2 Convert to linear equations.

c = a ∧ b c + 1 ≥ a + b c ≤ a c ≤ b
c = a ∨ b c ≤ a + b c ≥ a c ≥ b

mapped to a single core. The set of processors or cores is denoted
by P and the binary variable pi,c returns 1 if task τi is assigned to
the processor or core c. Equation (6) indicates whether two tasks
are mapped to the same core. The binary variable mi, j returns 1 if
tasks τi and τ j are assigned to the same core, while the variable
ai, j imposes the order of two tasks τi and τ j, namely it indicates
that task τi is scheduled before task τ j if ai, j = 1. Equation (7)
forces at least one of ai, j and a j,i to be 1. Since variable ai, j is used
for task ordering on the same core, variables ai, j and a j,i can be
restricted as in Eq. (7). Equation (8) defines the binary variable
ami, j returns 1 if task τi is scheduled before task τ j on the same
core.

∀i ∈ T ;
∑

cc∈CC

qi,cc = 1 (3)

∀(i, j) ∈ T × T ; i � j;

sameCCi, j =
∑

cc∈CC

(qi,cc ∧ q j,cc) and sameCCi, j = sameCC j,i

(4)

∀i ∈ T ;
∑
c∈P

pi,c = 1 (5)

∀(i, j) ∈ T × T ; i � j;

mi, j =
∑
c∈P

(pi,c ∧ p j,c) and mi, j = mj,i (6)

∀(i, j) ∈ T × T ; i � j; ai, j + a j,i = 1 (7)

∀(i, j) ∈ T × T ; i � j; ami, j = ai, j ∧ mi, j (8)

Read-execute-write semantics constraints. Each phase must
be executed contiguously. The start time of the execute phase of
task τi (ρe

i) immediately follows the completion of the read phase
(where the start of the read phase is ρr

i + communication cost
delayr

i) as shown in Eq. (9). Similarly, the write phase (ρwi) be-
gins immediately after the completion of the execute phase (start
of the execute phase ρe

i +WCET Ci), as shown in Eq. (10). If the
phases are non-consecutive, the problem will be greatly compli-
cated. Therefore, this paper imposes these constraints.

∀i ∈ T ; ρe
i = ρ

r
i + delayr

i (9)

∀i ∈ T ; ρwi = ρ
e
i +Ci (10)

Tasks on the same core do not overlap. Since each core can-
not process more than one task in parallel, we require a constraint
that rhowi + delaywi <= rhor

j for two tasks τi and τ j, if τi and τ j

are mapped to the same core and τi is scheduled before τ j (i.e.,
ami, j = 1). On the other hand, this constraint should not be ap-
plied otherwise. To formulate this situation as a linear constraint,
we use the big-M method [14]. Let M be a large constant that
satisfies

M =
∑
i∈T

(Ci + delayr
i + delaywi) (11)

Then, we have a constraint

c© 2021 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.29

∀(i, j) ∈ T ×T ; i � j; ρwi +delaywi ≤ ρr
j+M· (1−ami, j) (12)

Because of Eq. (11),M is larger than or equal to the left-hand
side of Eq. (12). Hence, if ami, j = 0, then constraint Eq. (12) is
satisfied irrespective of rhowi , delaywi , and rhor

j. If ami, j = 1, then
the right-hand side of Eq. (12) is rhor

i , and thus it represents the
required constraint.
Data dependencies in the task graph. Equation (13) enforces
data dependencies by constraining all tasks to start after the com-
pletion of all their respective predecessors. Let predecessors(i)
denotes the set of tasks preceding τi in the task graph.

∀i ∈ T,∀ j ∈ predecessors(i); ρwj + delaywj ≤ ρr
i (13)

Determining communication phases overlap. For each pair
of communication phases, we introduce variables that indicate if
the phases are overlapping in the schedule (ovXY

i, j = 1, with X ∈
{rr, ww, rw, wr} - r : read phase, w : write phase). This variable
is true when phase X of task τi and phase Y of task τ j, where
memory access is performed, overlap in time. This variable can
be used to determine if a memory contention is occurring, and
we can calculate the communication delay. In addition, interfer-
ence with tasks located in the other cluster outside the cluster can
occur. At this time, communication using NoC is performed. In
order to distinguish between communication in one CC and NoC
communication, we set different variables. Therefore, we use a
variable not found in the existing method [4], namely ovXY

