
Electronic Preprint for Journal of Information Processing Vol.29

Regular Paper

AXARPSC: Scalable ARP Snooping Using Policy-based
Mirroring of Core Switches with ARP Log Contraction

Motoyuki Ohmori1,a) NaokiMiyata1,b) Koji Okamura2,c)

Received: June 22, 2020, Accepted: December 1, 2020

Abstract: In order to handle a computer security incident or network failure, it is important to grasp a list of pairs
of IP and MAC addresses of the hosts. A traditional method based upon ARP table polling, however, has two major
drawbacks that 1) some pairs of IP and MAC addresses may not be obtained and 2) it incurs a heavy load on a core
switch. In order to overcome these drawbacks, this paper proposes AXARPSC that is the novel scalable ARP snooping
to build a list of pairs of IP and MAC addresses. AXARPSC can avoid missing pairs of IP and MAC addresses by
monitoring all ARP traffic. AXARPSC also can reduce a CPU load on a recent high-end core switch by approximately
20%. AXARPSC is scalable because AXARPSC incurs no additional CPU load even though the number of hosts
increases. AXARPSC employs a policy-based mirroring of a switch that mirrors traffic that matches a specified filter.
The policy-based mirroring can mirror ARP traffic only, and reduce the load on an ARP parsing server. AXARPSC
can also contract multiple contiguous ARP messages that have the same pair of an IP address and MAC address, as if
one ARP message is observed.

Keywords: ARP snooping, scalability, computer security incident

1. Introduction

In order to handle a security incident or network failure, it is
important to grasp a list of pairs of IP addresses and MAC ad-
dresses of hosts [1], [2]. For example, only an IP address of
a suspicious host is alerted by an outer organization, Security
Operations Center (SOC) or security equipment such as a next-
generation firewall when a security incident occurs. If the suspi-
cious host uses an IP address without any prior authorization or if
an IP address assigned list is not properly maintained, the suspi-
cious host cannot be identified. Even under such a situation, the
suspicious host must be able to be identified and isolated from a
network as soon as possible. In order to identify the suspicious
host, a MAC address of the suspicious host must be obtained. It
is, therefore, important to grasp a list of pairs of IP addresses and
MAC addresses of hosts. To this end, ones may poll an Address
Resolution Protocol (ARP) [3] table of a core switch at an interval
using SNMP or other methods. We have, however, experienced
that a MAC address of an IP address was not correctly obtained.
The cause was that the IP address was duplicately assigned to
different hosts. One of them was authorized but another was not.
The unauthorized host then induced a security incident, and it was
difficult to identify the host. It can be said that polling an ARP
table is not accurate.

This paper proposes AXARPSC that is the novel scalable ARP
snooping to build a list of pairs of IP addresses and MAC ad-

1 Tottori University, Tottori 680–8550, Japan
2 Kyushu University, Fukuoka 819–0395, Japan
a) ohmori@tottori-u.ac.jp
b) miyata@tottori-u.ac.jp
c) oka@ec.kyushu-u.ac.jp

dresses. The challenge of this paper is to build the list without any
extra load on a core switch. AXARPSC employs a policy-based

mirroring [4] of a core switch that mirrors traffic that matches a
specified filter. AXARPSC is, therefore, passive snooping, and
incurs almost no load on a core switch while an active snoop-
ing or active MAC address table polling incurs many loads on
a core switch. In addition, AXARPSC can reduce a load on an
ARP parsing server because the policy-based mirroring can mir-
ror ARP traffic only. AXARPSC is scalable because AXARPSC
incurs no additional CPU load even though the number of hosts
increases. AXARPSC can also regard many contiguous ARP
messages that have the same pair of an IP address and MAC ad-
dress as one ARP message in order to reduce the storage size.

Note that this paper is an extended version of our preliminary
paper [5]. This paper is newly proposing and implementing con-
tractions of logging messages that were not considered in the pre-
liminary paper. These contractions are one of the main extended
points from the preliminary paper, and are effective because they
dramatically reduce the storage size of ARP log messages.

