
Multirate Model Parallelization for MPSoC with FPGA in
Model-Based Development: A Case Study

Ryota Yamamoto1,a) Masataka Ogawa1 Masahiro Oinuma1 Masaki Kondo2 Shinya Honda3

Masato Edahiro1

Abstract: This paper presents an integrated development environment, HS-MBP, to generate parallelized code and
executables for MPSoC with FPGA, named Field-Programmable Heterogeneous SoC (FP-HSoC), in model-based de-
velopment. In our environment, we propose an automatic code generation for communication mechanism between
sub-models with different control periods. Using this mechanism, our environment is capable of executable generation
from multirate models, which are hard to design when multirate systems like robot IoT are constructed on FP-HSoC.
Our environment has been applied to an multirate model as a case study. The results show that HS-MBP successfully
generated parallelized codes of multirate systems for several patterns of block assignment to FP-HSoC. With the results
of the case study, we discuss workflow for model-based parallelization of multirate models on FP-HSoC and future
work.

Keywords: Heterogeneous Multicore, MBD (Model Based Development), Multirate, FPGA, Co-Design

1. Intoroduction
In recent years, embedded control systems have become larger

and more complex with a demand for shortening the Time To
Market. In addition, higher computation applications are increas-
ing because these systems are desired to equip intelligent func-
tions such as machine learning in the future. Consequently, accel-
erative hardware platforms are indispensable with a development
environment to achieve short design time.

Traditionally, embedded control systems have been imple-
mented on single cores. Multicores are often utilized in cur-
rent systems to perform high computation applications. How-
ever, the multicores cannot meet low energy consumption re-
quirements in some systems especially for the higher compu-
tation applications, for example, automotive driving and com-
puter visions in robot IoT systems. Therefore, heterogeneous
multicore SoC with FPGA, named Field-Programmable Hetero-
geneous SoC (FP-HSoC), is demanded to archive these require-
ments instead of multicores [8]. Figure 1 shows a typical exam-
ple of FP-HSoC targeted in this paper. It is costly and difficult to
implement applications with FP-HSoC because developers have
to optimize codes for each PE (Processing Elements) and imple-
ment inter-PE synchronization architectures.

As an approach to shorten the development period of embed-
ded control systems, model-based development (MBD) is made
use of to make the level of design abstraction higher [2]. In MBD,
since developers design algorithms in a model with blocks, they
can verify the model in algorithm levels [2]. Other advantages of
MBD are the consistency between documents and source code,

1 Nagoya University, Nagoya, Aichi 464–8603, Japan
2 NEC Solution Innovators, Ltd., Kawasaki, Kanagawa 213–8511, Japan
3 Nanzan University, Nagoya, Aichi 464–8673, Japan
a) muku@ertl.jp

����

��������

���	
��
�
���������	
���
�

�������������

���	���
�
���������	
����

��

�
 ��

�� �� ��

����������		
��
�������

�����

�����������		
��
�������

�����	�
�����

�������

����

�
�

��	
���
�	����

������

���������	�
����

�
��
 !�

��"��� ��������	
��

���$�#
�����%�&'���	
�����(

Fig. 1: Architecture of the FP-HSoC[16]

easy specification change, and high code reusability and so on
[2].

MATLAB/Simulink [4], [5] is a typical MBD tool. Simulink
models, which represent the process with graphic symbols, are
inputs to generate sequential C language source code (i.e., for
single cores) with Embedded Coder: C source code generator.
With Embedded Coder, developers not only can reduce the cod-
ing time, but also keep the consistency between the model and the
source code, and the source code can be updated only by chang-
ing the model.

If an automatic implementation for FP-HSoC is available in
MBD, both development periods and performance can be im-
proved. However, as a problem to utilize both of them at the
same time, it is necessary to rewrite the sequential code (s-code)
generated by Embedded Coder to parallelized code (p-code) for
FP-HSoC, which requires a communication interface, optimiza-
tion for each PE, and synchronization architectures.

For parallelization in MBD, we have been researching on
model-based parallelization (MBP) for multicores with GPU

Asia Pacific Conference on Robot IoT System Development and Platform 2020 (APRIS2020)

ⓒ 2021 Information Processing Society of Japan 6

environments [17], [18]. However, software-hardware co-
generation for FP-HSoC was outside of the target system.