i, j , to de-
termine the overlap of the communication phases of the tasks in
a single CC. The overlap when NoC communication occurs is
expressed as the variables CCovXY

i, j .
First, we introduce variables to distinguish the various cases

of overlap between communication phases. The following three
variables determine how to map the adjacent preceding tasks to
CCs for each task. sameCCi, j indicates whether two tasks are
mapped to the same CC. When HereCCi is 1, all the tasks that
directly precede task τi are executed with the same CC as task
τi. The total power function in the formula actually means a
continuation of logical conjunction (∧). According to Ref. [13],
the constraint equation is expressed on the code using a plurality
of expressions without using multiplication as shown in Table 2.
Conversely, AnotherCCi becomes 1 if all the tasks that directly
precede task τi were executed by a CC different from that of task
τi. Finally, if neither HereCCi nor AnotherCCi are 1, then a prior
task was executed in each CC and the value of TwoCCi is 1.

∀i ∈ T ;

HereCCi =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if

∏
k∈predecessors(i)

sameCCi,k = 1

0 otherwise
(14)

AnotherCCi =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if

∏
k∈predecessors(i)

¬sameCCi,k = 1

0 otherwise
(15)

TwoCCi =

⎧⎪⎪⎨⎪⎪⎩
1 if HereCCi = 0 ∧ AnotherCCi = 0
0 otherwise

(16)

Using the three variables defined above, it is possible to create
variables to judge the overlap between concurrent tasks. If task τi

and task τ j are concurrent, one can use the are conc(i) function to

find the concurrent task τ j given task τi. The function are conc(i)
builds the transitive closure of the DAG and judges a pair of tasks
that are not connected by edges in the graph as concurrent [4]. For
overlap judgment, it is necessary to check whether the communi-
cation phase of a task overlaps with the communication phase
of its concurrent task, and whether NoC communication is being
performed in the read phase. All constraint equations are visu-
alized in Fig. 7, showing only one example of the many possible
cases for each variable.
(1) rr : Overlap between read phases. Equation (17) makes a
judgment of an overlap between read phases within a single CC,
that is, it identifies the case where tasks τi and τ j and all the pre-
ceding tasks are all mapped to the same CC. δri indicates the
quantity of data to be read.
∀i ∈ T,∀ j ∈ are conc(i);

ovrr
i, j = HereCCi ∧ HereCC j ∧ sameCCi, j

∧ δri > 0 ∧ δrj > 0 ∧ ρr
i < ρ

e
j ∧ ρr

j < ρ
e
i (17)

The following four patterns must be considered for the over-
lap between two read phases between two CCs. Equation (18)
considers the case of accessing the global bank of a CC different
from the node to which task τ j is assigned during the read phase
of task τ j. Equation (19) is the opposite case of Eq. (18). Equa-
tion (20) considers the case where both read phases overlap when
accessing the CC in which the tasks are not placed. Equation (21)
considers the case where at least one of the read phases of τi and
task τ j accesses the global bank of both CCs, that is, the case
where the preceding task was executed in both CCs.

∀i ∈ T,∀ j ∈ are conc(i),

CCAovrr
i, j = HereCCi ∧ AnotherCC j ∧ ¬sameCCi, j

∧ δri > 0 ∧ δrj > 0 ∧ ρr
i < ρ

e
j ∧ ρr

j < ρ
e
i (18)

CCBovrr
i, j = AnotherCCi ∧ HereCC j ∧ ¬sameCCi, j

∧ δri > 0 ∧ δrj > 0 ∧ ρr
i < ρ

e
j ∧ ρr

j < ρ
e
i (19)

CCCovrr
i, j = AnotherCCi ∧ AnotherCC j ∧ sameCCi, j

∧ δri > 0 ∧ δrj > 0 ∧ ρr
i < ρ

e
j ∧ ρr

j < ρ
e
i (20)

CCDovrr
i, j = TwoCCi ∨ TwoCC j

∧ δri > 0 ∧ δrj > 0 ∧ ρr
i < ρ

e
j ∧ ρr

j < ρ
e
i (21)

Since only one equation from Eqs. (18) to (21) is actually
adopted in any given situation, these can be connected by a logi-
cal or (∨) as in the following Eq. (22).