The rest of this paper is organized as follows. Section 2
presents existing ARP table polling and ARP table snooping and
their problems. Section 3 proposes AXARPSC. Section 4 ex-
plains a prototype implementation of AXARPSC. Section 5 eval-
uates AXARPSC using the prototype implementation in an ac-
tual campus network. Section 6 discusses the validity of pre-
conditions in this paper and further applied usage of AXARPSC.
Section 7 refers to related work. Section 8 finally concludes this
paper.

c© 2021 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.29

2. Problems of Existing ARP Table Polling and
Watching

2.1 Problems of ARP Table Polling
A traditional way to obtain a list of pairs of IP addresses and

MAC addresses in a network is to poll an ARP table of a core
switch. A polling server remotely polls an ARP table of a core
switch using SNMP or Command Line Interface (CLI). The prob-
lems of this method are:
(1) an ARP table polling cannot track a quick IP address change

less than an polling interval, and
(2) imposes a heavy load on a core switch.

Regarding the former, a polling interval is traditionally 5 min-
utes or longer. 5 minutes would be the minimal interval, and even
the 5-minute interval cannot track a quick IP address change. We
have actually experienced that an unauthorized host was assigned
an IP address to its NIC for a very short duration within 5 minutes
while an authorized host was always assigned the IP address. A
pair of a MAC address and an IP address of the unauthorized host
could not be listed in our ARP table tracking. The unauthorized
host, unfortunately, caused a security incident, and it took a few
days to identify the unauthorized host in 2018. Before identify-
ing the unauthorized host, we wrongly regarded the authorized
host as the cause of the incident, and wrongly isolated the autho-
rized host from a network. This wrong operation decreased the
availability of the authorized host. On the other hand, the unau-
thorized host might have compromised confidential information
because of this long delay, and the incident might have been crit-
ical.

Regarding the latter, we have experienced more than 20% CPU
load increase of a core switch when we polled an ARP table from
the core switch that was AX8616 which is made by AlaxalA Net-
works Corporation. Figure 1 shows a CPU load of a core switch
without ARP table polling a day where about unique 6,000 IP ad-
dresses were assigned to hosts. In Fig. 1, CPU load 1/1 and 1/2
represent main and backup CPUs, respectively. The backup CPU
load is always about 1% because backup CPU does not process
any traffic in the authors’ configuration. We, hereafter, focus on
the main CPU load only. As shown in Fig. 1, the CPU load was
basically 1% or less. On the other hand, Fig. 2 shows a CPU load
of the same core switch with ARP table polling using SNMP a
day. A polling interval was 5 minutes. As shown in Fig. 2, the
CPU load dramatically increased, and the maximum CPU load
of that day was 31%. There were about unique 6,001 hosts, and
the load might then double, i.e., 61%, if there were 12,000 hosts.
In addition, this CPU load value was 5-minute average, and the
peak maximum CPU load might have been 100%. When ARP ta-
ble polling is enabled, other processes such as BGP routing with
full routes may fail. This tendency could also be seen everyday
when ARP table polling was enabled. It can, therefore, be said
that ARP table polling imposes an unacceptably heavy load on a
core switch.

We have also experienced that another core switch, AX8608,
dropped necessary SNMP monitoring traffic by AlaxalA Net-
works Corporation AX-Security-Controller (AX-SC) [6] that em-
ploys ARP table polling by SNMP during IPSJ SIG Internet

Fig. 1 CPU load of a core switch without ARP table polling.

Fig. 2 CPU load of a core switch with ARP table polling using SNMP.

and Operation Technology Symposium 2018 (IOTS2018). In
IOTS2018, there were fewer than 200 hosts observed on a net-
work. In order to monitor network usage, we retrieved network
traffic information, i.e., sent and received bits per second, of the
core switch by SNMP, and it had worked at first. On even such
a small network, the network traffic information could not be re-
trieved by SNMP right after enabling AX-SC. When AX-SC was
disabled, the network traffic information could be retrieved again.
ARP table polling of AX-SC seems to have incurred a heavy load
on the CPU of the core switch. Again, it can be said that ARP ta-
ble polling imposes an unacceptably heavy load on a core switch.

As described above, an ARP table polling table has critical
problems, and these problems should be solved or mitigated.

2.2 Problems of ARP Watching
Another way to obtain a list of pairs of IP addresses and MAC

addresses in a network is to watch an ARP. The most famous
implementation of this method is arpwatch [7]. Employing arp-

watch, we can collect pairs of IP addresses and MAC addresses
of hosts that broadcasts ARP requests into a network. An ARP
request is usually broadcasted and it includes a MAC address and
an IP address of a host which is sending an ARP request. This
way, however, cannot avoid a malicious host escaping from hav-
ing its MAC address collected. This is because that a malicious
host can statically configure an ARP entry for a default gateway
in order to avoid emitting an ARP request.