In this study, we develop the HS-MBP (Heterogeneous System
- MBP) environment, which is an MBP environment targeting FP-
HSoC. The HS-MBP, with the help of the HW/SW codesign envi-
ronment: SystemBuilder [1], [3], provides communication func-
tions between processors and code parallelization for FPGA with
high-level synthesis (HLS). In order to verify the correctness of
generated code and effectiveness of our environment, HS-MBP
was tested with two multirate models as a case study.

Our contributions are as follows:
• We develop the HS-MBP environment, and generate p-code

for FP-HSoC on the environment.
• HS-MBP generates p-code with APIs for inter-PE commu-

nication mechanism. As a result, developers unconsciously
implement inter-PE communication automatically.

• To tune HW design, HS-MBP provides HW-SW co-
simulation environmemt. Developers can measure the la-
tency of HW design by the co-simulation environment eas-
ily.

2. FP-HSoC
Field-Programmable Heterogeneous SoC (FP-HSoC) consists

of multiple processors with different architectures including
FPGA. By selecting suitable FP-HSoC architecture for the appli-
cation, energy consumption and execution time can be improved,
compared to homogeneous multi-core architecture.

In this paper, we use Zynq UltraScale+ MPSoC (ZynqMP) as
FP-HSoC, which consists of Application Processing Unit (APU),
Realtime Processing Unit (RPU), and FPGA.

The PEs (Processing Elements) for the target of this paper (re-
fer Figure 1) described as follows:

APU consists of ARM Cortex-A53 (4 Cores) @1.5GHz. This
PE has L2 cache, and we assume that Linux runs on this PE.

RPU consists of ARM Cortex-R5 (2 Cores) @600MHz. This
PE has a low-latency interrupt controller and local RAM access,
and lockstep for functional safety. We assume that RTOS runs on
this PE.

FPGA is used for high computation applications such as image
processing and deep learning. Since it is hard to design in hard-
ware description language (HDL), High-Level Synthesis (HLS)
tools contribute to design hardware on FPGA.

3. HS-MBP
HS-MBP is an environment to generate executables for FP-

HSoC. Figure 2 shows HS-MBP flow. In this section, we de-
scribe the implementation of FP-HSoC at 3.1, and the communi-
cation mechanism between PEs at 3.2.

3.1 Design Flow
HS-MBP takes a Simulink model that can generate s-code

as input. We describe the procedure of HS-MBP environment
based on Figure 2, assuming the case of targeting APU, RPU and
FPGA.

MBP supports generating parallelized code (p-code) for homo-
geneous multicores from Simulink model. The following steps

from P1-1 to P1-6 show the procedure in MBP environment.
P1-1 At (mbp1) in Figure 2, s-code(d1) is generated automati-

cally from a Simulink model by Embedded Coder available
from MATLAB/Simulink.

P1-2 At (mbp2), BLXML (Block-Lebel XML, d2 shown in
Figure 3) is generated from a Simulink model.

P1-3 At (mbp3), BLXML with code snippets (C-BLXML, d3
shown in Figure 5) is generated from BLXML (d2) and s-
code.

P1-4 At (mbp4), a CSV file (d4) that has block names and block
IDs is generated from C-BLXML (d3).

P1-5 At (mbp5), a new CSV file (d5) is created manually by
adding PE assignment to the CSV file (d4), and BLXML
with code snipets and PE assignments (CA-BLXML, d6
shown as Figure 6) is generated from (d3) and (d5) auto-
matically.

P1-6 At (mbp6), p-code and interface definition files (d7) to
(d11) are generated from (d6) automatically.

For above procedure, we developed the tools except for
MATLAB/Simulink and Embedded Coder. HS-MBP is semi-
automatic because automatic PE assignment tools for FP-HSoC is
currently under development. Therefore, we assign PE manually
in this study. In the future, when PE assignment tool is available,
HS-MBP will be full-automatic.

Next, we descrive automatic executable generators P2-1 to P2-
2, and P3-1 to P3-4.

First, an executable for APU is generated as follows:
P2-1 At (mdcom1), Communication I/F code for APU (d12)

and for RPU (d13) are generated from (d8) shown in Fig-
ure 7.

P2-2 At (apu1), an executable for APU is built from (d7) and
(d12).