CCovrr
i, j = CCAovrr

i, j ∨CCBovrr
i, j ∨CCCovrr

i, j ∨CCDovrr
i, j (22)

(2) ww : Overlap between write phases. Since NoC is not used
in the write phase (as mentioned in Section 3), the overlap be-
tween write phases can be represented by Eq. (23), given below.

∀i ∈ T,∀ j ∈ are conc(i),

ovwwi, j = sameCCi, j ∧ δwi > 0 ∧ δwj > 0

∧ ρwi < ρwj + delaywj ∧ ρwj < ρwi + delaywi (23)

(3) rw : Overlap of read phase and write phase. One must be

c© 2021 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.29

Fig. 7 An example of each overlapping variable.

aware that there is a possibility of NoC communication only in
the read phase of task τi, because the write phase writes data to
only the core where that task is mapped. Therefore, unlike rr,
only the task mapping of the adjacent predecessor of task τi is
used for the determination. Equation (24) determines the overlap
of the read phase and the write phase of two tasks mapped in the
same CC. Equation (25) considers a case in which only a CC to
which task τi does not belong to is accessed in the read phase of
τi. Equation (26) considers the case where predecessors(i) were
executed in both CCs.

∀i ∈ T,∀ j ∈ are conc(i);

ovrwi, j = HereCCi ∧ sameCCi, j

∧ δri > 0 ∧ δwj > 0

∧ ρr
i < ρ

w
j + delaywj ∧ ρwj < ρe

i (24)

CCEovrwi, j = AnotherCCi ∧ ¬sameCCi, j

∧ δri > 0 ∧ δwj > 0

∧ ρr
i < ρ

w
j + delaywj ∧ ρwj < ρe

i (25)

CCFovrwi, j = TwoCCi

∧ δri > 0 ∧ δwj > 0

∧ ρr
i < ρ

w
j + delaywj ∧ ρwj < ρe

i (26)

(4) wr : Overlap of write phase and read phase. For the same

reason as rw, the Eqs. (27), (28), (29), given below, can be de-
rived. In the case of rw, task’s phases were reversed, and the
necessary explanation was in rw, so a detailed explanation will
be omitted.

∀i ∈ T,∀ j ∈ are conc(i);

ovwr
i, j = HereCC j ∧ sameCCi, j

∧ δwi > 0 ∧ δrj > 0

∧ ρwi < ρe
j ∧ ρr

j < ρ
w
i + delaywi (27)

CCGovwr
i, j = AnotherCC j ∧ ¬sameCCi, j

∧ δwi > 0 ∧ δrj > 0

∧ ρwi < ρe
j ∧ ρr

j < ρ
w
i + delaywi (28)

CCHovwr
i, j = TwoCC j

∧ δwi > 0 ∧ δrj > 0

∧ ρwi < ρe
j ∧ ρr

j < ρ
w
i + delaywi (29)

Equations (30) and (31) estimate the number of instances of
interference for each of the read phase and write phase of the
task. Variable inter f r

i and inter f wi count the number of instances
of interference during the read phase and the write phase of task
i respectively. The number of instances of interference cannot be
larger than the number of cores. Note that for overlaps other than
ww, only either ov or CCov is adopted.

∀i ∈ T ;

inter f r
i =

∑
∀p∈P

[∨
∀ j∈T |are conc(i)

(ovrr
i, j ∨CCovrr

i, j ∨ ovrwi, j

∨ CCEovrwi, j ∨CCFovrwi, j) ∧ p j,p

]

(30)

inter f wi =
∑
∀p∈P

[∨
∀ j∈T |are conc(i)

(ovwwi, j ∨ ovwr
i, j ∨CCGovwr

i, j

∨CCHovwr
i, j) ∧ p j,p

]

(31)

Finally, to improve the solving time, Eq. (32) contains opti-
mizations that constrain the overlapping variables.

∀i ∈ T,∀ j ∈ are conc(i);

ovrr
i, j = ovrr

j,i CCAovrr
i, j = CCBovrr

j,i

CCCovrr
i, j = CCCovrr

j,i CCDovrr
i, j = CCDovrr

j,i

ovwwi, j = ovwwj,i ovwr
i, j = ovrwj,i

CCGovwr
i, j = CCEovrwi, j CCHovwr

i, j = CCFovrwj,i (32)

Estimation of the duration of worst-case communication.
To estimate the length of the communication phase, one needs the
quantity of data to be read and written (δri , δ

w
i). In addition, when

two consecutive tasks are mapped to the same core (i.e., mi, j = 1),
communication overlap does not occur. This leads to Eqs. (33)
and (34) below. The function successors(i) denotes the set of ad-
jacent successors of task i. The constant Di, j is the amount of data
transmitted from task τi to task τ j. The variable δ is the sum of

c© 2021 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.29

the quantities of data to be communicated during each commu-
nication phase excluding the quantity of communication on the
same core as the task.