In order to avoid this kind of malicious host escape, we may be
able to capture all traffic and snoop all ARP requests and replies.
Since a default gateway must send an ARP request to the mali-
cious host and receive an ARP reply from the malicious host, a
MAC address of the malicious host can be obtained. It is, how-
ever, difficult to implement because all traffic in a network should
be snooped and many snooping servers are necessary.

As described above, ARP watching has flaws of security and
scalability.

c© 2021 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.29

3. AXARPSC

This section presents AXARPSC that is the novel scalable ARP
snooping and solves all issues described in Section 2. AXARPSC
is novel because AXARPSC is the first proposal to snoop ARP
traffic only, and can reduce a storage size by contracting ARP log
messages. The basic idea of AXARPSC is very simple:
(1) mirroring only ARP traffic by employing policy-based mir-

roring [4], and
(2) parsing ARP requests and replies, and
(3) storing a pair of an IP address and MAC address, and
(4) contracting multiple ARP messages that have the same pair

of an IP address and MAC address to one pair of an IP ad-
dress and MAC address.

Policy-based mirroring is a traffic mirroring function which
improves a traditional mirroring function of a core switch. A tra-
ditional mirroring can mirror all traffics on a specific VLAN or
specific physical port. A traditional mirroring, however, cannot
mirror only a specific protocol traffic, i.e., cannot restrict mirrored
traffic based upon a protocol. On the other hand, policy-based
mirroring can selectively mirror traffic by protocol. Policy-based
mirroring can support mirroring only an ARP request and reply.
This feature enables to reduce unnecessary traffic when only an
ARP request and reply are necessary.

AXARPSC parses not only an ARP reply but also an ARP re-
quest in order to accurately obtain the most recent pair of an IP
address and MAC address. An ARP request includes an IP ad-
dress and MAC address of a sender, and AXARPSC snoops an
ARP request. If the pair of an IP address and MAC address is
firstly observed or different from the previous pair, AXARPSC
stores the new pair as a new entry. AXARPSC also stores a new
pair of an IP address and MAC address of a target host, i.e., a host
asked to respond to an ARP request, seen in an ARP reply. When
AXARPSC stores a new pair of an IP address and MAC address,
the time when the new pair was observed is also stored. If a dif-
ferent MAC address for the same IP address is previously stored
in a different old entry, the time is also stored in the old entry as
the last seen time, and the new entry is created.

In addition, AXARPSC contracts ARP syslog messages. For
example, regarding an incident, the most important is which IP
address is assigned to which host at the specified time. It is not
necessary to store all logs of all ARP requests and replies for this
purpose. Before an ARP entry expires, the ARP entry continues
to exist on an ARP table unless the ARP entry is overridden by
another MAC address. Only the latest ARP request or reply is,
therefore, necessary before an ARP entry expires. In order to re-
duce a storage size, AXARPSC regards the same contiguous pair
of an IP address and MAC address as one entry even if many ARP
messages that have the same pair are observed. AXARPSC just
updates the last seen time of the entry, and does not create a new
entry.

Figure 3 depicts an overview of the AXARPSC system. In
Fig. 3, a core switch has multiple VLANs configured, and those
VLANs are necessary to be snooped. ARP requests and replies on
those VLANs are mirrored to an ARP snooping server. An ARP
snooping server parses ARP packets, generates syslog messages,

Fig. 3 An overview of AXARPSC system.

Fig. 4 An example of policy-based mirroring configuration.

and sends these syslog messages to a logging server. A logging
server then stores syslog messages in order to provide a user with
a pair of an IP address and a MAC address when an incident or
network failure occurs.

Note that AXARPSC assumes that:
(1) a core switch supports policy-based mirroring or similar mir-

roring as described in Section 6.2,
(2) there are few L3 core switches in a site or campus, and
(3) many VLANs are routed at L3 by a core switch.

4. Implementation

This section presents our first prototype implementation of
AXARPSC.