Second, an executable for RPU is generated as follows. Note
that, regarding the communication generation (mdcom1) for RPU
is similar to that for APU described above. Therefore, we de-
scribe SystemBuilder part for RPU and FPGA as follows:
P3-1 At (sb1), (d14) to (d17) are generated from SDF file (d10)

shown in Figure 8.
P3-2 For RPU, an executable for RPU is built from (d9), (d13),

(d14) and (d16) at (rpu1).
P3-3 For FPGA, HDL (Hardware Description Language) files

(d18) are synthesized from C code (d11) and (d15) by an
HLS tool. Here, CyberWorkBench (CWB) [11] and Vivado
HLS [15] are available for HLS tool. In this study, we use
CWB.

P3-4 The HW design project file (d19) for SystemBuilder is
prepared in advance, and a bitstream file is synthesized from
HDL files ((d16) to (d19)). In this paper, we use only Vivado
[14] to synthesize for ZynqMP.

As a result, developers can generate executables for FP-HSoC
without coding. Once the executables are written to an SD card,
it is easy to execute them on ZynqMP.

Furthermore, HS-MBP provides a simulation environment.
For APU and RPU, QEMU is available for HS-MBP. For RPU-
FPGA co-simulation, it is realized by HDL simulator and QEMU.

HS-MBP generates executables for each PE from s-code gen-

Asia Pacific Conference on Robot IoT System Development and Platform 2020 (APRIS2020)

ⓒ 2021 Information Processing Society of Japan 7

��������	�
��
��

�������������

����������������

���

�����������������

����

������������

�������

���������	
��
���
�

��

�������
����

���������

������

����	
��
���
�

������������

���

����

�	
��
������� ����

���	��
�� ����

�����������

���������

��

��!"���#�!�����������

��!"$��%�
��
����������

�
"	������"����

��!&��'(� ����

���������

��!)��(�%����*
�+���,����"	������"����

���-���.� ����

��!����*���

���!���"��

��
��#

���$��

������%

���&��'	(

��

�����

��)����/(0 (�

��!"&����
1���� �����

���/(0 (

��!")��#�!�����������/(0 (

��&��/(0 (�

��2���#�
���%
��
�

��!"3������!���������

��3��/���������

��!"2��#�!����#�

���%
��
�����/(0 (

��$�����/(0 (�

)
%	�

�*�
((�#
��
�

�

	
��+�

'���,�

��

'���,�)�

'���,���

�����

'���,�

��

'���,�)�

'���,���

�����

�������������(%�
��
#�

���-���,�

'���,�

��

'���,�)�

'���,���

�����

�������

�*�
((�#
��
�

��������

��
��%	�
���

���.����(�#
�����

���/�������

���������

0�

��������	
���������	
���
�

�������	
���������	
����

������������	
��
���
4�

 .�5

�������������	
��
���
4�

�*����/	�����

�������

�06�

/	�

����

*1��	�
-������������0� *1��	�
-�������������� '��(���
������2�30

Fig. 2: Developent flow with HS-MBP

�������������	
��
���
������
���������
������
����
�

���
��������
���������������
�����
�
����
�����������
�

���������������
���������������
���
�
����
���������������
�����
��

����
���

���
��������
�������������
�
����
����������
�

���������������
�����������
�
����
������������!���
��

����
���

����
��������������
"���#
������
�����������
�
����
�����������
���������
����
�

���������������
������
��
�
����
������
��������
��

�����
���

��������

Fig. 3: An Example of BLXML

erated by Embedded Coder. Our tool assigns functions in s-code
to each PE because of code granularity for acceleration. The im-
plementation on each PE described as follows:
• APU applications are implemented as threads on PetaLinux

[12].
• RPU applications are implemented as tasks on TOP-

PERS/ATK2 kernel [9].
• HW modules on FPGA are designed as processes generated

by SystemBuilder [1], [3].

3.2 Communication mechanism
In this section, we describe the communication mechanism

Asia Pacific Conference on Robot IoT System Development and Platform 2020 (APRIS2020)

ⓒ 2021 Information Processing Society of Japan 8

�������������	
��
���
 ���
��
 �����
���������
������
����
�

���
��������
���������������
�����
�
����
�����������
�

���������������
���������������
���
�
����
���������������
�����
��

����
���

���
��������
������ ������
�
����
����������!
�

���������������
������ ����
�
����
������ �����"���
��

����
���

����
��������������
#���$
������
�����������
�
����
�����������
���������
����
�

���������������
������
��
�
����
������
��������
��

�����
���

�%��������
�����������
������
���
��
������
���
�
����
�����������
������&��
������'
��	
��
�����(
��

�%��������
���������������
�����
������
��
��
������
���������
���
�
����
�����������
������&��
������'
��	
��
�����(
��

�%��������
������ ������
������
��
��
������
)�������(����*�����
�
����
����������!
������&��
������'
��	
��
�����(
��

���&���������
���
������&��
������'
��	
��
�����(
��

������*����
�������
������
�+�
��	
��
����
����,����-�./��01���/&�0����.�,�

������'���� ��������'����������
��� 2 ������'�)�������(����*�����0

�������

������*����
�������
������
!3+
��	
��
����
���4

������'���� �����0

5

�������

���

��������

���� �����	
�����

Fig. 4: An Example of C-BLXML

��������	
��
����������
�����	��
�����	�������
����	����������
�

�������
�
������	������	��� !"#

������$��%����&�'(#

������$���(�����
���)� !"#

������!�
	������������
	����$�	���� !"#

������!�
	��%	��*�
�����&� !"#

������+,���-� !"#

.

!/�

0���*	��	�

Fig. 5: An Example of Block list with PE assignment

among different PEs. In this study, we consider communication
patterns APU-RPU and RPU-FPGA. Although there is another
communication pattern, between APU and FPGA, we do not di-
rectly support this pattern because Linux OS on APU is not suit-
able for real-time control of hardware on FPGA. In order to im-
plement APU-FPGA communication, therefore, it is necessary to
combine two communications: APU-RPU and RPU-FPGA.

In our method, we propose a multirate implementation method
for these two communication patterns to support multirate mod-
els. In a multirate model, there are a plural of control periods,
and each block is executed with one of them. Therefore, there are
communication channels between two blocks whose control pe-
riods are different. We call the block with slower/faster period
S-BLOCK/F-BLOCK. Figure 9 depicts examples of multirate
communication. Here, assume Ts as sender thread/task/process
period, and Tr as receiver thread/task/process period. In the case
that Ts ≤ Tr, blocking channel (BC) is used for the communi-
cation. Otherwise, a non-blocking channel (NBC) is used. This
method was proposed by Nakano et al.[6]．

If the communication is implemented by BC when Ts > Tr,
and the buffer depth is insufficient, transmission waits may occur.
As a result of this implementation, S-BLOCKs may wait for the
completion of the reception of F-BLOCKs. On the other hand,
if the communication is implemented by NBC, S-BLOCKs do
not have to wait for F-BLOCKs. Furthermore, in our method,
the communication utilizes double buffers to guarantee robust-
ness due to jitter, i.e., F-BLOCKs absolutely receives data one
period before.

In the case that Ts ≤ Tr, the communication is implemented
by BC. For example, assuming Ts = 3Tr, F-BLOCKs send data
per three executions to S-BLOCKs. It is possible to receive the
data one period before, which reduces the overhead required for

transmission.
Next, the communication methods for each PE pair are de-

scribed below.
3.2.1 Communication between APU and RPU

APU (Linux) - RPU (AUTOSAR CP) communication is re-
alized by MDCOM: communication library for heterogeneous
multicore developed by Otake et al.[7] and TOPPERS Project
Inc[10]. MDCOM provides the following two communication
mechanisms:
• SMEM Channel: store/load messages to/from shared mem-

ory accessible from all domains. Only a single data area is
provided.

• FIFO Channel: store/load messages to/from FIFO on shared
memory.

For multirate implementation, SMEM Channel is used in the
case that Ts > Tr, and FIFO Channel is used in the case that
Ts ≤ Tr.
3.2.2 Communication between RPU and FPGA

SystemBuilder provides RPU (AUTOSAR CP) - FPGA com-
munication. Note that, SW-SW communication means only inter-
core communication within RPU. Therefore, this communication
can also be realized by MDCOM (refer to 3.2.1). Communication
I/Fs are defined in SDF (System DeFinition) file and its APIs are
generated by SysGen (SystemBuilder Generator) from the SDF
file. The API can be called in the C code for HW and SW. Sys-
temBuilder provides the following two communication mecha-
nisms:
• Blocking Channel: Corresponds to FIFO. If the FIFO is

empty, the read-side process waits for data, and if the FIFO is
full, the write-side process waits until the data full is cleared.

• Non-Blocking Channel: Corresponds to register．Data are
read/written without waiting.