∀i ∈ T ;

δri =
∑

j∈predecessors(i)

Dj,i · (1 − mj,i) (33)

δwi =
∑

j∈successors(i)

Di, j · (1 − mi, j) (34)

The following four expressions encode the Round-Robin bus
arbitration policy [4]. Maximum duration, Tslot, is allocated to
each core of each CC. During Tslot, up to Dslot data words
can be transferred as in Eq. (35) (i.e., one data word is trans-
ferred at Tslot/Dslot time units). When there is more data than
Dslot can accommodate, it is divided and transmitted as chunks

as in Eq. (35). One chunk is transmitted in Tslot, and the re-
maining data are transmitted in remainingTime (see Eq. (36),
remainingTime < Tslot). The access time of the core to the mem-
ory is represented by the second and subsequent items of Eq. (38).
Each chunk is kept waiting at a multiple of Tslot according to the
number of overlapping concurrent tasks. Therefore, if waitingslot

is defined to be large as in Eq. (37), the waiting time can be es-
timated as in the first term of Eq. (38). We define the total delay
time in Eq. (38) by adding the waiting time and the access time.
Equations for the write phase are completely analogous (i.e., r -
w), and, therefore, are omitted.

∀i ∈ T ;

chunksr
i =

⌊
δri

Dslot

⌋
(35)

remainingTimer
i = (δri mod Dslot) ·

(
Tslot

Dslot

)
(36)

waitingS lotsr
i =

⌈
δri

Dslot

⌉
(37)

delayr
i = Tslot · waitingS lotsr

i · inter f r
i

+ Tslot · chunksr
i + remainingTimer

i (38)

Since Eqs. (35)–(37) are not linear, they are linearized and are
expressed as follows. Variable unused restr

i means the remaining
allocation time, that is, the duration Tslot − remainingTimer

i .

∀i ∈ T ;

δri = chunksr
i · Tslot + remainingTimer

i (39)

δri = waitingS lotsr
i · Tslot − unused restr

i (40)

unused restr
i ≥ remainingTimer

i (41)

Equation (38) is quadratic and non-convex. We solve this prob-
lem using a safe linear approximation of Eq. (38). Following
the method of Rouxel et al. [4], we replaced waitingS lotsr

i with
WAIT r

i . For the worst case, we let this variable overestimate the
number of waitingS lotr

i . Therefore, WAIT i
r is defined as the sum

of all data read Dj,i as in Eq. (42).

∀i ∈ T ; WAIT r
i =

⌈(∑
j∈predecessors(i)

Dj,i

)/
Tslot

⌉
(42)

Table 3 StreamIt benchmark suite scheduling.

Name #Tasks Width avg data avg WCET (time unit)
Audiobeam 20 15 12 B 41
Beamformer 56 12 18 B 2718
BitonicSort 122 8 49 B 30
DCTcomp 13 3 768 B 4557
DCTverif 7 2 513 B 10045
FFT2 26 2 551 B 618
FFT3 82 16 84 B 120
FFT4 10 2 6 B 11
FFT5 115 16 52 B 38
Firbank 340 12 505 B 670
FMRadio 67 20 6 B 235
FilterbankNew 53 8 35 B 144
MatrixMultiBlock 23 2 793 B 726
Serpent 234 2 1013 B 922
dcalc 84 4 106 B 174
perftest 16 4 8267 B 5269

For bus communication and NoC communication, the length
of memory access differs by about a factor of three with a sim-
ple value [3]; however, it cannot be considered in this paper. This
consideration of the difference in communication time compli-
cates the optimization problem. In addition, since it is difficult to
set the speed of NoC communication with an accurate value, it
is difficult to express a strict speed difference as an ILP. On the
other hand, in the case of heuristic approaches, it is easy to see
the tendency due to the change in the communication speed value
by changing the communication speed parameter. Therefore, this
is left as a topic for future work.