We have configured policy-based mirroring on AX8616 which
is made by AlaxalA Networks Corporation. We have configured
220 VLANs on which all ARP traffic were to be mirrored to an
ARP snooping server via a physical GbE link using advanced

access-list as shown in Fig. 4.
We have prepared a physical server, not a virtual machine, as

an ARP snooping server. We have then implemented an ARP
snooping server using python3 [8]. In order to parse ARP pack-
ets, we have utilized Scapy [9] that provides simple but strong
APIs to parse ARP packets. An ARP snooping server then ex-
tracts a source MAC address and IP address included in an ARP
packet. Note that not only an ARP reply but also an ARP request
is parsed in order to obtain the most recent pair of an IP address
and MAC address. An ARP snooping server generate a syslog
message as shown in Fig. 5. An ARP snooping server then sends
a generated syslog message to a logging server.

c© 2021 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.29

Fig. 6 The number of ARP requests and replies per hour (from 2018/10/11 9:00 to 2018/11/3 4:00).

Fig. 5 An example of syslog output of AXARPSC.

Table 1 ARP snooping server specification.

CPU Intel(R) Xeon(R) CPU E5506 2.13 GHz (8 core)
Memory 8 GB

OS CentOS Linux release 7.5.1804 (64 bit)

We have implemented a logging server using fluentd [10] and
mongoDB [11] in order to shorten the search time on an incident
or network failure.

5. Evaluations

We here evaluate AXARPSC using our prototype implementa-
tion. This section firstly introduces the evaluation environment.
The number of ARP requests and replies in an actual environment
is shown in order to make sure that our prototype implementation
works properly. It is then proved that core switch load increase
of AXARPSC is smaller. This section then looks into a load on
an ARP snooping server. Finally, we present how big storage is
necessary to hold all pairs of IP addresses and MAC addresses of
all hosts.

5.1 Evaluation Environment
We have implemented the scalable ARP snooping at a core

switch, AX8616, in our Koyama campus network in Tottori city
where about 6,000 unique hosts can be seen at maximum. In this
campus, we have only one core switches, and almost all VLANs
are accomodated and routed at L3 by the core switch. We have
configured policy-based mirroring for 220 VLANs on the core
switch. The core switch accommodates all wireless traffic using
wireless LAN controller and all (i.e., wired and wireless) traf-
fic in this campus goes through this core switch to the Internet.
The external link to the Internet is 1 Gbps and almost all internal
links are 10 Gbps in the core switch. An ARP expiry timer on
the core switch is configured to be 5 minutes. The reason of this
configuration is not clear, and the previous network vendor might
configure in order to minimize an ARP table size. We have in-
stalled one physical ARP snooping server, and its specification is
shown in Table 1.

5.2 ARP Requests and Replies
In order to make sure that our prototype implementation works

properly, we here dig into the number of ARP requests and replies

Fig. 7 CPU load of a core switch with scalable ARP snooping.

that are snooped and stored. Figure 6 shows the number of ARP
requests and replies per hour from 2018/10/11 9:00 to 2018/11/3
4:00. The maximum number is 2,047,676 on 2018/10/25 15:00.
As shown in Fig. 6, there are more ARP requests and replies on
week days than there are on holidays. We have made sure that all
MAC addresses were properly stored in comparison with a tradi-
tional ARP table polling, and there was no dropped MAC address
except for a mis-operation.

On the other hand, we have made sure that there is an effec-
tiveness of policy-based mirroring. When policy-based mirroring
was not employed, i.e., all traffic was mirrored, many packets
were dropped and many ARP packets were then dropped. It can
be said, therefore, that AXARPSC works better than a traditional
ARP watching method that needs all traffic to be mirrored.

5.3 Increase of Core Switch Load
As described in Section 2.1, a traditional ARP table polling

imposes a heavy load on a core switch. In order to make sure
that AXARPSC incurs no heavy load on a core switch, we here
check to see if a CPU load is increased or not when AXARPSC
is enabled. Figure 7 shows a CPU load of a core switch on a
day, 2018/9/3, when AXARPSC was enabled. AXARPSC was
enabled at approximately 13:00. In Fig. 7, we cannot see any
spikes around 13:00. It can, therefore, be said that AXARPSC
incurs no heavy load on a core switch while a traditional ARP ta-
ble polling increases a CPU load by more than 30% under some
circumstances.