Asia Pacific Conference on Robot IoT System Development and Platform 2020 (APRIS2020)

ⓒ 2021 Information Processing Society of Japan 9

�������������	
��
���
����
��
������
���������
�
������
����
 �����
����
�

���
��������
������ ���!���"
�����
�
����
�����������
�

���������������
������ ���!���"
���
�
����
������ ���!���"
�����
#�

�#��
���

���
��������
�������������
�
����
����������$
�

���������������
�����������
�
����
������������%���
#�

�#��
���

����
��������"���"�
&���'
������
�����������
�
����
�����������
��"������
����
�

���������������
������
��
�
����
������
��������
#�

�#���
���

�(��������
�����������
������
���
��
������
���
�
����
�����������
�"����)��
������*
��	
��
�����+
#�

�(��������
������ ���!���"
�����
������
��
��
������
 ���!���"
���
�
����
�����������
�"����)��
������*
��	
��
�����+
#�

�(��������
�������������
������
��
��
������
,�"�����+���"��� ��
�
����
����������$
�"����)��
������*
��	
��
�����+
#�

�"�)���������
���
�"����)��
������*
��	
��
�����+
#�

�����������
�������
������
�-�
��	
��
��"�
���#.����/�01��2����1)�2#���0�.#

������*���� ��������*� ���!���"
��� 3 ������*�,�"�����+���"��� ��2

�#�����

�����������
�������
������
$4-
��	
��
����
���5

������*���� �����2

6

�#�����

7

�#������

�� �������	�

Fig. 6: An Example of CA-BLXML

����������	
��
���
�������������������������

��������������������������

Fig. 7: An Example of MDCOM Configuration

��������	�
��
�����

���

� ������	�����	��������	��
��
�������������� ����!��"�	

�
��
��������������#����!��"$%

���

� ������	�
���	
&�	 �	��������	��
��
������'�(������ ����!��"$%

)))

����
���*��

*
��������	��
�

�+�,����*����	 �������

-+�,����*����	 ���

.���"
*/�-�**���

� �*����	,�����0����1�	�
2��	#��	3����%

)))

��*.���"
*/�-�**���

� �*����	*,�����4���##���	�
2��	#��	3����%

)))

���*&��&��������

� *����	�
��
�������������� ����!��"

3
���	��
��
�������������� ����!��")�$

�-5
*6�	�,�����0���#�$

�-5�
�6�	�,����#�����7$

������*����	 �������

�������33����	�

)))

Fig. 8: An Example of SDF file

���������������
���������������
���������������
���������������

������
����

��	�
���
����

�

��

��

��

�
������

������
����

��	�
���
����

�

��

��

��

������
����

��	�
���
����

�

��

��

��

������

���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������

�
����� �
�����

�
����

�����	�	
�

� � �
����

�����	�	
�

� �

������	����
�������
�������
�����	�������������
������	����
�������
�������
�����	����!����
���

Fig. 9: Examples of Multirate Model

For multirate implementation, NBC is used in the case that
Ts > Tr, and BC is used in the case that Ts ≤ Tr.

4. Case Study
In this section, we present a case study for two multi-rate mod-

els. The first model is a multi-rate PID control model, and in the
second model a For Iterator Subsystem block is added to the first
model.

By using each multi-rate model, we investigate the following:
• The blocks operate at correct timing in each PE and commu-

nicate correctly between PEs.
• Development flow for tuning of code to FPGA

4.1 Target Models
The first Simulink model is shown in Figure 10. This model

is a multirate model consisting of PID control and a plant, and
the P controller shown in Figure 10c is executed with a 30-ms
period, the I controller shown in Figure 10d is executed with a
20-ms period, and the D controller and the other blocks shown in
Figure 10e and Figure 10f is executed with a 10-ms period.

Figure 10b, Figure 10c, Figure 10d, Figure 10e and Figure 10f
are SubSystems and they are specified as Atomic except for Fig-
ure 10f. An Atomic SubSystem is not flattened and is treated
by its parent model as a single block. A non-Atomic SubSystem
is flattened into its parent model. The input values given to the
model in Figure 10a are periodically given as 0.0 or 2.0 of double
type, and the output values are also obtained of double type.

The second model is shown in Figure 11. In this model, at the
top of the model, we added SubSystem x2 to cast the input of For
Iterate Subsystem to int type. The contents of each subsystem are
shown in Figure 11a, Figure 11b, and Figure 11c.

4.2 Procedure and results
We applied the procedure stated in 3.1, to the model in Fig-

ure 10 as input. Except for the creation of (d4) to (d5) in Figure 2,
the steps explained in 3.1 can be executed on the GUI or simply
by typing a command.