5. Evaluations

5.1 Evaluation Method
As input data, we used applications from the StreamIT bench-

mark suite modeled as fork-join graphs [4], [15], [16]. Table 3
summarizes the benchmarks used in our experiments and the
number and width of tasks (the maximum number of tasks that
can be executed in parallel), the average of the quantity of data
communicated between tasks, and the average of the WCETs of
each task.

We adopted the contention-aware approach of Rouxel et al. [4]
for one CC as a comparative method in which a schedule is gen-
erated assuming that there are two cores in one CC. The proposed
method uses two CCs with two cores per one CC (four cores in
total). It is impossible to ascertain the benefits of the proposed
method simply by increasing the number of clusters; therefore,
we used methods with a different number of cores in our compar-
ison and set T slot = 3.

In the evaluations, we used CPLEX [17] version 12.8.0 as an
ILP solver. We ran CPLEX using up to 32 threads of an Intel
Xeon Gold 6148 processor (2.4 GHz, 20 cores, 40 threads) in the
AI Bridging Cloud Infrastructure. The upper limit of the contin-
uous login time to the computing node of the cloud is 12 hours;
therefore, we used CPLEX with a timeout of 11.5 hours.

5.2 Comparison Result with Existing Method
We compared the schedule makespan obtained and solving

time of the two methods. The result of the evaluation is sum-
marized in Table 4, which shows the makespan by each method,
the solving time, whether the solution is optimal, and the number

c© 2021 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.29

Table 4 Evaluation results.
Name one CC [4] two CCs (proposed) gain[%]

makespan time[s] variables makespan time[s] variables
Audiobeam 4561 f timeout 3722 4034 f timeout 6285 11.554
Beamformer 101832 f timeout 24990 49406 f timeout 40329 51.482
BitonicSort 196624 f timeout 59694 - timeout 106733
DCTcomp 135454o 14.09 1005 119457o 1.24 1630 11.810
DCTverif 119212o 0.06 144 119212o 0.12 312 0.000
FFT2 3986530o 10.89 5005 3982430o 14.29 8519 0.001
FFT4 7272o 0.28 192 6753o 0.74 521 0.071
FFT3 452498o 4992.13 34709 - timeout 60545
FFT5 131688 f timeout 69799 - timeout 122678
Firbank - timeout 968014 - timeout 2603543
FMRadio - timeout 33126 - timeout 52746
FilterbankNew 128626o 4569.93 32774 - timeout 54183
MatrixMultiBlock 301564o 16206.50 2760 220540o 11.61 4848 26.87
Serpent 3977670o 9793.6 163948 3977670o 402.782 301831 0.000
dcalc 152704 f timeout 25578 125072 f timeout 46045 18.95
perftest 2157190o 151.06 1957 2002570o 24.178 3562 7.13

o : optimal solution

f : feasible solution

- : no solution

of ILP variables. The gain of the table is calculated using each
makespan as Eq. (43).

gain =
oneCC − twoCCs

oneCC
× 100 (43)

From the value of gain, our method succeeds in getting a
shorter makespan. The input graphs whose makespan has not
changed (DCTverif and Serpent) seem to have not improved even
if the number of clusters was increased because the width is two
(i.e., the optimum solution is founded at the time of the existing
method). On the contrary, there are graphs in which width is 2,
but the makespan becomes short, because wait time in the com-
munication phase is reduced as the number of memory has in-
creased. In other words, even if the same width occurs, whether
the makespan becomes shorter depends on the structure of the
graph in addition to the number of clusters. From the above anal-
ysis on the makespan, we believe that we could create a schedul-
ing approach using two CCs considering contentions.

From the comparison of the solving time values, our ILP for-
mulation could solve the problem quickly while seeking a bet-
ter makespan. However, because the time required for estima-
tion increases dramatically with the number of tasks, width, and
the number of cores, it does not always produce a solution in a
reasonable time. From the execution result of the input graph
Audiobeam, it turns out that in particular the parallelism degree
greatly influences the solving time. We believe this is due to
the existence of concurrent tasks and all the possible overlapping
cases. Therefore, there were some graphs that could not find any
solution within the time limit. In the proposed method, the num-
ber of cores is doubled, and the number of variables related to
core mapping increased. Therefore, the number of ILP variables
is approximately doubled. On the other hand, the increase in the
number of variables by the proposed method for identifying clus-
ters is only a small percentage as a whole. Since the number of
cores to be used also affects both the schedule time and the solv-
ing time, it is necessary to use a heuristic approach for graphs that
could not obtain a solution this time.