5.4 ARP Snooping Server Load
As described in Section 5.3, AXARPSC incurs almost no ad-

ditional load. AXARPSC, however, introduces an ARP snooping

c© 2021 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.29

Table 2 Data size of all ARP messages on mongoDB.

the number of logs 256,942,822
data size 24,167,277,036 B (approx. 24 GB)

index size 3,713,732,608 B (approx. 3.7 GB)

Table 3 Data size of ARP messages on mongoDB.

logs duration size
AXARPSC with contraction 1 year 321 MB

ARP without contraction 1 month 19 GB
SNMP ARP polling (no contraction) 1 month 406 MB

server, and its load might be concerned. The load average of the
ARP snooping server was about 10% at maximum in our environ-
ment where there were about 6,000 unique hosts and 2,000,000
ARP requests and replies. Our ARP snooping server has 8 cores,
and may be able to handle almost 80 times the number of hosts,
i.e., 480,000, which is almost the same as the maximum limit,
512,000, of our core switch AX8616.

5.5 Data Size of All ARP Messages
We here examine how big the storage must be to hold all pairs

of IP addresses and MAC addresses. Note that no ARP contrac-

tion was employed here, and all ARP messages were stored in
this section. Our logging server that employs fluentd and mon-
goDB held data from 2018/10/11 9:00 to 2018/11/3 4:00. Ta-
ble 2 presents data and index sizes of mongoDB. Note that we
here have not configured mongoDB to have indices such as an IP
address and MAC address. In order to reduce the searching time
on an incident and network failure, it would have been better if
we had these indices but that is future work. As shown in Ta-
ble 2, we need approximately 30GB of storage in order to hold
about one month of data.

On the other hand, we also stored the same data in normal sys-
log text file without compression. The syslog text file size is about
19 GB that stores all ARP requests and replies from 2018/9/3
13:11 to 2018/11/7 22:00. The size of the syslog text file is
less than one of MongoDB even though the syslog text file stores
longer data. The physical size of the syslog text file is smaller be-
cause an underlying file system is an object strage, and an object
is automatically redundant and compressed. The physical size is,
however, unknown and its computation is for future work.

5.6 Data Size of Contracted ARP Messages
We here examine how a data size can be contracted. Table 3

shows data size of entries of pairs of IP address and MAC ad-
dresses on mongoDB. Note that the sizes in Table 3 are reported
by mongoDB statistics, and not actual file sizes. As shown in
Table 3, AXARPSC contracting ARP messages requires only
321 MB for a year (from 2019/6/27 to 2020/6/22), and can ap-
parently reduce the data size. Since the data size of AXARPSC is
relatively small, we here hold entries about a year, which is longer
than other methods. AXARPSC also can reduce more data than
SNMP ARP polling. It can be said that AXARPSC contract is
very effective from the point of view of the storage size.

6. Discussions

6.1 Scalability of AXARPSC
As described in Section 5.3, AXARPSC incurs no heavy load

on the core switch, and there is almost no additional load. As
shown in Fig. 7, the load on the core switch is correlated only
with the number of hosts, and this load tendency may result just
from ARP processes. It can, therefore, be said that AXARPSC is
not correlated with the number of hosts regarding a core switch.

On the other hand, a traditional ARP table polling may incur
almost 100% CPU load on a core switch when the number of
hosts increases more than three times.

As described in Section 5.4, it can be said that AXARPSC can
handle the sufficient number of hosts because our ARP snoop-
ing server seems to handle the same number of hosts as our core
switch. Even if the number of hosts increases, we may be able to
employ a faster server as an ARP snooping server.

It can, therefore, be said that AXARPSC is more scalable than
a traditional ARP table polling in terms of the number of hosts.