At (d4), a CSV file is created. The CSV file has information:
block name, block ID, and PE assignment. The information ex-
cept for the PE information is generated automatically by the tool,

Asia Pacific Conference on Robot IoT System Development and Platform 2020 (APRIS2020)

ⓒ 2021 Information Processing Society of Japan 10

1

voltage
error voltage

pid

FromWorkspace In1 Out1

Plant

Scope
(a) Model top(1)

1

voltageSaturation

<limits	=	5	/	-5>

1

error

In1 Out1

P

In1 Out1

I

In1 Out1

D

RateTransitionRateTransition1

RateTransition2 RateTransition3

(b) SubSystem: pid

Kp

Gain
1

In1
1

Out1

(c) SubSystem: P

UnitDelay

<identifer	=	>
<initial	=	0>
<tsample	=	-1>

Product

Ki

Gain1
1

In1
1

Out1

(d) SubSystem: I

UnitDelay1

<identifer	=	>
<initial	=	0>
<tsample	=	-1>

Fs

Gain3
Kd

Gain2
1

In1
1

Out1

(e) SubSystem: D

1

Out1
1

In1
K	Ts
z-1

Integrator Discrete
Transfer	Fcn

(f) SubSystem: Plant

Fig. 10: Simulink models for case study (1)

and developers add the PE assignment information. A tool is
available to add the information from the CSV file to BLXML so
developers only add the PE assignment information to this CSV
file. Note that, in this paper, we specify thread number for APU
instead of core number.

The purpose of this model in the case study is to investigate
whether the input model can be implemented in various PE as-
signment patterns. For this investigation, we design 9 experi-
mental patterns shown in Table 1, generate codes for each pat-
tern, execute them in FP-HSoC, and check the output results.
The experimental patterns are designed to validate communica-
tion and execution of the multirate implementation on FP-HSoC.

1

voltage
error voltage

pid

FromWorkspace In1 Out1

Plant

Scope

In1 Out1for	{	...	}

ForIter

In1 Out1

x2Data	Type	Conversion

(a) Model top(2)

1

Out1
1

In1
2

Gain
(b) SubSystem: x2

1

Out1

For
Iterator1	:	N

For	Iterator

1

In1

Product

(c) SubSystem: ForIter

Fig. 11: Simulink models for case study (2)

Table 1: Execution Patterns

ID Control Period
10ms(D) 20ms(I) 30ms (P)

C1 RPU0 RPU0 RPU0
C2 RPU0 RPU1 RPU1
C3 RPU0 APU0 APU0
C4 RPU0 APU0 APU1
C5 APU0 RPU0 RPU0
C6 RPU0 HW0 HW0
C7 RPU0 HW0 HW1
C8 HW0 RPU0 RPU0
C9 RPU0 APU0 HW0

Note that, since it is difficult for HW to output the execution re-
sults to the standard output, the RPU is used to check the output
values. Therefore, even if we choose not to assign output blocks
(of 10ms period) to the RPU, only the blocks that output the result
are assigned to the RPU.
C1 RPU @ 1-Core
C2 RPU @ 2-Cores
C3 RPU @ 1-Core: short-cycle blocks, APU @ 1-Thread: mid-

cycle and long-cycle blocks
C4 RPU @ 1-Core: short-cycle blocks, APU @ 2-Threads:

mid-cycle and long-cycle blocks
C5 RPU @ 1-Core: mid-cycle and long-cycle blocks, APU @

1-Thread: short-cycle blocks
C6 RPU @ 1-Core: short-cycle blocks, HW (FPGA) @ 1-

Process: mid-cycle and long-cycle blocks
C7 RPU @ 1-Core: mid-cycle and long-cycle blocks, HW

(FPGA) @ 2-Processes: short-cycle blocks
C8 RPU @ 1-Core: mid-cycle and long-cycle blocks, HW

(FPGA) @ 1-Process: short-cycle blocks
C9 RPU @ 1-Core: short-cycle blocks, APU @ 1-Thread: mid-

cycle blocks, HW (FPGA) @ 1-Process: long-cycle blocks
We executed all the patterns from C1 to C9 and confirmed that

the simulation results of the Simulink model and the execution
results of those patterns were identical.

Next, we describe the case study with the second model. For

Asia Pacific Conference on Robot IoT System Development and Platform 2020 (APRIS2020)

ⓒ 2021 Information Processing Society of Japan 11

Fig. 12: HW latency without folding: 2664.567ns

Fig. 13: HW latency with folding: 1530ns

this case study, only the For Iterator Subsystem was assigned to
the FPGA and all other blocks were assigned to the RPU. As a
result, we confirmed that the generated p-code works correctly
without fixing. Although the For Iterator block has a simple data
dependency that does not violate the multirate deadline, it can be
accelerated.