5.3 Evaluation of the Scalability of the Proposed Method
In this subsection, we use the proposed method and observe the

improvement in makespan when the number of cores is changed.
We selected two applications, Audiobeam and Beam f ormer of

Fig. 8 Improvement by increasing the number of cores (Audiobeam).

Fig. 9 Improvement by increasing the number of cores (Beamformer).

the benchmark applications. These were chosen because of their
high width (parallelism) and the fact that we could find solutions
in Table 4. In this evaluation, we ran CPLEX using an Intel Core
i7-8550U CPU (1.8 GHz, four cores, and eight threads), and the
CPLEX timeout was set to 24 hours.

The result of the evaluation is summarized in Fig. 8 and Fig. 9.
All the solutions here were feasible. It can be confirmed that
the makespan of each application is significantly reduced as the
number of cores used increases. In addition, since the proposed
method accurately estimates the delay due to contention, we think
that it is suitable for hard real-time systems such as self-driving
systems, which require a larger amount of calculation than the
existing method.

The proposed method is applicable to two clusters and is ca-
pable of running independent applications on eight pairs of two
clusters, taking into account delays due to contention. This means
that the proposed method can utilize all 16 clusters of Kalray
MPPA2-256 Bostan. However, the time to generate a schedule
will become impractical as the size and number of applications
grow because the proposed method is an optimal approach.

To make full use of high scalability of the many-core, we need
to create a fast heuristic approach using equivalent ideas. When
such work is completed, the ILP method presented here will pro-
vide a baseline against which to confirm the consistency of the
heuristic method.

The proposed method is a theoretical scheduling approach, and
it is impossible to compare it with the competitive delay in actual
hardware. The allocation time for each request depends on the
hardware, and in a multi-/many-core processor, many contentions
can occur. Therefore, it is very difficult to estimate the contention
between specific tasks when the application is actually running.

c© 2021 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.29

Table 5 Comparison with previous work.

our paper A [5] B [3] C [4] D [6]
DAG scheduling � �

contention-aware in one CC � � � �
contention-aware between CCs

with NoC communication
� �

ILP (CP) formulation � � � � �

A : contention-free framework of Becker et al. [5]

B : contention-free scheduling using a CP formulation of Becker et al. [3]

C : contention-aware scheduling of Rouxel et al. [4]

D : NoC partitioned method of Becker et al. [6]

6. Related Work

Contention analysis of shared resources in multi-/many-core
platforms has received significant attention in recent years. Part
of contention analysis is task scheduling. Task scheduling on
multi-/many-core platforms consists of deciding where (map-
ping) and when (scheduling) each task is executed [18], [19],
[20], [21], [22], [23], [24]. Table 5 summarizes a comparison
of this paper with its main related research.

Becker et al. [5] proposed an ILP formulation and a heuristic
for scheduling periodic, independent, PREM-based tasks on one
cluster of Kalray MPPA processor. They systematically created
a contention-free schedule and proposed an execution framework
for avoiding contention by taking advantage of memory privati-
zation features available in processors such as Kalray MPPA-256.
They divided tasks into 3 sub-tasks: read copies input data from
the shared memory to a private memory bank, execute only ac-
cesses the private memory bank, and write copies output data to
the shared memory. Using a specific scheduling policy, it is pos-
sible to avoid contention completely. Becker et al. [3] extended
their own approach in Ref. [5] and improved scalability by dis-
tinguishing task types and efficiently using both off-chip memory
and local memory. In the case of the scheduling method for auto-
motive applications, it is essential to use off-chip memory (DDR);
therefore, we used a different task model. However, the approach
of Becker et al. [3] should be examined in the future.

Rouxel et al. [4] introduced two contention-aware schedule
strategies that generate a time-triggered schedule for application
tasks. They accurately estimated contentions and established the
ILP formulation of the scheduling problem and a heuristic ap-
proach. The proposed technique reduced the makespan compared
to the case of the worst contentions. On the basis of their suc-
cess, we proposed a method to generate a schedule using two
CC. Becker et al. [5] considered sporadic independent tasks for
the purpose of finding a valid schedule to satisfy the deadline of
each task, while Rouxel et al. [4] sought to find the shortest sched-
ule by considering one iteration of a task graph.