6.2 Generality of AXARPSC
This section discusses the generality of AXARPSC, i.e.,

whether AXARPSC can be generally implemented in other net-
work environments. As described in Section 5, we have evalu-
ated AXARPSC with the core switch made by AlaxalA Networks
Corporation. It may be conceived that AXARPSC can be imple-
mented only with switches made by AlaxalA Networks Corpora-
tion that support policy-based mirroring. Policy-based mirroing
is actually a terminology of AlaxalA Networks Corporation, and
is implemented only on their switches. Other switch vendors,
however, do not have exactly the same although they have sim-
ilar mirroring functions, and AXARPSC can be imeplemented
with such switches. For example, Cisco Catalyst 6500, which is
widely used as a core switch in a university, has VLAN Access
Control List (VACL) capture [12]. Regarding smaller switches,
Cisco Catalyst 3750, 3560 and 2960 do not have VACL capture,
but have flow-based SPAN (FSPAN) [13]. Cisco ASR 9000 has
flow or ACL-based traffic mirroring [14]. Cisco Nexus 7000 has
ACL capture or rule-based Switched Port Analyzer (SPAN) [15].
In the case of AlaxalA, not only AX8600 that we have evalu-
ated in this paper but also smaller, so called box-type, switches
also support policy based mirroring [16], [17], [18]. In addi-
tion, switches of other vendors also have similar mirroring func-
tions. Generally speaking, recent Application Specific Integrated
Circuits (ASICs) on switches have similar mirroring functions,
and these ASICs are commonly used even on different vendors.
Policy-based mirroring or similar mirroring may be implemented
on switches which are different from the ones we have evaluated
in this paper. It can be said that AXARPSC can be implemented
on the switches of several vendors.

Box-type switches that have policy-based mirroring or similar
mirroring, however, may have restrictions. For example, policy-
based mirroring cannot be enabled when an IP ACL is already
configured. Many box-type switches in an acutual network may
not be able to enable policy-based mirroring. Policy-based mir-
roring, therefore, may be enabled at a core switch in many cases.

6.3 Operation Cost
As shown in Fig. 4, we currently have to specify each VLAN

ID for each VLAN. There is no way to specify all VLAN to be

c© 2021 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.29

mirrored, and this configuration might be forgotten by mistake
when a new VLAN is created. These kinds of mistakes might
cause the case where a MAC address cannot be resolved from a
given IP address on an incident. In order to avoid these kinds of
mistakes, we may need to automate an operation to create new
VLAN. Or a configuration of an access list for policy-based mir-
roring should be improved so that a VLAN ID can be omitted
when we configure policy-based mirroring on a physical port.

6.4 Data Size and Contraction
AXARPSC contracts ARP logs that have the same pair of an IP

address and MAC address instead of storing all ARP requests and
replies logs. This feature reduces the data storage. People may
be, however, able to detect an anomaly when all ARP requests
and replies are stored. It is still unclear if the contraction must be
implemented in all cases. We will dig into the ARP requests and
replies as future work in order to make sure that all ARP requests
and replies are worthy of being held.

6.5 Network Access Control (NAC) Tools
We may consider NAC tools [19], [20] to obtain a list of pairs

of IP addresses and MAC addresses. NAC tools utilize DHCP or
RADIUS accounting in order to obtain pairs of IP addresses and
MAC addresses. In the case of wireless LAN, many NAC tools
may utilize RADIUS accounting to obtain a pair of IP address
and MAC address. If IEEE802.1x is employed, many NAC tools
can properly obtain a correct pair of an IP address and MAC ad-
dress. IEEE802.1x is very common in wireless LAN nowadays,
and NAC tools work fine. On the other hand, in the case of wired
LAN, there are a few difficulties to obtain a correct pair of an IP
address and MAC address. For example, some switches such as
AlaxalA do not report an IP address of a host in RADIUS ac-
counting while switches made by Cisco report an IP address. In
order to obtain an IP address of a host, a DHCP server can report
a correct IP address of a host if DHCP is configured on a network.
If DHCP is not configured, there is no way of obtaining an IP ad-
dress of a host. As described above, an NAC tool may work fine,
but may not in some cases. AXARPSC can properly operate such
cases.

7. Related Work

PFU limited has released iNetSecSF [21] that snoops ARP
packets for security on 2017. Their sensor that snoops ARP pack-
ets can accommodate only 32 VLANs at the same time. If people
would like to snoop ARP packets on more VLANs, they need to
install more their sensors. AXARPSC is, therefore, more scalable
than iNetSecSF.

AlaxalA Networks Corporation has released AX-Security-
Controller (AX-SC) [6] on 2017 that can store a list of an IP
address and a MAC address. AX-SC, however, employs a tra-
ditional method using SNMP to periodically poll an ARP table
from a core switch. AX-SC cannot then track a quick IP address
change as described in Section 2.1.