SystemBuilder provides co-simulation environment for de-
velopers to test results and speedups on hardware. Using
Questa+QEMU as a co-simulation environment, we confirmed
the results before and after to apply loop folding.

Figure 12 and Figure 13 are waves from HW execution. Yel-
low cursors in Figure 12 and Figure 13 show the latency of HW
execution of a particular execution period. As a result, HW with
folding (1530 ns) is faster than HW without folding (2665 ns).

5. Discussion
5.1 Implementation for each PE

First, the correspondence was validated between the Simulink
model and implementation for each PE, as the execution results
are equal to the simulation results. In our multi-rate model, the
output results should be different if the timing of data acquisition
is different. Based on these results, HS-MBP correctly generates
executables for the multirate model.

The generation time of the executables was about 10 minutes
at the most. Compilation time was dominant for APU and RPU,
while HLS and logic synthesis were dominant for FPGA. The
only manual tasks are PE allocation and command input; the time
for PE allocation is less than one minute in this case study because
the rules for core allocation were determined in advance. Based
on the above, we conclude that the work time by HS-MBP could
be reduced compared to design flow currently applied in actual
design.

The present study uses a relatively small-scale model and man-
ual PE allocation is easy. As the size of the model increases, the
cost of manual PE allocation increases and the possibility of allo-
cation errors increases. Therefore, it is desirable to automate PE
allocation. MBP provides an automatic PE allocation tool, which
enables automatic PE allocation even in a heterogeneous environ-
ment, based on the execution performance estimation. However,
as explained in 5.2, we think that automation for FPGA is difficult

because it requires tuning of the C code for FPGAs to estimate
execution time, which is future work.

5.2 Co-simulation for FP-HSoC
First, Co-simulation can reduce work time. In the co-

simulation environment, RTL simulator compilation is performed
instead of logic synthesis, and RTL simulator compilation is
shorter in time than logic synthesis.

Second, for work time, it is easy to search for acceleratable
code snippets because the code is simple C code and the first
author has been using the HLS tool for more than three years.
Therefore, it took only about one minute to rewrite the code for
the speed-up.

The HW latency is decreased from 2665ns to 1530ns as a re-
sult of the acceleration. The results of this acceleration were also
obtained from the co-simulation. However, in order for develop-
ers to identify the acceleratable code, developers must be familiar
with HLS. Therefore, it is necessary to support developers to ac-
celerate HW.

The co-simulation environment in this paper has the problem
of requiring expensive license fees to prepare the co-simulation
environment. Currently, the emulator QEMU and the RTL sim-
ulator Questa are being used. Therefore, we are now preparing
for Vivado simulator for co-simulation, which is available free of
charge. We also consider that more efficient simulation environ-
ment for automatic PE allocation in the future.

6. Related work
Xilinx is developing Vitis [13] (SDSoC until version 2019.1),

a SW/HW co-development environment for SoC, which allows
developers to set up processing systems (PS), memory mapping,
and signals before co-designing. Therefore, the design can be
flexible in terms of HW configuration and use of peripheral func-
tions. There are also features such as HW-level simulation, SW-
level simulation, and run-time profiles of actual machines. For
example, profiling results, such as memory transfer latency, and
timing charts for execution time can be obtained for each device.

SystemBuilder, the system-level design environment used in
the HS-MBP, also uses Vivado and Vivado HLS, so the C code
is similar. However, there is a difference in terms of HW design.
SystemBuilder basically uses a pre-designed HW design file to
promote co-design, so the HW structure is hidden to developers.
In other words, knowledge of HW design with Vivado is unneces-
sary to enable SW/HW co-design for SystemBuilder users. How-
ever, when changing the configuration of the HW, such as when
using peripheral functions, knowledge of the HW configuration
is required.

In terms of simulation functions, SystemBuilder has a co-
simulation environment and a simulation using QEMU + Questa
(RTL Simulator). Additionally, SystemBuilder also has a profil-
ing function, which is similar to Vivado.