Becker et al. [6] proposed a new partition strategy for Kalray
MPPA-256 to reduce contentions on NoC. They divided 16 CCs
into two groups with north and south, to ensure each CC has a
private link to the north or south off-chip memory (DDR).

7. Conclusion

This paper presents a proposed method for estimating con-
tentions when tasks access shared memory using two CCs of
Kalray MPPA-256 processor. By improving the memory ac-

cess model, the proposed method divides the task into an exe-
cute phase and the communication phase, and can estimate con-
tentions in both phases within a single CC and between CCs. We
incorporated this idea as an optimization method using the ILP
formulation, and performed DAG scheduling and mapping to find
a schedule that minimized contentions. Input data was modeled
by using StreamIT benchmark suite as a DAG. Our evaluation re-
sults showed that, compared to the existing method, our approach
improved the schedule makespan, confirming that the processing
time of the application can be reduced by increasing the num-
ber of CCs used. However, since the proposed method calculates
all interference patterns, the solving time required to solve the
optimization problem greatly increases with an increase in the
number of tasks, parallelism, and the number of cores.

Future work is to refine the contention model and make it more
usable for many-core for CC platforms such as Kalray MPPA-
256 processor by limiting contentions and guaranteeing real-time
performance. Furthermore, it is necessary to create an ILP model
in consideration of the memory capacity and our memory model.
In addition, we will examine a high-speed heuristic method ex-
pected to be equivalent to the proposed method, and consider a
multi-rate (multiple periods) DAG. The heuristic method will
also be able to model the difference in communication speed both
inside and outside the cluster.

Acknowledgments We thank Benjamin Rouxel, University
of Rennes, for sharing the experimental environment and an-
swering our questions. This work was partially supported JST
PRESTO Grant Number JPMJPR1751 and JPMJPR1759.

References

[1] autoware’s Official Website: Autoware.AI, available from 〈https://
www.autoware.ai/〉.

[2] Kato, S., Tokunaga, S., Maruyama, Y., Maeda, S., Hirabayashi, M.,
Kitsukawa, Y., Monrroy, A., Ando, T., Fujii, Y. and Azumi, T.: Au-
toware on board: Enabling autonomous vehicles with embedded sys-
tems, Proc. ICCPS, pp.287–296 (2018).

[3] Becker, M., Mubeen, S., Dasari, D., Behnam, M. and Nolte, T.:
Scheduling multi-rate real-time applications on clustered many-core
architectures with memory constraints, Proc. ASP-DAC, pp.560–567
(2018).

[4] Rouxel, B., Derrien, S. and Puaut, I.: Tightening contention de-
lays while scheduling parallel applications on multi-core architectures,
ACM Trans. Embedded Computing Systems (TECS), pp.164:1–164:20
(2017).

[5] Becker, M., Dasari, D., Nicolic, B., Akesson, B., Nélis, V. and Nolte,
T.: Contention-free execution of automotive applications on a clus-
tered many-core platform, Proc. ECRTS, pp.14–24 (2016).

[6] Becker, M., Nikolic, B., Dasari, D., Akesson, B., Nélis, V., Behnam,
M. and Nolte, T.: Partitioning and analysis of the network-on-chip on
a COTS many-core platform, Proc. RTAS, pp.101–112 (2017).

[7] Maruyama, Y., Kato, S. and Azumi, T.: Exploring scalable data allo-
cation and parallel computing on NoC-based embedded many cores,
Proc. ICCD, pp.225–228 (2017).

[8] official Website of Kalray MPPA R©: Kalray MPPA R© architecture,
available from 〈https://www.kalrayinc.com/portfolio/processors/〉.

[9] De Dinechin, B.D., Van Amstel, D., Poulhiès, M. and Lager, G.: Time-
critical computing on a single-chip massively parallel processor, Proc.
DATE, p.97 (2014).

[10] Pellizzoni, R., Betti, E., Bak, S., Yao, G., Criswell, J., Caccamo, M.
and Kegley, R.: A predictable execution model for cots-based embed-
ded systems, Proc. RTAS, pp.269–279 (2011).

[11] Alhammad, A. and Pellizzoni, R.: Time-predictable execution of mul-
tithreaded applications on multicore systems, Proc. DATE, pp.1–6
(2014).