Tokyo University of Agriculture and Technology has also im-
plemented automated suspicious host isolation [22], [23]. They,
however, adopted, AX-SC, and have similar problems to those

described above.

8. Concluding Remarks

This paper has proposed AXARPSC that is the novel scal-
able ARP snooping using policy-based mirroring. AXARPSC
solves critical issues that traditional ARP table polling and watch-
ing methods have. Employing policy-based mirroring, only ARP
traffic can be mirrored, and then it is getting easier to parse all
ARP packets without any packet loss. In addition, AXARPSC
does not store all ARP requests/replies but merges multiple ARP
messages for the same pair of an IP address and MAC address to
one entry. AXARPSC has appeared to reduce a storage size by
this contraction to 321 MB for a year in the authors’ environment
while 19 GB is required for a month without the contraction.

References

[1] Ohmori, M., Higashino, M., Kawato, T., Fujio, S. and Nakashima,
K.: On-demand Suspicious Host Isolation Adopting Software De-
fined Network Approach on a Computer Security Incident Response,
Journal of Information Processing, Vol.27, pp.234–243 (online), DOI:
10.2197/ipsjjip.27.234 (2019).

[2] Ohmori, M.: On Automation and Orchestration of an Initial Com-
puter Security Incident Response by Introducing Centralized Incident
Tracking System, Journal of Information Processing, Vol.27, pp.564–
573 (online), DOI: 10.2197/ipsjjip.27.564 (2019).

[3] Plummer, D.: Ethernet Address Resolution Protocol: Or Converting
Network Protocol Addresses to 48.bit Ethernet Address for Transmis-
sion on Ethernet Hardware, RFC 826 (Standard) (1982).

[4] AlaxalA Networks Corporation: Policy Based Mirroring (in Japanese)
(2016), available from 〈http://www.alaxala.com/jp/solution/network/
pbm/pbm/〉 (accessed 2018-11-07).

[5] Ohmori, M., Miyatal, N. and Suzuta, I.: AXARPS: Scalable ARP
Snooping Using Policy-Based Mirroring of Core Switches, Proc. 33rd
International Conference on Advanced Information Networking and
Applications (AINA-2019), pp.667–676 (2019).

[6] AlaxalA Networks Corporation: AX-Security-Controller (2017),
available from 〈http://www.alaxala.com/jp/news/press/2017/
20170601.html〉 (accessed 2017-06-03).

[7] Network Research Group, Lawrence Berkeley National Laboratory:
arpwatch (2009), available from 〈https://ee.lbl.gov/〉 (accessed 2018-
11-07).

[8] Python Software Foundation: python (2001), available from 〈https://
www.python.org/〉 (accessed 2018-11-07).

[9] Philippe Biondi and the Scapy community: Scapy: Packet crafting for
Python2 and Python3 (2018), available from 〈https://scapy.net/〉 (ac-
cessed 2018-11-07).

[10] Fluentd Project: fluentd (2010), available from 〈https://www.fluentd.
org/〉 (accessed 2018-10-07).

[11] MongoDB, Inc.: mongoDB (2018), available from 〈https://www.
mongodb.com/〉 (accessed 2018-10-07).

[12] Cisco Systems: VACL Capture for Granular Traffic Analysis with
Cisco Catalyst 6000/6500 Running Cisco IOS Software (2007), avail-
able from 〈https://www.cisco.com/c/en/us/support/docs/
lan-switching/vlan-access-lists-vacls/89962-vacl-capture.html〉
(accessed 2020-09-30).

[13] Cisco Systems: Flow-Based SPAN Alternative to VACL Capture
(2013), available from 〈https://www.cisco.com/c/en/us/support/docs/
lan-switching/switched-port-analyzer-span/116133-maintain-flow-
span-00.html〉 (accessed 2020-09-30).

[14] Cisco Systems: Configuring Traffic Mirroring on the Cisco ASR 9000
Series Router (2014), available from 〈https://www.cisco.com/c/en/us/
td/docs/routers/asr9000/software/asr9k r4-1/interfaces/configuration/
guide/hc41asr9kbook/hc41span.html〉 (accessed 2020-09-30).

[15] Cisco Systems: Cisco Nexus 7000 Series NX-OS System Manage-
ment Configuration Guide (2020), available from 〈https://www.cisco.
com/c/en/us/td/docs/switches/datacenter/nexus7000/sw/
system-management/guide/b Cisco Nexus 7000 Series NX-OS
System Management Configuration Guide/b Cisco Nexus 7000
Series NX-OS System Management Configuration Guide chapter
010100.html〉 (accessed 2020-09-30).