7. Conclusion
In this paper, we proposed HS-MBP: model-based paralleliza-

tion environment for FP-HSoC. The environment enables easy
implementation for each PE, RPUs, APUs and FPGAs of FP-

Asia Pacific Conference on Robot IoT System Development and Platform 2020 (APRIS2020)

ⓒ 2021 Information Processing Society of Japan 12

HSoC. The results of the case study confirmed this. We also con-
ducted a case study to support tuning for FPGAs and confirmed
the procedure for tuning FPGA with co-simulation.

One of the challenges for the future is automatic PE allocation;
we will discuss how to organize code snippets for FPGAs and the
possibility of automatic tuning to generate more efficient HWs
automatically. It is also necessary to make block for C code di-
rectly with the S-Function block available so that the source code
for HLS, which is pre-tuned for FPGAs, can be used.

Acknowledgments This paper is based on results obtained
from a project, JPNP16007, commissioned by the New Energy
and Industrial Technology Development Organization (NEDO).

References
[1] Ando, Y., Honda, S., Takada, H. and Edahiro, M.: System-level design

method for control systems with hardware-implemented interrupt han-
dler, Journal of Information Processing, Vol. 23, No. 5, pp. 532–541
(2015).

[2] Bergmann, A.: Benefits and Drawbacks of Model-based Design, Ap-
plied Science and Engineering Progress, Vol. 7, No. 3, pp. 15–19
(2014).

[3] Honda, S., Tomiyama, H. and Takada, H.: SystemBuilder: A sys-
tem level design environment, IEICE Trans. Information & Systems,
Vol. 88, No. 2, pp. 163–174 (2005).

[4] MathWorks: MATLAB, https://jp.mathworks.com/products/
simulink.html. Accessed: 2020-9-26.

[5] MathWorks: Simulink, https://jp.mathworks.com/products/
simulink.html. Accessed: 2020-9-26.

[6] Nakano, Y., Honda, S., Edahiro, M. and Suzuki, H.: Runtime and
code generation for Automotive RTOS of multirate modelin model
base parallelization, IPSJ SIG Technical Report, Vol. 2017-SLDM-
179, No. 4, pp. 1–6 (2017).

[7] Ohtake, F., Honda, S. and Takda, H.: MDCOM, communication li-
brary for heterogeneous processor, Vol. 2017-EMB-44, No. 34, pp.
1–6 (2017).

[8] Schmidt, A. G., Weisz, G., French, M., Flatley, T. and Villalpando,
C. Y.: SpaceCubeX: A framework for evaluating hybrid multi-core
CPU/FPGA/DSP architectures, 2017 IEEE Aerospace Conference,
IEEE, pp. 1–10 (2017).

[9] TOPPERS Project Inc.: MDCOM, https://www.toppers.jp/
atk2.html. Accessed: 2020-9-26.

[10] TOPPERS Project Inc.: MDCOM, https://www.toppers.jp/
mdcom.html. Accessed: 2020-9-26.

[11] Wakabayashi, K.: CyberWorkBench: integrated design environment
based on C-based behavior synthesis and verification, In VLSI De-
sign, Automation and Test, 2005. (VLSI-TSA-DAT), IEEE, pp. 173–
176 (2005).

[12] Xilinx: PetaLinux Tools, https://www.xilinx.com/products/
design-tools/embedded-software/petalinux-sdk.html. Ac-
cessed: 2020-9-26.

[13] Xilinx: Vitis Unified Software Platform, https://www.xilinx.
com/products/design-tools/vitis.html. Accessed: 2020-9-
26.

[14] Xilinx: Vivado Design Suite, https://www.xilinx.com/
products/design-tools/vivado.html. Accessed: 2020-9-
26.

[15] Xilinx: Vivado High-Level Synthesis, https://www.xilinx.com/
products/design-tools/vivado/integration/esl-design.
html. Accessed: 2020-9-26.

[16] Xilinx: Zynq UltraScale+ MPSoC, https://japan.xilinx.com/
products/silicon-devices/soc/zynq-ultrascale-mpsoc.
html. Accessed: 2020-9-26.

[17] Zhong, Z. and Edahiro, M.: Model-Based Parallelizer for Embedded
Control Systems on Single-ISA Heterogeneous Multicore Processors,
International SoC Design Conference, IEEE, pp. 117–118 (2018).

[18] Zhong, Z. and Edahiro, M.: Model-based Parallelization for Simulink
Models on Multicore CPUs and GPUs, International SoC Design Con-
ference, IEEE, pp. 103–104 (2019).

Asia Pacific Conference on Robot IoT System Development and Platform 2020 (APRIS2020)

ⓒ 2021 Information Processing Society of Japan 13