[12] Real-Time Executor: micro-ROS, available from 〈https://micro-ros.
github.io/docs/concepts/client library/real-time executor/〉.

[13] Brown, G.G. and Dell, R.F.: Formulating integer linear programs: A

c© 2021 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.29

rogues’ gallery, INFORMS Trans. Education, Vol.7, No.2, pp.153–159
(2007).

[14] Griva, I., Nash, S.G. and Sofer, A.: Linear and nonlinear optimization,
second edition, Society for Industrial Mathematics (2008).

[15] Rouxel, B. and Puaut, I.: STR2RTS: Refactored StreamIT bench-
marks into statically analysable parallel benchmarks for WCET es-
timation & real-time scheduling, Proc. OASIcs-OpenAccess Series
in Informatics, Vol.57, Schloss Dagstuhl-Leibniz-Zentrum fuer Infor-
matik (2017).

[16] Rouxel, B.: Minimising communication costs impact when schedul-
ing real-time applications on multi-core architectures (2018) (online),
available from 〈https://hal.inria.fr/tel-01945456〉.

[17] official Website of CPLEX: ILOG CPLEX Optimization Studio –
Overview, available from 〈https://www.ibm.com/products/ilog-cplex-
optimization-studio〉.

[18] Nguyen, V.A., Hardy, D. and Puaut, I.: Cache-conscious offline real-
time task scheduling for multi-core processors, Proc. ECRTS (2017).

[19] Martinez, S., Hardy, D. and Puaut, I.: Quantifying WCET reduction of
parallel applications by introducing slack time to limit resource con-
tention, Proc. RTAS pp.188–197 (2017).

[20] Igarashi, S., Kitagawa, Y., Ishigooka, T., Horiguchi, T. and Azumi,
T.: Multi-rate DAG scheduling considering communication contention
for NoC-based embedded many-core processor, Proc. DS-RT (2019).

[21] Perret, Q., Maurere, P., Noulard, E., Pagetti, C., Sainrat, P. and Triquet,
B.: Temporal isolation of hard real-time applications on many-core
processors, Proc. RTAS, pp.1–11 (2016).

[22] Perret, Q., Maurère, P., Noulard, É., Pagetti, C., Sainrat, P. and Triquet,
B.: Mapping hard real-time applications on many-core processors,
Proc. RTNS, pp.235–244 (2016).

[23] Rouxel, B., Skalistis, S., Derrien, S. and Puaut, I.: Hiding communi-
cation delays in contention-free execution for SPM-based multi-core
architectures, Proc. ECRTS, pp.1–24 (2019).

[24] Kitagawa, Y., Ishigooka, T. and Azumi, T.: DAG scheduling algo-
rithm for a cluster-based many-core architecture, pp.150–157, DOI:
10.1109/EUC.2018.00030 (2018).

Shingo Igarashi is a master student of
Graduate School of Science and Engineer-
ing, Saitama University. He received his
B.E. degree from School of Science and
Engineering, Saitama University in 2019.
His research interests include embedded
systems, and real-time scheduling.

Takuro Fukunaga is an Associate Pro-
fessor at Faculty of Science and Engineer-
ing, Chuo University. He received the
Ph.D. degree in Informatics from Kyoto
University, Japan in 2007. He was an As-
sistant Professor at Kyoto University from
2007 to 2013, a Project Associate Pro-
fessor at National Institute of Informatics

from 2013 to 2017, and a research scientist at RIKEN Center for
Advanced Intelligence Project from 2017 to 2019. His research
interests include design and analysis of discrete algorithms for
combinatorial optimization problems, and their applications to
related areas such as operations research, computer communica-
tion, and machine learning. He is a member of Operations Re-
search Society of Japan.

Takuya Azumi is an Associate Professor
at the Graduate School of Science and
Engineering, Saitama University. He re-
ceived his Ph.D. degree from the Graduate
School of Information Science, Nagoya
University. From 2008 to 2010, he was
under the research fellowship for young
scientists for Japan Society for the Promo-

tion of Science. From 2010 to 2014, he was an Assistant Profes-
sor at the College of Information Science and Engineering,
Ritsumeikan University. From 2014 to 2018, he was an Assis-
tant Professor at the Graduate School of Engineering Science,
Osaka University. His research interests include real-time operat-
ing systems and component-based development. He is a member
of IEEE, ACM, IEICE, and JSSST.

c© 2021 Information Processing Society of Japan