[16] AlaxalA Networks Corporation: AX2500S Software Manual Configu-
ration Guide Vol.2 (in Japanese) (2019), available from 〈https://www.
alaxala.com/jp/techinfo/archive/manual/AX2500S/PDF/4 19/
CFGUIDE2/CFGUIDE2.pdf#page779〉 (accessed 2020-09-30).

c© 2021 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.29

[17] AlaxalA Networks Corporation: AX3660S Software Manual Config-
uration Guide Vol.2: Policy-Based Mirroring (in Japanese) (2020),
available from 〈https://www.alaxala.com/jp/techinfo/archive/manual/
AX3660S/HTML/12 1 L/CFGUIDE2/0376.HTM〉 (accessed 2020-
09-30).

[18] AlaxalA Networks Corporation: AX4630S Software Manual Config-
uration Guide Vol.2: Policy-Based Mirroring (in Japanese) (2019),
available from 〈https://www.alaxala.com/jp/techinfo/archive/manual/
AX4600S/HTML/11 15 G/CFGUIDE2/0381.HTM〉 (accessed 2020-
09-30).

[19] HC Networks, Ltd.: Account@Adapter+ (in Japanese) (2020), avail-
able from 〈https://www.hcnet.co.jp/products/adapter/
accountadapter.html〉 (accessed 2020-09-30).

[20] Infoblox: Infoblox (2020), available from 〈https://www.infoblox.
com/〉 (accessed 2020-09-30).

[21] iNetSecSF: SiNetSec SF: Detecting security risk and blocking (in
Japanese) (2017), available from 〈https://www.pfu.fujitsu.com/
inetsec/products/sf/〉 (accessed 2018-11-07).

[22] Tsujisawa, T., Sakurada, T., Segawa, H., Kawamura, Y., Mishima, K.
and Hagiwara, Y.: A challenge for full deployment both 802.1x au-
thentication and an automatically isolation function in a campus net-
work. Task and correspondence in the operation, Journal for Academic
Computing and Networking, Vol.22, No.1, pp.36–43 (2018).

[23] AlaxalA Networks Corporation: Case Study: Tokyo University of
Agriculture and Technology (2017), available from 〈https://www.
alaxala.com/jp/introduce/case36/〉 (accessed 2018-10-01).

Motoyuki Ohmori was born in 1976. He
received his B.S. and M.S. degrees in
Computer Science and Communication
Engineering from Kyushu University in
1999 and 2001, respectively. He joined
the Information Processing Society of
Japan in 2001. He was a lecturer at
Chikushi Jogakuen University since 2004.

He was an associate professor at Tottori University since 2013.
He has been a professor at Tottori University since 2020. His re-
search interests include network architecture, multicasting, rout-
ing, mobile networking and energy efficient network operation.
He is a member of the IPSJ, IEICE, JSSST, IEEE CS/ComSoc
and ACM.

Naoki Miyata was born in 1982. He re-
ceived his B.S. degree in Hiroshima Insti-
tute of Technology in 2001. He has been
a technical staff member at Tottori Uni-
versity since 2006. He has been working
as a technical staff member of Center for
the Information Infrastructure & Multi-
media, Tottori University since 2006. His

research interests include document-oriented database, database
algorithms, routing, logging.

Koji Okamura was born in 1965. He re-
ceived his B.S., M.S. and Ph.D. degrees
from Kyushu University in 1988, 1990,
and 1998. He worked as an Associate
Professor of Computer Center and Grad-
uate School of Information Science and
Electrical Engineering, Kyushu Univer-
sity. Since 2011, he has been a Professor

of Kyushu University. He is the Director of the Cybersecurity
Center and the Vice Director of the Research Institute for Infor-
mation Technology, Kyushu University. He is also Vice CISO of
Kyushu University. His current research interests are Cyberse-
curity for information network and social infrastructure and ad-
vanced operation technologies for Internet and Future Internet
such as Openflow and Virtual Network. He is also researching
power-aware and security-aware network operation and develop-
ing green power and secure network equipment system.

c© 2021 Information Processing Society of Japan

